Resistance spot welding (RSW) was used to weld Mg alloy AZ61A. To research weldability of this alloy many welding parameters, e.g. current, time, pressure, have been tried in wide range on the welding source DAELEC 11 – 4. Visual check was followed with metallography, tensile test etc. Some defects as solidification, liquation cracks, porosity were found. The creation of imperfections was found to be dependent on parameters, so finally optimized parameters were found. The best influence on weld integrity, i.e. weld w/o cracks, was to set cooling time directly after welding. For sheet metal of 1 mm optimum welding parameters were 8 kA, 100 ms, 9 kN and long cooling time. Another problem found was limited lifetime of Cu electrodes, when in contact with Mg melt. This contamination damaged surface quality of electrodes, further influencing weld quality. High enough electrode pressure can diminish this problem.

KEYWORDS

resistance spot welding, RSW, Mg alloy, AZ61, solidification cracking

1. INTRODUCTION

Economical use of energy sources, lower emissions and as little as possible harmful impact of modern lifestyle on the environment is now one of main aims of technical development. In aerospace and automotive industries there is wider and wider use of light alloys and materials with high ratio of strength to weight. For example in automotive we can notice wide usage of high strength steels and Al alloys. In aerospace, even lower density than that of Al alloys is looked for, so Magnesium alloys are often the choice. Actually the future is in Mg alloys and it is already used in many automotive, aerospace and other products. Different properties of some metals are shown in Table 1. Mechanical properties of pure metals-Mg, Ti, Al, Fe [Kramar 2014], [Turna 2012].

Mg alloys are prospecive material, e.g. in area of transportation, where decrease of weight is a must. Yet especially for structures subjected to dynamic loading, the demands on quality of weldments are very high. One of technologies used for welding car body is Resistance Spot Welding (RSW). Even though weldability of steels and Al alloys by RSW is well known, it cannot be directly applicable on Mg alloys, so the aim of this article is to research weldability of AZ61 by RSW.

1.1. Weldability of Mg alloys

There are some properties of Mg alloys influencing weldability negatively, as strong tendency to oxidize, high thermal conductivity, high coefficient of thermal expansion, low melting and boiling temperatures, wide solidification temperature range, high solidification shrinkage, formation of low melting point constituents, low viscosity, low surface tensions, high solubility for hydrogen in the liquid state, and absence of colour change at the melting point temperature [Turna 2011].

Therefore, weld defects were observed in welding of magnesium alloys by different methods such as unstable weld pool, spatter [Hafeerkamp 2001], tendency to drop through, sag of the weld pool, undercut, porous oxide inclusions, loss of alloying elements, excessive pore formation [Zhao 2001], liquation and solidification cracking.

Hot cracks have been one of the main welding defects for magnesium alloys. In most magnesium alloys, an increase in alloying elements will generally increase the solidification temperature range. The large freezing temperature range, large solidification shrinkage, high coefficient of thermal expansion, and low melting point intermetallic constituents potentially make magnesium alloys susceptible to heat affected zone liquation cracking and solidification cracking in FZs [Marya 2002]. Solidification cracking usually occurs in the alloys with large solidification interval, such as Mg–Zn–Zr, Mg–Al–Zn, etc. In addition, a number of magnesium alloys are thought to be susceptible to stress corrosion cracking. Thus, the welded joints should be used after stress relieving [Cao 2006].

The alloys containing up to 6 % Al and up to 1 % Zn possess good weldability, while the alloys containing over 6 % Al and up to 1 % Zn are moderately crack sensitive, because of the occurrence of low melting-point constituents (Mg, Al) [Marya 2002]. A frequency of both types of cracks increased at low welding speeds and was associated with high heat input and tensile stress. The experimental observations indicate that for Mg–Welding of magnesium alloys a reduction in the heat input reduces the frequency of cracks in WM, HAZ.

It was also found that cracking behaviour depend on the grain size and B-Mg, Al precipitates and liquation cracking can be suppressed by grain refinement. [Chen 2013]

1.2. RSW Weldability

In many of RSW spot welds cracks and pores have been found, affecting the properties of weld. It is caused by high coefficient of linear expansion, the rapid expansion at heating up, followed by quick cool down. The refined fusion-zone microstructure results in a longer fatigue life than welds with a coarse fusion-zone microstructure, when interfacial failure across fusion zone occurs at a higher level of cyclic load range [Xiao 2011].

Weldability of AZ31 was distinctly different from AZ91 as proved by [Luo 2011]. Solidification and liquation cracks in WM and HAZ were found for AZ31, for all welds with diameter over 6.5 mm, high heat input deteriorated the cracking. AZ91D was prone to porosity in WM and weld surface. Even partial contact of Cu electrode with molten Mg diminished electrode life [Kolarikova 2013].

With increasing the current, the weld nugget size increases, yet also the porosity volume and size. This tendency can be counteracted by increase in the electrode force. At sufficiently high electrode force the porosity almost disappears (3–4 kN for AZ31). Also application of holding time

<table>
<thead>
<tr>
<th>Material</th>
<th>Mg</th>
<th>Al</th>
<th>Ti</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg·m⁻³)</td>
<td>1590</td>
<td>7.97×10⁻⁵</td>
<td>2.83×10⁻⁸</td>
<td>9.60×10⁻⁹</td>
</tr>
<tr>
<td>Resistivity (µΩ·m)</td>
<td>0.274</td>
<td>0.2425</td>
<td>0.420</td>
<td>1.386</td>
</tr>
<tr>
<td>Coefficient of thermal expansion (°C⁻¹)</td>
<td>3.73×10⁻⁵</td>
<td>3.65×10⁻⁴</td>
<td>5.0×10⁻⁴</td>
<td>6.80×10⁻⁵</td>
</tr>
<tr>
<td>Thermal conductivity (W·m⁻¹·K⁻¹)</td>
<td>1360</td>
<td>25×10⁻⁶</td>
<td>24×10⁻⁶</td>
<td>7×10⁻⁷</td>
</tr>
<tr>
<td>Melting temperature (°C)</td>
<td>650</td>
<td>2520</td>
<td>3 287</td>
<td>2860</td>
</tr>
<tr>
<td>Boiling temperature (°C)</td>
<td>1090</td>
<td>74.03</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>Heat of fusion (J·kg⁻¹)</td>
<td>3.73×10⁻²</td>
<td>3.65×10⁻¹</td>
<td>5.0×10⁻¹</td>
<td>6.80×10⁻²</td>
</tr>
<tr>
<td>Thermal capacity (J·kg⁻¹·K⁻¹)</td>
<td>1080</td>
<td>4×10⁻¹</td>
<td>4.2×10⁻¹</td>
<td>2.7×10⁻¹</td>
</tr>
<tr>
<td>Coefficient of thermal expansion (°C⁻¹)</td>
<td>540</td>
<td>1.666</td>
<td>1536</td>
<td>795</td>
</tr>
</tbody>
</table>

Table 1. Mechanical properties of pure metals-Mg, Ti, Al, Fe [Kramar 2014], [Turna 2012]
after current shut-off caused the reduction in pore formation. Proved was the relative importance of holding time after current shut-off (i.e. cooling time) depends on welding current. [Shi 2010]

Aim of this research is thus to examine weldability of AZ61, to prove influence of contact pressure, cooling time on suppressing hot cracks and increasing strength of the weld.

2. EXPERIMENTAL
2.1 Material
Rolled sheets of alloy AZ61A thick 1 mm were used in all experiments. Chemical and mechanical properties are stated below.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Al</th>
<th>Zn</th>
<th>Mn</th>
<th>Si</th>
<th>Fe</th>
<th>Ca</th>
<th>Cu</th>
<th>Fe</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt. %</td>
<td>6.37</td>
<td>0.67</td>
<td>0.21</td>
<td>0.01</td>
<td>0.004</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.004</td>
<td>Bal.</td>
</tr>
</tbody>
</table>

Table 2. Chemical composition of AZ61A

Table 3. Mechanical properties AZ61A

<table>
<thead>
<tr>
<th>Rp 0.2 [MPa]</th>
<th>Rm [MPa]</th>
<th>A [%]</th>
<th>Hardness [HV 0.1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>217</td>
<td>271</td>
<td>15</td>
<td>51 – 61</td>
</tr>
</tbody>
</table>

AZ61A consists of 2 phases–delta phase, i.e. solid solution and beta phase –eutectic Mg17Al12 precipitate. Precipitates of beta phase are 3x harder than delta phase. After casting, welding, these are at grain boundaries, so Mg alloys should undergo heat treatment to improve properties. At Figure 3 matrix of delta phase with fine intermetallics (black dots) is visible.

2.2 Welding procedure, welding source, sample
As welding source Dalex PMS 11–4 with range of usable welding parameters – welding time 0–2.5 s, welding current 0–30 kA, electrode force 0.2–10 kN, cooling time 0-2.5 s. Cooling time means that electrodes are still in contact after current is switched off. Used electrode caps are 39D 1978-1, mat. CuCr1Zr. [Kolarik 2014]

As welding sample square sheet metal 25x25x1 mm were prepared. For the tensile test samples were 100 x 25 x 1 mm.

2.3 Weld evaluation
Microscopic observation of weld surface and metallography were used to evaluate presence of weld imperfections.

Tensile tests were executed on welded samples. Microhardness was measured.

3. RESULTS
Varying parameters as welding current, welding time, force, preheat and post heat, many different welds were done and evaluated.

3.1 Current, welding time, electr. force
Heat input in RSW is defined by Q = I²*R*t, so current and pulse length are the main welding parameters to set on the source.

In the previous research, time, current influence, welding time on weld size was observed. From the previous experience, current in range 7–9 kA, time 100 ms were selected as giving good nugget size.

Electrode force was changed in range 1–9 kN and results are shown at Figure 6. Increase of contact pressure decreases the size of weld nugget. Probably this is connected with decrease of contact interface resistance with increase of external pressure, thus lower heat input. At the lowest contact force, pressure, 1 kN, the internal pressure of...
melt was higher than external electrode force, so that melt ejected and spatter was created, upper view at Figure 5. Due to high thermal expansion of Mg the spatter creation must be suppressed by high enough electrode force. Due to the fact of size changing with the electrode force, the spot loading capacity will change. Influence on microstructure should also be expected.

3.2 Microstructure
Example of microstructure at higher magnification shows presence of fine grain structure, average grain size is 5–10 µm with presence of secondary intermetallic phase at the grain boundaries. This is eutectic intermetallic phase Mg17Al12, as stated by other researchers; this is well visible at Figure 7, 8 together with cracking presence.

3.3 Cracking
Due to visual check of micrographs on microscope cracks have been found. The cracks typically run along the grain boundaries. These were present in WM near the weld centre and also in HAZ. Characteristics show these are solidification and liquation cracks. This fact is in concordance with other researchers, as stated in chapter Weldability of Mg alloys.

Cracking countermeasures
Hot cracking behaviour, noted at our spot welds, is connected with solidification of weld metal and/or liquation in HAZ.
Generally to prevent hot cracking heat input should be minimized, to minimize volume solidification time, volume of molten metal and segregation. Also in some cases preheat and postheat can help, influencing final weld structure. To observe possibility to prevent solidification cracks, this was tried: 1. Minimizing heat input, 2. Use of cooling time, (after welding electrodes are kept in contact with weld).

1. Minimizing heat input
Even at low welding parameters, the small solidification cracks could be found. Furthermore lower heat input would decrease weld area, size of nugget and possible load.

2. Use of cooling time
If after welding the electrodes are kept in contact with the spot weld, the piece is faster cooled and solidification process finishes faster, thus lowering segregations and cracking. This is proven by comparison of weld done with cooling time 2.5 s, Figure 10, where no cracks were noticed. On the other hand on Figure 9 many cracks near the weld centre, part that solidified the last, were visible.

Too high welding parameters
In case of setting too high parameters, i.e. heat input, the melting of upper or/and lower sheet metal surface can occur. In such case, the melt can be expelled from weld nugget causing spatter and wetting of the Cu electrode. Contact of molten Mg and Cu electrode causes constant deterioration of electrode surface, i.e. electrode wear. Damaged electrode surface will indent on any further spot welds, as on Figure 12. Melting of Cu electrode and its influence on weld is visible at Figure 11.

Microhardness
Vickers microhardness was measured according to norm ČSN EN ISO 14271 on machine Buehler IndentaMet 1106 with load of 100 g. Distance of indentations was 0.5 mm.
Increase of hardness was noticed in WM for all samples. Example of results can be visible at Figure 13. Base metal hardness was on average 57 HV0.1. The highest average WM hardness was 67 HV0.1 for, measured for 9 kN, while for force of 1 kN it was 61 HV0.1. The increase of hardness in WM is connected with recrystallization under outer pressure, causing grain refinement. The change of microhardness with change of electrode force is quite significant.

Shear test
To evaluate strength of weld joints shear test (in accordance with ČSN EN ISO 14273) was applied using tensile testing machine LABORTECH LabTest 5.150 Sp1. Test samples were prepared at welding current 9 kA, time 0,1 s, force 1, 3, 5, 7, 9 kN. For each set of parameters 5 samples were prepared. One sample was subjected to tensile test to find tensile strength of BM, for which the max load was 5316 N.
was contrary to our expectations, as increase of contact pressure evaluated with more details.

For dynamic loading the presence of porosity and cracks should be proved that increase of electrode force increases also maximum load.

weld spot for 2.5 s, i.e. cooling time, then the cracking was not observed.

done in our case, when after welding electrodes were kept in contact with solidification time, e.g. lowering heat input, setting cooling time. That was to be expected. Their presence can be diminished by minimizing solidification and/or liquation cracks (microcracks) along grain boundaries are to be expected. This is probably connected with increase of joint soundness, as this diminishes porosity and cracks. Results are visible at Figure 16 b.

4. CONCLUSION

RSW weldability of AZ61 was researched with following conclusions: solidification and/or liquation cracks (microcracks) along grain boundaries to be expected. Their presence can be diminished by minimizing solidification time, e.g. lowering heat input, setting cooling time. That was done in our case, when after welding electrodes were kept in contact with weld spot for 2.5 s, i.e. cooling time, then the cracking was not observed.

In the shear test all samples fractured outside of WM. The shear test proved that increase of electrode force increases also maximum load. For dynamic loading the presence of porosity and cracks should be evaluated with more details.

The influence of electrode force upon weld nugget size and spatter was contrary to our expectations, as increase of contact pressure decreased size of the weld nugget and prevented spatter. Decrease of nugget size can be explained by decrease of contact resistance, by higher applied force, consequently heat input. As the conclusion, the cooling time and higher electrode force proved advantageous for welding of AZ61 to suppress cracking and increase strength of the joint.

ACKNOWLEDGMENT

This research was supported by the grant SGS 13/187/OHK 2/3T12.

REFERENCES

CONTACTS

Ing. Tomas Kramar, PhD.
Department of Manufacturing Technology
Faculty of Mechanical Engineering CTU in Prague
Technicka 4, 166 07 Prague, Czech Republic
tel.: +420 224 352 630
e-mail: tomas.kramar@fs.cvut.cz

Figure 13. Hardness across weld nugget, I= 8 kA, t=100 ms, 9 kN, cooling 2,5 s

Figure 14. Shear test load-extension graph

Figure 15. Forces (left), shear stresses (right). At the moment of a–start of test, b–during execution [Zhang 2013]

Forces applied on shear test sample cause distortion of sample, as visible at Figure 15, so direct comparison of BM sample and test samples is not possible because of characteristics of lap weld. All samples fractured outside from the weld metal, so the welds can be evaluated as acceptable, visible at Figure 16 a. The highest loads at the fracture were reached for the highest electrode force, i.e. 7,9 kN.

This is probably connected with increase of joint soundness, as this diminishes porosity and cracks. Results are visible at Figure 16 b.