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Asynchronous motors are a frequent power member of electric 
drives. In engineering practice their reliability is important. 
Although the available literature indicates a high reliability of 
these machines, in many applications reliability needs to be 
monitored and evaluated. A significant role in this process 
occupies technical diagnostics. Engineering practice knows a 
considerable amount of diagnostic methods; for our purposes, 
the important ones are the following: vibration and noise 
diagnostics, thermodiagnostics, electrodiagnostics, etc. The 
results of diagnostics can be evaluated in different ways; the 
present paper demonstrates the use of fuzzy expert systems, in 
particular it deals with a partial problem related to the 
application of vibration diagnostics. Based on the measurement 
of values of vibrations of the experimental stand, its fault has 
been clearly identified. 
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1 INTRODUCTION 
Asynchronous motors are the most widely used machines in 
engineering practice as a drive unit e.g. for pumps, fans, 
compressors, cranes, elevators, machine tools, transportation 
equipment or aviation. Therefore, monitoring or possible 
increasing the reliability of asynchronous motors is an important 
technical issue. 
The available literature describes asynchronous motors as 
quality, highly reliable technical systems. However, on the other 
hand, these issues are also subjected to extensive debates, 
especially in connection with deployment of the above 
mentioned machines in severe environments (e.g. belt conveyor 
drives for transporting coal and tailings) or in plants with high 
demands on reliability (aviation, rail and city traffic) where the 
elimination of drive operation can have considerable secondary 
consequences. 
Figure 1 shows one of the examples of the use of asynchronous 
motors in industrial practice. 
When discussing the quality of engineering systems, it is 
important to know what the concept of quality means. The 
quality is characterized by a degree of compliance of the 
requirements and a set of inherent features; these are e.g.  
functional, safety, environmental, ergonomic and also reliability 
features. For our case, particularly important features are those 
of reliability, which is a subject of scientific discipline called 
reliability. 
Reliability in a broad sense is understood as the stability of the 
utility properties of the object over the specified time and under 
specified conditions of use. In individual cases it is expressed by 
"sub-properties" such as durability, storability, reliability, 
maintainability, maintenance assurance, repair ability, 
diagnostics, and possibly also safety. 

Figure 1. The use of asynchronous motors in belt conveyor [Svoboda 

2015] 

This article is devoted to diagnostics. Diagnosing the fault 
condition is a set of operations carried out for the purpose of 
fault detection, localization of defective part and identification 
of fault; it is an identification of current state of the monitored 
object. 
Using of diagnostics increases the system reliability. The 
technical diagnostics is based on non-destructive and non-
dismantling methods and uses the symptoms of faults, i.e. a 
change of output parameters of diagnosed objects and 
accompanying variables. A combination of the output values 
constitutes a fault symptom [Jaksch 2011]. 
Currently, the issues of diagnostics are often very complex, not 
only as for the choice of suitable diagnostic methods, tools, etc. 
Moreover, it is not any more sufficient when evaluating the 
application results, e.g. of mathematical statistics, or other 
similar methods. A choice of new procedures is coming to the 
forefront. One of them is the use of artificial intelligence, such as 
artificial neural networks, fuzzy logic and expert systems [Nikitin 
2010]. 

2 USE OF FUZZY SET THEORY IN ENGINEERING DIAGNOSTICS 
In engineering diagnostics, it is usually not always possible to 
unambiguously determine the exact boundary between the fault 
and operable condition. If we diagnose a more complex object, 
there is no clear mutual visualisation between diagnostic 
variables, classes of faults and corresponding diagnoses. Classes 
of faults can overlap when the same values of diagnostic 
variables correspond to different diagnoses. In this case, the 
theory of fuzzy sets can be used to determine the technical 
condition of diagnosed object [Jaksch 2011]. 
In practice, fuzzy sets have become the most common way of 
formalizing the uncertainty of natural language words. In the 
case of complex diagnosed subjects with a plenty of diagnosed 
parameters for which it is not possible to accurately determine 
their interrelations, using the fuzzy theory is necessary 
[Jamrichová 2011]. For complex multiparametric diagnostics, the 
use of fuzzy expert systems is appropriate. 
Generally, expert systems are computer programs simulating 
decision-making activities of an expert in solving complex tasks 
using appropriately coded, explicitly expressed special 
knowledge, taken from an expert, in order to achieve a quality 
of decision-making at the expert level in the chosen problem 
area. 
This article addresses only the issues of a fuzzy subsystem as part 
of a fuzzy expert system as shown in Figure 2. This is used for 
actual diagnostics, i.e. a module of actual diagnostics is 
developed. 
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Figure 2. Block diagram of fuzzy expert system  

The article uses the fuzzy subsystem, which is composed of 
blocks of according to Figure 3; these are briefly described 
below. 
 

 

Figure 3. Block diagram of fuzzy subsystem [Hammer 2009] 

A fuzzification module provides a conversion of crisp values to 
fuzzy set. It is a conversion of the input data loaded with 
uncertainties into fuzzy sets defined by specific features of 
membership. For specification of fuzzy set, it is necessary to 
determine its membership function. If it is possible to somehow 
quantify the values of quantities expressed verbally, it is 
necessary, as the first step, to transform the specific values into 
the so-called normalized form (i.e. the closed interval 0-1). The 
next step is then to assign each crisp value with a degree of 
membership into one or more fuzzy sets, which correspond to 
the basic terms. Here it is necessary to completely cover the 
entire normalised universe with standardized carriers of 
selected individual fuzzy sets. It is followed by determination of 
specifically used membership functions  
The role of inference mechanism is to gradually evaluate all rules 
and aggregate their results into a single fuzzy set. For the given 
fuzzy facts, the assumptions of fuzzy rules of the system, which 
best correspond to these facts, are searched for and the 
implications of these facts are derived in the form of fuzzy sets. 
Generally, the results of inference operation are several fuzzy 
sets, which represent fuzzy sets of implications of used rules. 

A rule base and data base are collectively referred to as the 
knowledge base of fuzzy system. The data base contains the data 
on fuzzy sets of all variables in the system. The rule base contains 
all the rules of the fuzzy system. 
The role of defuzzification module is to obtain a crisp value from 
the given fuzzy set. This is a conversion of the result of decision 
making, which we receive in the form of fuzzy set, into a specific 
unambiguous numerical value [Hammer 2009]. 
To evaluate the technical condition of the drive, a diagnostic 
fuzzy subsystem was developed using the tool Fuzzy 
LogicToolbox of MATLAB programming environment. 
A fuzzy set theory allows us to mathematically describe vague 
concepts and work with them. Provided that it is not possible to 
determine the exact boundaries of the class determined by a 
vague concept, we can substitute the decision about 
membership or non-membership of the given member into the 
class by a degree selected on a defined scale. Then, each 
member is assigned a degree expressing its position and role in 
this class on the organized scale. 
A linguistic variable is the fundamental unit representing 
knowledge, whose values are words or phrases of natural or 
artificial language. The rule base, established by authors, has 
nine linguistic variables representing the amplitude of 
mechanical vibration rate at the first, second and third speed 
frequency of the drive in the direction of axes X, Y, Z. Each 
linguistic variable has two linguistic values: L - low level, H - high 
level. 
For both linguistic values of L and H, it was necessary to choose 
the membership function. The s-function and the z-function 
were selected because these functions are the most often used 
functions to represent fuzzy sets, which characterize the 
uncertainties of the "low level", "high level". Membership 
functions were chosen by the direct method, which is subject to 
the possibility of measuring the input data in a quantitative scale 
[Leonenkov 2005]. 
Linguistic variables are processed using fuzzy statements. The 
structure of the statement is formed by the linguistic variable 
and the value of this variable, which is verbal, not numerical. 
These statements are usually interconnected using logical 
operators AND, OR, thus forming the resulting fuzzy statement, 
which is a prerequisite for the following rule: 
 

IF (fuzzy statement) THEN (fuzzy statement). 
 
This rule is an implication, but not crisp; it is a fuzzy implication. 
Its result is called the consequent (conclusion). The resulting 
decision represents an aggregation of the results from all the 
fuzzy rules. 
As noted above, diagnostic parameters are the amplitudes of 
mechanical vibrations rates at multiples of speed frequencies of 
the drive in the direction of axes X, Y, Z. The most important 
information on the technical condition of the drive is mainly 
associated with the amplitudes of vibrations at the first three 
speed frequencies (nine diagnostic parameters). 
The number of rules is defined by the following formula: 
𝑅 = 𝑠𝑛      (1) 
where R is the number of rules in the base,  s is the number of 
linguistic values, n – the number of diagnostic parameters. 
When designing a fuzzy system, it is necessary to expect that an 
increase in the number of diagnostic parameters will 
considerably increase the number of rules in the base. 
A model of drive diagnostics has been implemented in Matlab 
software and its toolbox Fuzzy Logic. As a basis of fuzzy system 
evaluation of drive technical condition, we selected the 
algorithm of Mamdani fuzzy inference, i.e. the consequent of 
each rule contains a fuzzy statement: 
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IF (p1 =Pjr

1) AND... AND (pn =Pjr
n)THEN (q1 =Qjr),… ,(qn=Qjr) 

r=1,2,…,R.                                                                                    (2) 

 

where p1,p2,… pn– diagnostic parameters, j indexes the fuzzy sets, r is 

the rule number,q1,q2,… qn – output variables, R is a total number of 

rules in the formula (1). 

The input crisp value of pi is fuzzified; i.e. fuzzy sets P are formed. 

These input fuzzy sets indicate the output fuzzy sets Q on the output 

of each fuzzy rule. The results of all rules are aggregated into the 

resulting fuzzy sets Q that are defuzzified by COG method (Center of 

Gravity). This method, also often called the method of Center of Area 

(COA), is one of the most common methods. As the name suggests, 

the crisp value of variable is determined as coordinates of center of 

gravity [Leonenkov 2005]. 
A set of fuzzy rules R approximates the system whose output q 
defines the condition of diagnosed object depending on the 
values of input diagnostic parameters. 
Determination of a degree of membership of probability of faults 
to low, medium or high level is shown in Fig. 4. 
 

Figure 4. Function of membership of output values. 

3 EXPERIMENTAL STAND 
To verify the theoretical conclusions from the previous chapter, 
an experimental stand (Figure 5) was designed and built up, 
consisting of two three-phase asynchronous motors of company 
Siemens (power - 4 kW, speed - 2930 rpm, voltage - 400 V, 
current - 8.1 A), interconnected by a flexible coupling. 
 

 
A block diagram of the stand with a system of sensors is shown 
in Figure 6. 
To evaluate the technical condition of the experimental stand by 
the methods of vibration diagnostics, we used the instrument 

Microlog CMXA-48 – a four-channel analyzer, allowing you to 
perform an advanced analysis of measured  

Figure 6. Block diagram of experimental stand 

data, including their processing in the appropriate software 
(Figure 7). 
 

 

Figure 7. Analyser Microlog CMXA-48 [SKF 2015] 

Vibration measurement was performed on non-rotating parts of 
the motor 1 at speed frequency of 50 Hz. 
Measurements were performed only for the described operating 
mode. Different modes were not considered. 
To measure vibrations, we used a set of three accelerometers 
with a frequency range from 0.5 to 10 000 Hz (Figure 8) [SKF 
2015]. 
 
 

 

Figure 8. Mounting of accelerometers on the motor 1 

Figure 5. Experimental stand 

Y 

Z 

X 

Motor 1 
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Accelerometers were mounted at specially designed measuring 
points in the directions of axes X, Y and Z by means of magnets 
(Figure 8). 

4. VERIFICATION OF CREATED FUZZY SUBSYSTEM 
A fuzzy subsystem was created in the MATLAB program; this 
subsystem is capable of evaluating the technical condition of the 
experimental stand to differentiate the following failures: 
 

A - imbalance, soft foot; 
B – mechanical looseness, resonance, rotor galling; 
C - bent shaft; 
D - angular misalignment; 
E - parallel misalignment. 

 
When measuring the stand vibrations, the obtained data were 
subsequently loaded and processed in the created fuzzy 
subsystem in the form of block diagram in Figure 9. 
 

 

Figure 9. Block diagram of created fuzzy system. 

Linguistic variables x1, x2, ... z3 represent input fuzzy values. To 
use these nine linguistic variables, we created, using the 
operator AND, 512 rules, which represent a partial evaluation of 
the technical condition of experimental stand depending on the 
values of amplitudes of mechanical vibrations rates. As an 
example of created rules, the rule identifying the angular 
misalignment is referred to: 

 
If (x1is L) and (x2 is L) and (x3  is L) and (y1 is L) and (y2 is L) and (y3  
is L) and (z1 is H) and (z2 is H) and (z3  is H) then (A is L) and (B is 
L) and (C is L) and (D is H) and (E is L). 
 

where:  x1, x2, x3 are the amplitudes of mechanical vibrations 

rates at the first, second and third speed frequency in 
the direction of X axis; 

y1, y2, y3 are the amplitudes of mechanical vibrations 

rates at the first, second and third speed frequency in 
the direction of Y axis; 

z1, z2, z3 are the amplitudes of mechanical vibrations 
rates at the first, second and third speed frequency in 
the direction of Z axis; 
A is L – low level of probability of occurrence of fault of 
type A, 
D is H – high level of probability of occurrence of fault 
of type D. 

 
The above rule is a specific form of summarising the information 
from the external database for the correct procedure in order to 
detect the angular misalignment using methods of vibration 
diagnostics (omitting the information on the measured vibration 
phase). 

Figure 10 shows the frequency spectra of vibration rates in the 
X, Y and Z axes, which were measured on the experimental stand 
when creating the angular misalignment of motors. The figure 
shows that the current technical condition of the experimental 
stand can be characterized by the presence of significant axial 
vibrations (which were in the antiphase with a difference of 
approximately 180 o). Vibration rates in the X and Y axes are 
much lower. 
 

Figure 10. Spectrum of mechanical vibration rate in the X, Y, and Z axes. 

Table 1 shows the values of amplitudes of vibration rates from 
the spectra in Figure 10. 

Table 1. Values of amplitudes of vibration rates. 

After processing the collected data in the created fuzzy 
subsystem, the technical condition of the experimental stand 
was evaluated in terms of Figure 11. 
Based on Figure 11, we can hypothesize that the examined 
experimental stand probably has an angular misalignment 
(probability of fault is high i.e. 0.8469). 
 

 

Figure 11. Results of the evaluation of drive technical condition at 
angular misalignment in the MATLAB product. 

As the representation of the result of analysis in MATLAB 
environment is less illustrative for a less experienced user, a new 
graphical interface was designed and created - Figure 12. 
 

Axis 

Amplitude of 
vibration 
rate at 1st 

speed  
frequency, 

mm/s 

Amplitude of  
vibration 

rate at 2nd 
speed  

frequency, 
mm/s  

Amplitude of  
vibration 
rate at 3rd 

speed  
frequency, 

mm/s  

X 0.73 1.16 0.47 

Y 0.31 0.34 0.63 

Z 4.26 4.79 3.97 
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Figure 12. Results of evaluation of technical condition of experimental 
stand at angular misalignment in graphical form. 

According to Figure 12, using Figure 4, we can state the 
following: 

 Probability that the experimental stand is unbalanced, 
has a soft foot,  mechanical looseness, increased 
resonance, motor  galling, a bent shaft or possibly 
parallel misalignment is relatively low (0.15 to 0.29), 

 Probability that the experimental stand has an angular 
misalignment is high (0.85). 

ACKNOWLEDGMENTS 
This work has been supported by Brno University of Technology, 
Faculty of Mechanical Engineering, Czech Republic (Grant No. 
FSI-S-14-2401). 

CONCLUSIONS 
The article is a contribution to the diagnostics of asynchronous 
motors. It describes modern approaches that are based on the 
theory of fuzzy expert systems; a fuzzy expert system was 
defined in a novice manner. Within this system, the possibility of 
practical applications of the created fuzzy subsystem based on 
the analysis of the results of vibration diagnostics was indicated 
and verified. This subsystem is capable of evaluating the 
technical condition of the experimental stand in order to 
differentiate five types of faults. It was confirmed that a major 
constraint for its widespread use in practice is a significant 
increase in the requirements for computing performance related 
to the growth of the assessed variables. Despite this fact, the 
proposed solution seems to be beneficial because it shows one 
of the ways for diagnostics of asynchronous machines. In future, 
it will be necessary to focus on the use of measurement results 
of other diagnostic variables and search for the options how to 
reduce a task scope using the appropriate mathematical or other 
methods. Similarly, within the use of expert systems, it will be 
highly recommended to focus on the examination and creation 
of other modules, such as e.g. a prognostic diagnostic module, a 
maintenance module, etc. This way of creating the fuzzy expert 
system could in future allow a proper evaluation of the technical 

condition of equipment and machines even by less experienced 
professionals. 
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