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This article is focused on the analysis of tool wear in milling 
of Inconel 718. Inconel 718 is tough and highly temperature 
resistive material, which is used due to its excellent 
properties especially in aggressive corrosive environment. 
Machining of this alloy is still complicated. The feasibility of 
three inserts tested for milling of Inconel 718 has been 
shown in this work. Different cutting speeds and feeds were 
used. Experimental tests were performed in order to analyze 
wear evolution. It was found that cutting conditions and 
type of insert strongly affects tool wear mode. Surface 
roughness was studied as well as cutting force as a function 
of tool wear. 
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1 INTRODUCTION 

Nickel-based super alloys are widely used in aerospace 
applications due their excellent mechanical properties 
maintained at high temperature and their corrosion 
resistance. These super alloys are frequently used in 
advanced for aero-engine components such as turbine 
blades, turbine vanes, turbine vane rings, turbine nozzles, 
engine, and turbine casings. Machining of these alloys is still 
a challenge, especially in aggressive conditions such as dry 
cutting. Characteristics of super alloys (high temperature 
tensile and shear strength, strong work hardening, reduced 
thermal conductivity, built-op edge (DUE) and the presence 
of abrasive particles in their microstructures) induce severe 
thermo-mechanical loads at the tool-chip interface resulting 
in significant wear of the tool [Ezegwu 2005],[Olovsjö 2012], 
[Youssef 2016]. 
Tool wear strongly influences production costs and affect 
surface integrity of the tool [Xue 2011]. Cutting tool 
selection is an important factor when machining Ni based 
alloys. Tool material should exhibit elevated wear resistance, 
high strength and toughness, high hardness at high 
temperature, chemical stability and thermal shock 
resistance. Cemented carbides have been used for decades 
and the use of multilayer coatings have improved their 
suitability for machining Ni-based alloys [Mrkvica 12a], 
[Ezegwu 1992], [Ezegwu 1996]. 

2 INCONEL 718 

Inconel 718 is a recently developed precipitation hardened 
Ni-base alloy, containing significant amounts of iron, 
niobium and molybdenum, along with lesser amounts of 

aluminium and titanium, which is designed to display 
exceptionally high yield, and creep rupture properties at a 
temperature up to 700 °C [High Temp Metals 2017]. It is 
typically used in applications where properties of 
temperature resistance, corrosion resistance, and loading 
resistance are most desired. 
This material belongs to group of nickel alloys, which are 
intended for manufacturing of parts with high resistance to 
corrosion and high temperatures. It is high strength, 
stainless, precipitation hardened alloy intended for 
temperature range -252°C to +700°C [Neslusan 2012]. 
Operating temperatures are often in the vicinity of 1100°C, 
without a damaging reduction in strength and hardness 
[Groover 2010]. 
Due to its wide temperature range Inconel 718 is used in 
aerospace for manufacturing of components placed in parts 
of motors which are exposed to high temperatures. 
Chemical composition is shown in table 1. Mechanical 
properties: Rm = 1240 MPa, HRC=36 [Mrkvica 2012b]. 
 

Element C Mn Nb+Ta Cr Ni Co Fe 

Min.(%)   4,75 17 50  rest 

Max.(%) 0,08 0,35 5,5 21 55 1  

Element B Ti Al Mo Zr Cu S 

Min.(%)  0,65 0,2 2,8 0,02   

Max.(%) 0,01 1,15 0,8 3,3 0,12 0,1 0,02 

 

Table 1: Inconel 718 – chemical composition [Janos 2016] 

3 CONDITIONS OF EXPERIMENT 

The most published works on machining Inconel 718 have 
been concerned mainly with single-point tools (turning), 
while milling has received little attention due to the process 
complexity [Choundhury 1998], [Fernández-Valdivielso 
2016], [Mrkvica 2013]. Alauddin et al. presented a study into 
the machinability of Inconel 718 during end-milling when 
using uncoated carbide inserts under dry conditions. Their 
main objective was to optimize the machining conditions 
regarding to the tool life and surface quality [Alauddin 
1996]. HSM using ball nose end mills to machine aero-foils 
made of Inconel 718 was investigated by Ng et al. [Ng 2000]. 
The best tool life was realized when cutting was performed 
using high pressure cutting fluid. The tool life was twice 
longer than that performed under the dry condition. Hood et 
al. studied the effect of operating variables on tool life and 
surface integrity when end-milling of Ni-based Haynes 282. 
According to their plan, only four machining levels were 
chosen based on the suggested operating parameters (two 
speeds and two feeds) and specified by tool manufacturers. 
The highest operating parameters were high cutting speed 
and high feed rate of 0,1 mm, whereas the lowest 
parameters were low cutting speed and a small feed rate of 
0,05 mm. Unfortunately, commercial restrictions preclude 
the reporting of the exact cutting speeds, although these 
may be within the range of 14-75 m.min-1. It was also 
depicted that the three force components increased with 
increasing flank wear, and the machinability performance of 
Hayes 282 during milling was found to be similar to Inconel 
718 [Hood 2012].  
 
Our milling tests were carried out on FNG 32 CNC milling 
machine with application of cutting fluid. The workpiece was 
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in the form of prism (70x115x320mm) of Inconel 718. Milling 
cutter FMA01-080-A27-SE12-06 (external diameter 91 mm, 

number of teeth = 6, tool back rake p = +20°, tool side rake 

f = -5° [ZCC.CT 2017]) was employed for machining (Fig. 1.). 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 1. Milling cutter FMA01-080-A27-SE12-06 with cemented 
carbide inserts [ZCC.CT 2017] 
 
Three commercial coated carbide inserts (micro-grain hard 
metal and nano-structured nc-TiAlN PVD coating [ZCC.CT 
2017], resp. MT-CVD coating Ti(C,N)+Al2O3+TiN [Sandvik 
Coromant 2017] (recommended for machining Ni alloys) 
were analyzed with the different cutting geometries. CVD 
coatings are more suitable than PVD for turning applications, 
basically because the technology is defined for mass-
production and is cheaper than the PVD one. However there 
are also inserts coated with PVD technology. On the other 
hand, there are standards neither for tool geometry nor tool 
shanks for milling. For instance, this is the case of the 
shoulder, 45° lead angle and round inserts [Mrkvica 2014]. 
There are a lot of different types of milling tools, but the 
methodology explained in this paper can be very useful.  
Cutting parameters are stated in table 2. Tests were carried 
out by combinations of feeds and cutting speeds. Depth of 
cut was constant - 1mm. 
 

Type of insert f1 
[mm] 

f2 
[mm] 

f3 
[mm] 

SEET 12T3-CF 0,1 0,15 0,2 

SEET 12T3-EM 0,1 0,15 0,25 

R245-12 T3 E-ML 0,08 0,14 0,2 

Type of insert vc1 
[m.mim-1] 

vc2 
[m.mim-1] 

vc3 
[m.mim-1] 

SEET 12T3-CF 20 30 40 

SEET 12T3-EM 20 30 40 

R245-12 T3 E-ML 25 30 40 

 
Table 2. Cutting conditions [Janos 2016] 

 
 

 
The devices for tool wear and roughness monitoring were 
located next to the milling machine to reduce idles times 
and achieve a systematic way of testing. Microscope 
INTRACOMICRO with software Motic Image Plus 2.0 ML and 
portable roughness was a MITUTOYO Surftes 211 with 
Gaussian filter and cut-of 2,5 or 0,8 mm (with measurement 

range in Ra between 0,1 up to 40 m) were employed. 

Cutting forces were recorded with KISTLER 9255 A 
dynamometer, connected to the analog-digital converter 
PCL 818 HG. The signals were sampled with the frequency 
5 kHz, recorded and analyses in the software DASYLab 3.5. 
 
 
 
 
  
 
        
 
 
  Figure 2. SEET 12T3-CF                        Figure 3. SEET 12T3-EM 
        (YBG102-nc-TiAlN-PVD)                       (YBG202-nc-TiAlN-PVD) 
 
 
        
 
 
 
   
 
 
 
         
 
 

Figure 4. R245-12 T3 E-ML 
(2040-MT-Ti(C,N)+Al2O3+TiN) 

 
 

 
 

4 RESULTS OF EXPERIMENTS 

4.1 TOOL WEAR 

Decision about the most convenient cutting parameters for 
cutting inserts was made through the measuring of 
machining time until critical wear of inserts. As soon as the 
insert attains the critical wear level corresponding with poor 
surface quality (surface roughness) the experiment was 
stopped. This way the critical flank wear for established to 
be equal VBB = 0,7 mm. The test was carried out on all types 
of cutting inserts. Each of this inserts was employed for 
milling at 3 different cutting speeds and 3 different feeds. 
Depth of cut during test was constant - 1mm. 
Figures 5, 9 and 13 show all tested carbide inserts after 
reaching the tool life criterion VBB. Tool wear patterns 
indicate that friction and attrition mechanisms dominate, 
whereas adhesion occurs when the coated layer was 
destroyed [Liao 1996], [Bhatt 2010]. In no case the usual 
notch wear pattern was detected. The higher tool wear the 
worse chip removal mechanism. Increasing heat originating 
from plastic deformation results in diffusion and adhesion - 
adhered layers in both the rake and relief edge faces can be 
found, known as BUL (Built up layer) [Qi 2000]. 
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Figure 5. Flank wear of SEET 12T3-CF (YBG102-nc-TiAlN-PVD) insert (from left VBB = 0,21 mm; 0,35 mm; 0,52 mm; 0,74 mm) 

Figures 6-8, 10-12 and 14-16 show flank wear along 
machining time Tc. Chipping, or fracture of the tool edge is 
also observed during machining of nickel-based, being 
reported as the dominant mechanism when milling Inconel 
718 [Cantero 2013], [Kadirgama 2011], [Czan 2003]. 
 

 
Figure 6. Flank wear along with machining time, SEET 12T3-CF 
(YBG102-nc-TiAlN-PVD) by cutting speed vc = 20 m.min-1  

and different feeds 

 

Figure 7. Flank wear along with machining time, SEET 12T3-CF 
(YBG102-nc-TiAlN-PVD) by cutting speed vc = 30 m.min-1  

and different feeds 

 

Figure 8. Flank wear along with machining time, SEET 12T3-CF 
(YBG102-nc-TiAlN-PVD) by cutting speed vc = 40 m.min-1  

and different feeds 

 
 
Figures 6-8 show, that only four inserts reached life time 
more than ten minutes and wear pattern changed above  
20 minutes. After 20 minutes of milling, divergence started, 
being blue line variant (vc = 20 m.min-1, fz = 0,1 mm) the last 
reaching the wear threshold value. The best results are 
reached by the smallest feeds. That applies to all cutting 
speeds. Feed value is determined for wear progress. 
Tool performance of SEET 12T3-EM (YBG202) insert  
(Fig. 10-12) is similar to the tool performance SEET 12T3-CF 
(YBG102) insert. The cause of this is the same shapes and 
cutting conditions. The consequence of different results are 
different chipbreaker shapes and coating layers. The longest 
life time also can be obtained at the smallest cutting 
conditions, primarily feed. 
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Figure 9. Flank wear of SEET 12T3-EM (YBG202-nc-TiAlN-PVD) insert (from left VBB = 0,13 mm; 0,26 mm; 0,55 mm; 0,71 mm) 

 

Figure 10. Flank wear along with machining time, SEET 12T3-EM 
(YBG202-nc-TiAlN-PVD) by cutting speed vc = 20 m.min-1  

and different feeds 

 

 

Figure 11. Flank wear along with machining time, SEET 12T3-EM 
(YBG202-nc-TiAlN-PVD) by cutting speed vc = 30 m.min-1  

and different feeds 

 

 

 

 

Figure 12. Flank wear along with machining time, SEET 12T3-EM 
(YBG202-nc-TiAlN-PVD) by cutting speed vc = 40 m.min-1  

and different feeds 

 
 

 
The best results can be obtained for R245-12 T3 E-ML (2040) 
insert. It is due to specific coating layer and chipbreaker 
shape. The reduction in tool engagement into material in all 
cases allows a 50% longer tool life.  Abrasion dominates 
during the first minutes of milling till the coating protective 
layer disappeared. Next milling process results in micro 
chipping of carbide substrate. In this moment crater and 
adhesion wear affected all tools. Figures 5, 9 and 13 show 
how wear develops along with milling time. 
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Figure 13. Flank wear of R245-12 T3 E-ML (2040-MT-Ti(C,N)+Al2O3+TiN) ) insert (from left VBB = 0,11 mm; 0,37 mm; 0,58 mm; 0,70 mm) 

 

 

Figure 14.Flank wear along with machining time, R245-12 T3 E-ML 
(2040-MT-Ti(C,N)+Al2O3+TiN) by cutting speed vc = 25 m.min-1  

and different feeds 

 

 

Figure 15. Flank wear along with machining time, R245-12 T3 E-ML 
(2040-MT-Ti(C,N)+Al2O3+TiN) by cutting speed vc = 30 m.min-1  

and different feeds 

 

Figure 16. Flank wear along with machining time, R245-12 T3 E-ML 
(2040-MT-Ti(C,N)+Al2O3+TiN) by cutting speed vc = 40 m.min-1  

and different feeds 

 

 
Graphs could be used for evaluation of particular machining 
time. For example, when we want have a lifetime of cutting 
inserts Tc = 1500 s = 25 minutes (VBB = 0,5 mm), then graphs 
can be used to find the highest possible cutting conditions: 
  

 SEET 12T3-CF : vc = 30 m.min-1 a fz = 0,1 mm 

 SEET 12T3-EM = 20 m.min-1 a fz = 0,15 mm 

 R245-12 T3 E-ML vc = 25 m.min-1 a fz = 0,2 mm 
 

Comparison of cutting inserts for vc = 30 m.min-1 and feed  
f = 0,1 mm is described on figures 17 and 18. The first one 
compares life times whereas the second one compares 
volume of removed material within the life time. 
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Figure 17. Comparison of life time 
 
 

 
 
Figure 18. Comparison of removal material volume 
 

4.2 SURFACE ROUGHNESS 

Figures 19-21 show three graphs of mean roughness (Ra) in 
relation with used cutting conditions. These figures show 
that Ra usually increases with increasing cutting speed. 
Comparing the values of Ra for the same VBB, and the 
different cutting speeds (constant feed) Ra increases only 
gently. The steepest increase of Ra can be found when the 
cutting speed is kept constant and feed increases. 
The best results (comparing all three type of square inserts) 
can be found for R245-12 T3 E-ML insert. Ra = 0,35 μm can 
be obtained for machining time 5392 seconds – see  
Fig. 22. 
 

 
 

Figure 19: Comparison of achieved Ra values at different cutting 
conditions SEET 12 T3-CF (YBG102-nc-TiAlN-PVD) 

 
 

 
 

Figure 20.  Comparison of achieved Ra values at different cutting 
conditions SEET 12 T3-EM (YBG202-nc-TiAlN-PVD) 

 

 
 

Figure 21. Comparison of achieved Ra values at different cutting 
conditions R245-12 T3 E-ML (2040-MT-Ti(C,N)+Al2O3+TiN) 

 
 

 
 

Figure 22. Comparison of achieved Ra for VBB = 0,7 mm 
 

4.3 CUTTING FORCES 

Milling forces were measured at all cutting conditions. 
Figures 24 – 29 show values of the three cutting force 
components, namely cutting force (Fc) in the tangential 
direction or in the cutting speed direction, feed force (Ff) in 
direction of feed and thrust force (Fp) in direction of milling 
cutter axis – see Fig. 23. 
 



MM SCIENCE JOURNAL I 2017 I DECEMBER 

2001 

 

 
 
Figure 23. Force components during face milling 
 

The lowest cutting conditions were set as follows: cutting 
speed vc = 20 m.min-1 for SEET 12 T3-CF and SEET 12T3-EM 
inserts and vc = 30 m.min-1 for R245-12 T3 E-ML insert. Feed 
was kept constant fz = 0,1 mm for all inserts. The values of 
cutting force components were not changed along time. It 
was found that cutting forces Fc reached the highest values 
whereas the thrust forces Fp reached the lowest values. 
Despite the higher cutting speed the force load was the 
lowest by the use of R245-12 T3 E-ML insert. 
 

 
 
Figure 24. Comparison of cutting force values for the lowest cutting 
conditions, low pass filter 10 Hz 

 

 
 

Figure 25. Comparison of feed force values for the lowest cutting 
conditions, low pass filter 10 Hz 

 
 
 

 
 

Figure 26. Comparison of thrust force values for the lowest cutting 
conditions, low pass filter 10 Hz 

 

The highest cutting conditions were set up as follows: 
cutting speed vc = 50 m.min-1 for SEET 12 T3-CF and SEET 
12T3-EM inserts and vc = 60 m.min-1 for R245-12 T3 E-ML 
insert. Feed was kept constant fz = 0,2 mm for all inserts. The 
use of higher cutting conditions results in higher values of 
cutting force components. These cutting conditions also lead 
to faster wear of inserts, which corresponds to results 
mentioned in chapter 4.1. Usage of higher cutting conditions 
result in increase of mechanical load of inserts expressed in 
cutting force components. The highest values of cutting 
force components can be found for R245-12 T3 E-ML inserts. 
The main reason can be found in cutting speed. 
 

 
 
Figure 27. Comparison of cutting force values for the highest cutting 
conditions, low pass filter 10 Hz 

 

 
 

Figure 28. Comparison of feed force values for the highest cutting 
conditions, low pass filter 10 Hz 
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Figure 29. Comparison of thrust force values for the highest cutting 
conditions, low pass filter 10 Hz 

5 CONCLUSIONS 

Tool wear course during milling of Inconel 718 have been 
analyzed in this paper. Inserts from cemented carbide from 
different manufacturers were performed with coolant. Some 
conclusions concerning the cutting behavior and wear 
course of the inserts tested in milling Inconel 718 can be 
established from this work. Tool wear presented two 
periods, well defined. A first one, when the protective insert 
coating slow down tool wear. The second period is 
associated with damage of insert coating. Then the carbide 
matrix is exposed to adhesion and micro chipping 
mechanism.  
Flank wear was dominant in all cutting conditions. From the 
point of view of highest cutting speed vc = 30 m.min-1 and 
feed f = 0,1 mm was the cutting inserts R245-12 T3 E-ML 
found as the most suitable from the point of view removed 
material volume of approximately 299 cm3 in 90 minutes (as 
shown on Fig. 17 and 18).  
Surface roughness was obtained from measurement of the 
average roughness (Ra between 0.7 and 3.2 μm) depending 
on cutting conditions. Based on the results it can be 
reported than acceptable surface roughness can be obtained 
at suitable cutting conditions and tool geometry. 
Cutting force components are strongly affected by tool wear, 
showing that force increase long with tool wear. All analyzed 
aspects such as surface roughness and forces are negatively 
affected by tool wear, because of alterations in cutting edge 
geometry (strongly affect process of plastic deformation). 
However this paper indicates all measured aspects 
(roughness and surface roughness) can be kept at the 
acceptable level; therefore can be applied in lot of industrial 
applications. 
In the near future new tools would be launched to the 
market, but coated carbide inserts will be still the dominant 
industrial solution for finishing operations. This study will be 
surpassed but the method could be the same or similar. 
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