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Measurements of the nonlinear parameter of a gel-like medium 
were carried out in an acoustical resonator fixed without slipping 
between two solid-state boundaries. A sample of thickness L is 
fixed on an oscillating plate (x = 0). The other plate of finite mass 
on the free surface of the sample (x = L) moves together with this 
surface. By changing the mass of the plate (x = L), it is possible to 
achieve additional static deformation of the resonator up to 
65%. The dynamic method assumes measuring resonance curves 
at various static deformations. Nonlinear properties appear at 
deformations of more than 20%. The nonlinear parameter and 
shear modulus measured dynamically were compared to static 
measurements where the dependence becomes nonlinear at 
strains greater than 30%. The static values of the shear modulus 
and the nonlinear parameter correspond to the values obtained 
in the dynamic method within an error.  
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1 INTRODUCTION  

Establishing the relationship between rheological parameters 
and characteristics of shear waves in viscoelastic media has 
become a very important problem. From a fundamental point of 
view, establishing the relationship between rheological 
parameters and the characteristics of shear waves in gel-like 
media will lead to the further development of ideas about the 
viscoelastic properties of such media, and will allow a more 
detailed study of the dependence of rheological parameters on 
the method of action on the medium. Ultimately, refined 
physical models of gel-like media will appear [Krit 2020]. The 
practical value lies in the application of the results obtained for 
modeling viscoelastic media and creating high-precision 
methods [Bozek 2016] for measuring their elastic properties. The 
relevance of a detailed study of viscoelastic media is due to the 
fact they are used as a matrix for tissue engineering. 
The measurement of the viscoelastic properties of viscoelastic 
media and the creation of adequate models of these materials 

has become relevant since its solutions can be helpful for the 
development of tissue engineering methods. The measurements 
of the shear modulus and shear viscosity of materials in a wide 
frequency range make it possible to predict the response of the 
certain material to pulsed mechanical effects correctly [Krenicky 
2021, Kaminski 2022, Szweda 2022]. The fundamental 
importance of this research lies in the creation of physical 
models that will lead to the further development of ideas about 
the viscoelastic properties of gel-like media. 

MATERIAL AND METHODS  

We study gel-like media – solid incompressible media with the 
shear moduli varying from a few kilopascals to several 
megapascals. The shear modulus is uniquely related to the shear 
wave velocity and together with the lambda parameter, 
determines the longitudinal wave velocity [Asfandiyarov 2021, 
Sarvazyan 2010]. Along with the shear modulus, Young's 
modulus is also a convenient characteristic of elasticity. The bulk 
modulus of gel-like media K exceeds the shear modulus by 
several orders of magnitude. Therefore, shear modulus μ is 
much less than K. In this approximation, the lambda parameter 
is approximately equal to the bulk modulus. Young's modulus is 
three times greater than shear modulus, and Poisson's ratio is 
equal to one half.  
Due to the fact that the shear modulus in gel-like media varies 
over a much wider range than the bulk modulus, its changes are 
registered easily. Thus, shear waves in gel-like media become a 
highly accurate investigation tool. We used the method of the 
acoustical resonator which is a convenient tool for excitation of 
the shear waves in gel-like media. 
 

1.1 Estimation of nonlinear shear elastic modulus in the gel-
like medium 

Consider an acoustical resonator in the form of rectangular 
parallelepiped fixed without slipping between two solid-state 
boundaries (Fig. 1). Vibrating boundary (x = 0) is forced with the 
harmonic function. The boundary with variable mass is forced by 
the elastic layer (x = L). If one of these plates has coordinate x = 
0, and the distance between the plates (the thickness of the 
resonator) is L, another plate should have coordinate x = L. Shear 
waves in the resonator excited by the displacement across the x 
axis propagate along the x axis. 
 

 
Figure 1. Gel-like resonator between two solid-state boundaries (elastic 
layer) 

1.2 Static measurements of nonlinear shear elastic properties 

Prior to the investigation of the shear waves in the resonator we 
studied how the shear stress depends on the relative 
deformation. We constructed the experimental setup shown on 
Fig. 2. The resonator was made of plastisol. Layer was solidified 
between two parallel wooden plates. The plate at x = 0 was 
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immobilized, whereas the opposite plate was loaded with a 
variable mass connected through the pulley. 
 

 

Figure 2. The experimental setup for static measurements of the shear 
stress on the relative deformation 

The measured shear stress σ on the relative deformation ε is 
shown on Fig. 3. The dependence is nonlinear and is 
approximated well with the cubic parabola [Andreev 2011b, Krit 
2014].  
 

 
Figure 3. Measured shear stress on the relative deformation 

Thus, the dependence of the effective shear modulus on the 
relative deformation (Fig. 4) found as μeff = σ / ε is well 
approximated with a square parabola equation: μeff = μ0 (1 + β 
ε2). It becomes evident then that the effective shear modulus of 
the resonator material increases i.e., the material changes its 
elastic properties as the deformation increases. The 
approximation with the square parabola gives the values μ = 
13.46 ± 0.13 kPa, β = 0.60 ± 0.07. 
 

 

Figure 4. Measured effective shear modulus on the relative 
deformation 

1.3 Estimation of nonlinear shear elastic properties applying 
vibrational methods 

Finite amplitude vibrations  
As the increase of the shear modulus leads to changes of the 
elastic properties, the material response to the shear waves 
depends on their amplitude. These effects were carefully studied 
in [Andreev 2011b]. According to the law of motion, every shear 
displacement u of the resonator material causes the shear stress 
σ inside the material. We have shown before [Andreev 2011a] 
that if shear displacement appears along the side of the 
resonator which is at least 4 times longer than the distance 
between the solid-state boundaries L, a one-dimensional model 
of thin resonator is appropriate to shear waves description in 
such an elastic layer. 
To represent the connection between shear stress and shear 
displacement we used the mathematical model [Andreev 2011b] 
with a single relaxation time τ, based on the equations 

𝜕𝑣

𝜕𝑡
=

1

𝜌

𝜕𝜎

𝜕𝑡
 (1) 

 
where v is the shear wave velocity, ρ is the density of the 
resonator, and  
 
σ = σ∞ + σ' (2) 
 
In (2):  
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𝜕𝜎∞

𝜕𝑡
= 𝜇0(1 + 3𝛽𝜀2)

𝜕𝑣

𝜕𝑦
 (4) 

 
where μ = μ0 (1 + 3βε2) is the shear modulus and η is the shear 
viscosity of the resonator material. Vibrating boundary (x = 0) is 
forced with the harmonic function. Thus, its acceleration w is 
represented with the harmonic function too:  
 

𝑤(𝑡)|𝑥=0 = 𝑊0 𝑐𝑜𝑠 𝜔 𝑡 (5) 
 
where W0 is the amplitude and ω is the cyclic frequency. Another 
boundary is forced by the elastic layer (x = L). Its law of motion is 
the following:  
 

(
𝑀

𝑆

𝜕𝑣

𝜕𝑡
+ 𝜎)|

𝑥=𝐿
= 0 (6) 

2 METHODS AND MATERIALS 

In [Andreev 2011b] we have shown that the system of equations 
(1)-(2) together with the boundary conditions (5)-(6) has a 
frequency dependent solution |WL/W0|, where WL is the 
amplitude of the acceleration of the boundary at x = L. This 
solution is represented for the value W0 = 1 m/s2 on Fig. 5. 
Measured ratio is shown by dots and approximated by the red 
line for the resonator with μ = 13.46 kPa, β = 0.60, η = 4.7 Pa·s 
and relaxation time τ = 0.7 ms. Blue line shows the same solution 
in case η = 2.4 Pa·s. Green dash line shows the same solution in 
case τ = 0. The relaxation of the material turns into the frequency 
dependence of its shear modulus and shear viscosity. All the 
solutions represented on Fig. 5 have peaks at certain 
frequencies. In the resonator, the frequencies where these 
peaks occur (resonance frequencies) depend on the mass of the 
plate on the boundary x = L. Inset on Fig. 5 shows how the 
resonance frequencies depend on the plate mass. The slight 
increase of the plate mass leads to decrease of the resonance 
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frequencies. The resonance peak with the lowest frequency (first 
resonance) is the highest. Thus, it is more convenient to study 
nonlinear effects in the region of the first resonance frequency. 
 

 

Figure 5. The ratio of the acceleration amplitudes |WL/W0| for the value 
W0 = 1 m/s2 

It was shown in [Andreev 2011b] that at the certain acceleration 
amplitude of the boundary at x = 0 the velocity amplitude of the 
resonator boundary at x = L constitutes about 40% of the shear 
wave velocity. At these particle velocities in a resonator, 
nonlinear effects manifest themselves. The resonance becomes 
asymmetrical, and the resonance frequency increases. The 
acceleration gain factor also increases in comparison with the 
linear case. As the amplitude W0 grows more, the resonance 
curves obtained for increasing frequency and its decrease do not 
coincide; i.e., a bistable region arises. The bistable region widens 
as the oscillation amplitude in a resonator grows. 
 
Small amplitude vibrations under severe static load 
The excitation of the finite amplitude vibrations is complicated 
[Abramov 2015, Bozek 2021, Nikitin 2020, Peterka 2020]. Thus, 
we suggested an algorithm for measurement of the nonlinear 
shear modulus in a gel-like medium applying small vibrations to 
the resonator. As it was already discussed, the effective shear 
modulus of the resonator material increases with the increase of 
the deformation. So, the algorithm is based on the nonlinear 
change of the effective shear modulus under the static load 
together with the linear oscillations applied to the resonator. 
The linear model was described in [Andreev 2010] by the 
equations 
 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝜕𝜎

𝜕𝑥
 (7) 
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𝜕
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(
𝜕𝑢

𝜕𝑡
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followed by the boundary conditions (5)-(6). 
The frequency dependence of the ratio near the first resonance 
is shown on Fig. 6 by the line. Calculated resonance curve is 
shown by line, measured resonance curve is shown by dots. 
Since the acceleration amplitudes are small enough, the velocity 
of the oscillations of the boundary at x = L constitutes 10% and 
less of the shear wave velocity. The shear stress depends linearly 
on the shear displacement values corresponding to the 
mentioned amplitudes. Thus, the shear modulus remains 
constant. However, the value of the shear modulus varies under 
the static deformation, as it was shown on Fig. 4. 

 

Figure 6. The frequency dependence of the ratio near the first resonance 
for the resonator without static load excited with the oscillations of 

amplitude W0 = 1 m/s2 

Due to this fact, we suggest applying various static shear loads 
to the resonator changing the operating point on the 
relationship between shear deformation and shear stress caused 
by it. Linear oscillations near a certain operating point do not 
affect the measured value of the shear modulus, whereas the 
measured shear modulus itself changes nonlinearly according to 
the cubic law [Krit 2021]. 

3 DISCUSSION  

The described shear wave excitation method is illustrated on Fig. 
7.  
 

 

Figure 7. The experimental setup for excitation of shear waves with a 

small amplitude under severe static load: (1) – resonator; (2) – the 
excited boundary; (3) – plate of a finite mass; (4) – Brüel&Kjær Type 4810 
shaker; (5) – signal amplifier MMF LV 103; (6) – function generator Rigol 

DG1062Z; (7) – miniature piezoelectric charge accelerometer 
Brüel&Kjær Type 4374; (8) – charge amplifier Brüel&Kjær Type 2635; (9) 
– digital oscilloscope GaGe CompuScope Express 4444; (10) – the rods; 

(11) – the weights 

The resonator (1) is placed vertically so that one of its boundaries 
(2) is excited by the miniature shaker Brüel&Kjær Type 4810, 
while the other moves the plate of a finite mass (3). The 
miniature shaker Brüel&Kjær Type 4810 (4) is connected to the 
signal amplifier MMF LV 103 (5) which is powered from the 
function generator Rigol DG1062Z (6). The acceleration of the 
plate (3) is measured with a miniature piezoelectric charge 
accelerometer Brüel&Kjær Type 4374 (7). Signal from the 
accelerometer is amplified at the corresponding charge amplifier 
Brüel&Kjær Type 2635 (8) and received with the corresponding 
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channel of digital oscilloscope GaGe CompuScope Express 4444 
(9) in order to be compared to the acceleration at boundary (2). 
Rods (10) are attached to the plate (3) for the weights (11) to be 
placed in order to create a static deformation of the resonator. 
Measured shear stress τ on the relative deformation ε is shown 
by dots on Fig. 8. Oscillations at the operating points are shown 
schematically within the region of linear (ε = 0.075) and 
nonlinear (ε = 0.423) deformations. 
 

 

Figure 8. Measured shear stress τ on the relative deformation ε (dots) 

approximated by the cubic parabola (blue line) and with the straight red 
line 

Dots are approximated by the cubic parabola (blue line). The 
straight red line approximates the measured dots in the area of 
small deformations, where the relationship is linear. In the 
experiment, we used several operating points. Two of them 
correspond to the relative deformation values ε = 0.075 and ε = 
0.423. These points are shown on the plot and the oscillations 
about them are shown schematically within the region of 
deformations. During the oscillations about the point shown at ε 
= 0.075 the shear stress depends on the shear deformation 
linearly. The deformations do not exceed the values that 
correspond to the dots lying on the straight red line. As the static 
load grows, the deformations take on the values that do not 
correspond to the red line. However, the spread of the values is 
still small, since the amplitudes of the displacement correspond 
to the linear case with the higher slope. Thus, as the shear 
modulus grows together with the slope on Fig. 8, the resonance 
frequency becomes higher. The measured frequency near the 
operating point provided us with the effective shear modulus 
making it possible to measure both linear shear modulus μ = 15.4 
± 1.1 kPa and nonlinear coefficient β = 0.53 ± 0.06. 

4 CONCLUSION 

We suggested a novel approach based on measuring resonance 
curves at low amplitudes with an applied static shear stress that 
creates nonlinear deformation for measurement of the 
nonlinear viscoelastic properties in gel-like media. It is based on 
the combination of static and dynamic methods. Static load is 
used to make the studied media show their nonlinear behavior, 
whereas the resonator method lets us measure the frequency 
dependence of the shear elastic modulus with a high precision. 
The effective shear modulus of the material for a given resonator 
load depends on the resonance frequency. The standing shear 
wave excitation method can be implemented into the industrial 
devices for non-destructive testing [Jakubovicova 2017, Kuric 
2021, Macko 2017]. An extra load attached to the resonator 
changes the resonance frequencies in two ways. An extra mass 
itself reduces the frequencies [Krit 2015a,b, Smeringaiova 2021], 
whereas the nonlinear effects due to the deformation under the 

load leads to the increase of the frequencies. Both of these 
effects are taken into account in our model. Shear displacement 
appears along the side of the resonator which is more than 4 
times longer than the distance between the solid-state 
boundaries. Therefore, a one-dimensional model of a thin layer 
is appropriate. In the dynamic method, nonlinear properties 
appear at strains of more than 20%. Approximation by a cubic 
polynomial makes it possible to determine the nonlinear 
parameter. Practical applications are also possible in the area of 
frictional stress as reported by the authors [Frankovsky 2016, 
Krawiec 2017, Medvecka-Benova 2015, Mikova 2022].  
It was found that when measured by the dynamic method, the 
nonlinear properties of the material appear at lower strains than 
when measured by the static method. At a static deformation of 
more than 20%, the nonlinearity of the shear modulus of 
plastisol appears, which leads to an increase in the resonance 
frequency in comparison with the absolutely linear case 
[Andreev 2010]. This effect is common for plastisol [Andreev 
2011b]. 
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