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During the design process materials selection is usually 
carried out unsystematically, selection is mostly based on 
previous experience. Professor M. Ashby developed a 
methodology of materials selection optimization based on 
material indexes. Our aim is to link this methodology with 
optimization interface of software ANSYS. This link allows 
solving complicated multi-criteria problems that cannot be 
solved analytically. In this paper it was shown that it is 
possible to create connection between material selection 
methodology based on material indices and numerical finite 
element method analyses conducted in ANSYS. New 
material indices were determined for buckling of a cylinder. 
The developed methodology is also applicable for more 
complicated problems which is the next step in this 
research. 
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1. INTRODUCTION 
Materials selection is an essential part of the product design 
process as materials influence most of the product’s 
properties. Currently design engineers are able to choose 
from up to 160 000 engineering materials [ASHBY 2011]. 
Professor M. Ashby developed a methodology of materials 
selection optimization which is driven by engineering design 
process. CES (Cambridge Engineering Selector) EduPack 
materials database include the methodology and by using 
this database it is possible to optimize the selection process. 
Our aim is to link this methodology with optimization 
interface of software ANSYS. This link allows to solve 
complicated multi-criteria problems that cannot be solved 
analytically. In chapter 3 we deal with the verification of the 
possibilities of linking these two systems. In chapter 4 our 
method has been applied to specific cases. 
 
2. ENGINEERING DESIGN-DRIVEN MATERIALS SELECTION 
Materials selection is based on and driven by engineering 
design process of a given product. The requirements on the 
product are the inputs for this process. The requirements 
can be divided into three categories: function, constraints, 
objectives and free variables. The function is defined by the 
purpose of the part, e.g. to support load. The constraints are 
conditions that must be met, e.g. maximum deflection or 
maximum dimensions. During the design process there are 
some objectives to be achieved. We might want the product 
to be as light or as cheap as possible. Some parameters 
might be adjusted to maximize the fulfilment of objectives. 
These are free variables. 

In Fig.1 engineering design-driven materials selection 
scheme is shown. Design requirements are translated into 
product specification suitable for materials selection. This 
can be done by deriving of material indices. The constraints 
set out limit values of certain properties. The objectives 
define the material indices for which we seek extreme 
values. If an objective is not bound with a constraint the 
material index becomes a simple material property. 
Otherwise the index becomes a group of properties. 

 

 
Figure 1. Engineering design-driven materials selection 

The performance of a part is given by three parameters: 
functional requirements (F), geometrical dimensions (G) and 
material properties (M). It can by expressed by the equation 
below: 
 

     MfGfFfP 321     (1) 

 
The performance for is maximized when we maximize f3(M) 
which is called material index. Each combination of function, 
objective and constrain leads to a material index which 
makes this method general an applicable for a wide range of 
problems [ASHBY 2011]. 
 
3. VERIFICATION OF LINKING CES AND ANSYS 

Fig. 2 shows the algorithm of linking CES and FEA. Firstly, a 
parametric CAD model is created and imported into ANSYS. 
Design Points are prepared taking into account an 
appropriate range of parameter values. Then the actual FEA 
is performed followed by data fitting procedure in MATLAB. 
And finally the material index is derived. 
 

 
Figure 2. FEM-aided materials selection optimization 

3.1 TIE ROD 

Basic constrains are length L which is specified (geometric 
constraint) and the fact that rod must support axial pressure 
load F without buckling (functional constrain). The objective 
is minimizing the mass m of the tie. Cross-section area A and 
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type of material are free variables. We have 3 free variables, 

density ρ, Young's modulus E and radius of round rod r. To 
obtain the material index we use the equation for mass 

𝑚 = 𝜋 ∙ 𝑟2 ∙ 𝐿 ∙ 𝜌     (2) 
 
where we substitute r from equation for Fcrit 
 

𝐹𝑐𝑟𝑖𝑡 =
𝜋2∙𝐸∙𝐼

𝐿2
=

𝜋3∙𝐸∙𝑟4

4∙𝐿2
     (3) 

 
After that operation we get this final equation 
 

𝑚 ≥ (
4𝐹

𝜋
)

1

2
∙ (𝐿)2 ∙ (

𝜌

𝐸
1
2

)    (4) 

 
Material index is taken from the last part of the equation 
 

𝑀 =
𝜌

𝐸
1
2

      (5) 

 
A similar problem was set up in ANSYS to prove the material 
index above. As can be seen in Fig. 3 [MAZINOVA 2016] the 
resultant surface has the same equation therefore the 
material index is verified [ASHBY 2011]. 

 
Figure 3. Material index for buckling of a tie rod 

3.2 STIFF PANEL 
A panel is a flat slab. The panel has a 3 geometric dimensions 
- length, width and thickness. Geometric constrains are 
length L and width b. Thickness h is a free variable as well as 
material. A panel is loaded in bending by a central load F. In 
this case is not a functional constrain force F, but bending 
stiffness S*. The objective is minimizing the mass m of the 
panel. To obtain the material index we use the equation for 
mass  
 

𝑚 = 𝑏 ∙ ℎ ∙ 𝐿 ∙ 𝜌    (6) 
 
and equation for bending stiffness which must be at least S* 
 

𝑆 =
𝐶∙𝐸∙𝐼

𝐿3
≥ 𝑆∗     (7) 

 
where C is only a constant which depends on the distribution 
of the loads. The second moment of area is equal to 
 

𝐼 =
𝑏∙ℎ3

12
      (8) 

 

Similarly as in the previous case we substitute the free 
variable. Here it is height h. After substitution we get the 
following equation 

𝑚 = (
12∙𝑆∗

𝐶1∙𝑏
)

1

3
∙ (𝑏 ∙ 𝐿2) ∙ (

𝜌

𝐸
1
3

)   (9) 

 
Material index is taken from the last part of the equation 
again 
 

𝑀 =
𝜌

𝐸
1
3

                    (10) 

 
A similar problem was set up in ANSYS to prove the material 
index above. As can be seen in Fig. 4 [MAZINOVA 2016] the 
resultant surface has the same equation therefore the 
material index is verified [ASHBY 2011]. 

 
Figure 4. Material index for bending of a panel 

3.3 ROUND BEAM 
Beams come in many shapes: solid rectangles, cylindrical 
tubes, I-beams, and more. In our case we have round rod 
with a defined length L and an undefined radius r. The beam 
must support bending load F without deflecting too much, 
meaning that bending stiffness S is specified as S* 
(functional constraint). To obtain the material index we use 
the equation for mass 
 

𝑚 = 𝐴 ∙ 𝐿 ∙ 𝜌 = 𝑏2 ∙ 𝐿 ∙ 𝜌                  
(11) 
 

and equation for bending stiffness which must be at least S* 
 

𝑆 =
𝐶∙𝐸∙𝐼

𝐿3
≥ 𝑆∗                    (12) 

 
where C is only a constant which depends on the distribution 
of the loads. The second moment of area is equal to 
 

𝐼 =
𝑏4

12
=

𝐴2

12
                    (13) 

 

Again we substitute the free variable. Here it is square 
section A. After substitution we obtain the following 
equation  

𝑚 = (
12∙𝑆∗∙𝐿3

𝐶
)

1

2
∙ (𝐿) ∙ (

𝜌

𝐸
1
2

)                  (14) 

 
Material index is taken from the last part of the equation 
again 
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𝑀 =
𝜌

𝐸
1
2

                    (15) 

 
Figure 5. Material index for a beam 

4. ENGINEERING DESIGN-DRIVEN MATERIALS SELECTION  
A circular cylinder is defined by radius r, length L and 
thickness t. If is ratio radius to thickness r/t higher than 10, 
we talk about thin-walled cylindrical tube or cylindrical shell. 
From a mathematical point of view cylinder is a very stiff 
shape, but that can be applied only on a perfect model. In 
reality every product has a material, geometrical or 
mechanical defect of a little or greater importance. 
 
Buckling is a very common load case of circular cylinders 
shells. Cylinders under external pressure are often used as 
submarine hulls, pressure vessels, off-shore drilling rigs, 
submarine pipelines, tubular tunnels, etc. 
 
We distinguish two main types of buckling – a global 
(longitudinal) buckling and a lateral (transvers) buckling. 
 
The global buckling is a buckling, when a cylindrical shell is 
loaded on both sides of its longitudinal axis. This type of 
loading occurs for example in the off-shore industry during 
drilling. When oil platform starts to spud a new well, there is 
a drilling pipeline which is several kilometers long. A part of 
this drilling pipeline is between a vessel and a seabed in the 
water without any support. This has a consequence that 
when a drilling rig encounters hard subsoil, two forces starts 
to acts against each other there. All parts of the drilling 
pipeline which is submerged in water begins to bend and if 
the force is too high, then the weak/most stressed part of 
the pipeline collapses. 
 
A similar phenomenon occurs in submarine pipelines, where 
high pressure and temperature cause deformations. 
[OMMUNDSEN 2009] 
 

 
Figure 6. Global buckling of submarine pipeline 
[OMMUNDSEN 2009] 

The second type of the buckling is the lateral buckling, when 
cylindrical vessel is subjected to external overpressure. One 
of the best examples are submarines hulls. 

 
If a cylindrical vessel is exposed to external pressure and 
pressure is too high, then vessel collapses. We call this 
failure non-symmetric bifurcation buckling or shell instability 
which is show in Fig. 7 [ROSS 2010]. 
 

 
Figure 7. Shell instability of a circular cylinder 

To avoid this problem the cylinder vessels can be reinforced 
by rings or rigs which are equally spaced along the 
longitudinal axis of the cylinder. Reinforced vessels can be 
buckle in different ways. 
 
The first type of failure is shell instability, it is characteristic 
by one longitudinal deflection as shown in Fig. 8 [SREELATHA 
2012]. It appears when the vessels are weakly reinforced. 
 

 
Figure 8. Shell instability 

The second type of failure is general instability, it is 
characteristic by many longitudinal and circumferential 
deflections as shown in Fig. 9 [SREELATHA 2012]. It is specific 
for very strongly reinforced vessels. 
 

 
Figure 9. General instability 

The third type is also specific for strongly reinforced vessels, 
but in this case the spaces between stiffening rings are 
small. This type is called axisymmetric deformation and it is 
characteristic by the fact that the vessel keeps its circular 
form while imploding inwards, as shown in Fig. 10 [ROSS 
2010]. This mode of failure is more predictable. [ROSS 2010], 
[SREELATHA 2012] 
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Figure 10. Axisymmetric collapse 

5. DETERMINATION OF A NEW MATERIAL INDEX FOR 
BUCKLING OF A CYLINDER 
The second part of this paper is devoted to derivation of a 
new material index using finite element method. Let’s 
assume we would like to investigate buckling behavior of a 
thin-walled cylinder. There are two different load cases. 
Firstly the cylinder is exposed to an external pressure and 
secondly to an axial force. The height as well as diameter of 
the cylinder is set to 1m. The thickness of the wall and 
material properties are subjected to a design of experiment 
simulation. The FEM model of the cylinder including two 
loading scenarios is shown in Fig. 11. 
 

 
Figure 11. FEM model of the cylinder 

As mentioned above in this case there are three variables - 
wall thickness, Young’s modulus and density. Unlike previous 
problems we have no coupling equation reducing the 
number of variables so the first step is to derive the coupling 
equation. In order to do so, an additional design of 
experiment simulation was conducted. In this case density 
was not considered as one of the variables and the task was 
to obtain values of Load Multiplier as a function of wall 
thickness and Young’s modulus. Using Matlab Curve Fitting 
Toolbox the coupling equation was derived: 

𝑡 = (
𝐿𝑀

𝑘1𝐸+𝑘2
)
𝑘3

                   (16) 

 
Thanks to this equation the relationship between wall 
thickness and Young’s modulus is established. The general 
form of this equation is the same for both load cases; 
however, the constants vary. Having obtained the coupling 
equation it is possible to proceed to the second step – the 
second design of experiment simulation including density as 
one of the variables. Using Matlab Curve Fitting Toolbox the 
material index for buckling of a light thin-walled cylinder 
loaded by external pressure is: 
 

𝑀 =
𝑘4𝜌

𝐸0,4214
                    (17) 

 
Fig. 12 shows the buckling failure mode I case of a radial 
pressure loading. 
 

 
Figure 12. Buckling failure mode - radial pressure loading 

The material index for buckling of a light thin-walled cylinder 
loaded by axial force is: 
 

𝑀 =
𝑘5𝜌

𝐸0,5255
                    (18) 

 
Fig. 13 shows the buckling failure mode in case of axial force 
loading. 
 

 
Figure 13. Buckling failure mode – axial force loading 

The indices for buckling of a cylinder mentioned above were 
determined using linear buckling analysis. This type of 
analysis is based on modal analysis. A different approach is 
also possible using nonlinear buckling analysis which is based 
on nonlinear large deformation static analysis. This approach 
tends to be more conservative. Nonlinear buckling analysis 
was applied on a cylinder loaded by axial force and the 
appropriate material index was determined as follows: 
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𝑀 =
𝑘6𝜌

𝐸0,5238
                    (19) 

 
The slight difference in exponent in Eq. 19 confirms the 
assumption that the nonlinear analysis is more conservative 
than linear buckling analysis. 

 
Figure 14. Material index for buckling of a cylinder 

The choice of geometric parameters in the example above 
might not be valid in a larger range of dimensions. Therefore 
the next step was to generalize the problem and introduce 
two more variables – height and diameter. Density was 
omitted for a total of 4 variables. This led to a significant 
increase in computational time since the number of design 
points was much higher.  In Fig. 15 there are Design Points 
Results for the mentioned problem. The increase in the 
number of variables resulted in more complicated process of 
function data fitting and this part is still under development. 

 
Figure 15. Design Points Results 

6. CONCLUSION 
In this paper it was shown that it is possible to create 
connection between material selection methodology based 
on material indices and numerical finite element method 
analyses conducted in ANSYS.  Firstly, some of the existing 
material indices were verified by performing design of 
experiment simulations in ANSYS and the actual process of 
numerical verification was established. Secondly, new 
material indices were determined for buckling of a cylinder. 
Both linear buckling analysis and nonlinear buckling analysis 
were utilized and the expected variation was confirmed. 
Matlab Curve Fitting Toolbox was used to fit the numerical 
results with a custom equation to derive the indices. The 
developed methodology is also applicable for more 

complicated problems which is the next step in this 
research.  
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