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The paper deals with issues and shows the relevance related to 
the use of composite milling heads for machining wide flat 
surfaces. A 3D model of a composite milling head is presented. 
Shown, the design of the composite milling head with four face 
mills allows the milling of planes in mutually perpendicular 
directions. The surface machined with a single pass milling is 
continuous in width. It allows to shorten the cutting length and 
machining time, increasing productivity wide flat surfaces by 
milling. 
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1 INTRODUCTION  

Flat surfaces are found in almost all parts of machines, and 
most of them require machining to perform the appropriate 
functions according to their service purpose [Kotliar 2020]. The 
quality of flat surfaces determines the performance of many 
parts and assemblies. Therefore, research in the field of 
machining flat surfaces is still an urgent task. 

For machining flat surfaces, various methods can be used: 
planing, chiseling, milling, broaching, grinding, scraping, 
lapping, etc. But in this case are most used in milling, planning, 
and grinding. Most machine parts do not require such quality 
indicators that can be obtained by grinding. Therefore, milling 
and planning remain the most popular in industries. But these 
two machining methods are fundamentally different in terms of 
kinematics and the method of shaping flat surfaces. 

One of the limitations of the existing methods of chip-type 
machining of flat metal surfaces is considerable time 
expenditure. So, planing is a low-efficiency type of surface 
machining leading to a longer machining cycle. Face milling of 
flat surfaces can also lead to a longer in-cycle period if the 
workpiece is very wide and demands many cutting passes. 

2 LITERATURE REVIEW  

The selection of the rational manufacturing process for surfaces 
machining depends on numerous criteria, for instance, 
economic [Ivanov 2021] and quality [Kuric 2020, Ivchenko 
2020] indicators, technological issues like as manufacturability 
[Kolesnyk 2020], accuracy [Karpus 2012, Kolesnyk 2015], 
productivity [Ivanov 2020] or flexibility [Luscinski 2020], 
equipment characteristics [Jerzy 2014] and tooling features 
[Denysenko 2020, Císar 2017], appropriate materials [Osadchiy 

2016], etc. In [Yin 2022], performed research of the tightness of 
flat mating surfaces obtained by face milling based on high-
resolution metrology was carried out, and it was established 
that the direction of milling affects the subsequent 
performance characteristics. Research [Arizmendi 2019] is 
devoted to modeling and analysis of surface topography and 
determination of its roughness obtained during face milling, 
depending on the geometric parameters of the cutter, beating 
of its cutting edges, and cutting conditions, with subsequent 
experimental verification of theoretical results. Also, in the face 
milling of some materials, it is important to preserve their 
surface integrity. So in [Oliveira 2021, Saleem 2020] and [Rana 
2022], the integrity of nickel superalloys Inconel 625, Inconel 
718, and alloy steel AISI 52,100, respectively, are investigated in 
the process of face milling, depending on tool wear, 
temperature factors, cutting conditions, flow rate and 
concentration of coolant liquids. At the same time, in [Saleem 
2020], the durability of Wiper inserts is also assessed along the 
way. In [Pimenov 2018], a methodology for modeling the 
deviation from flatness during face milling, taking into account 
the angular displacement of the components of the machine 
tool system and wear along the flank of the tool, was 
presented, which allows minimizing the deviation by varying 
the described parameters. Studies of the influence of 
technological factors on the state and integrity of the surfaces 
of machined aluminum workpieces after face milling are 
presented in detail in [Perez 2018], and the effect of the face 
mill macrogeometry on the technological characteristics and 
state of the part is presented in [Borysenko 2019]. 

A separate area of research is to improve machining 
productivity and reduce energy costs when using face mills. 
Namely, in the study [Chen 2019], authors propose an 
integrated approach to optimizing the cutting tool and cutting 
conditions to minimize energy consumption and production 
time in the face milling process based on the characteristics of 
the energy footprint, considering the flexibility of various 
cutting tools and cutting parameters. The paper [de Carvalho 
2015] proposes a new methodology to reduce productivity 
losses by incorporating vibration analysis and energy efficiency 
into the face milling strategy for interrupted cuts. 
[Padmakumar 2020] is devoted to studying the influence of the 
cutting edge (K-factor) on forces, surface roughness, cutting 
power, and productivity in face milling of AISI 4140 steel. An 
increase in productivity by increasing the permissible values of 
cutting speeds is presented in [Genga 2020], where the surface 
hardness of cutting inserts from an NbC-Ni alloy was increased 
due to rapid sintering with a pulsed electric current and laser 
surface modification. This made it possible to obtain a self-
carbide coating of cutting inserts with a depth of 2.5 μm with a 
higher hardness than the base material of the insert. Increased 
productivity is also achieved by increasing the dynamic rigidity 
of the structural elements of the technological system. In [Xia 
2020], the design of a new tool slide for face milling with high 
dynamic rigidity is presented to improve vibration resistance, 
which made it possible to increase material removal and 
productivity by almost 3 times. 

Research on the processes of cutting tools wear in face milling 
operation is also devoted many works. In particular, in [Sun 
2020], a comprehensive model of the wear of Sialon ceramic 
tools for high-speed face milling of cast iron GH4099 is 
proposed. Under these conditions, the types of failures and tool 
life curves were obtained for the first time through 
experimental research. 

Therefore, based on the studies discussed above, it has been 
established that a lot of attention is paid to the problems of 
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productivity and energy consumption in face milling. But at the 
same time, many issues remain unresolved, in particular, the 
machining of flat surfaces of large and especially large sizes. 

The recommended methods of machining large-sized flat 
surfaces are dealt with in [Taurit 1981]. It is shown there that 
face milling is one of the most efficient methods of machining 
workpiece surfaces. However, the use of large-diameter face 
mills (e.g. 315 mm, 400 mm, 630 mm) causes a number of 
difficulties. In particular, face mills of such diameter are quite 
massive, this complicating their servicing. Another problem is 
the necessity of using costly equipment with a large diameter 
spindle [Toporov 1990]. A possible way out is using special 
composite milling heads (CMH) with an individual electric driver 
[Kushnirov 1996]. Such heads are characterized by high rigidity 
and can include one or more face mills [Goncharenko 2015, 
Dumenko 2017, Krainyak 2012]. As such heads are very 
efficient, the in-cycle time can be reduced. But the available 
designs of CMH do not make it possible to mill wide flat 
surfaces in mutually perpendicular directions. 

A promising option for CMH is to use face mills with 
intersecting cutting trajectories of blades [Kushnirov 2013]. This 
makes it possible to mill wide flat surfaces of continuous width. 
This more complicated CMH variant allows turning the spindle 
unit to change the milling width [Kushnirov 2019]. 

Therefore, the research aims to develop a milling head that 
makes it possible to machine-wide flat surfaces in mutually 
perpendicular directions and reduce the duration of the in-
cycle period by reducing the number of cutting passes. 

3 RESEARCH METHODOLOGY 

Machining of very wide flat surfaces with small diameter face 
mills demands several cutting passes with displacement. For 
example, it is impossible to machine a 500 mm wide bank 
surface with a 315 mm diameter mill in one pass, as after the 
first pass, there remains a layer of the unmilled surface. It 
means the necessity of one more pass with the mill 
displacement towards the unmilled surface to secure the 
overlapping of the two machined surface sections. 

Let’s take an example of milling a workpiece flat surface with 
one face mill (Fig. 1). The face mill with a diameter Dmill starts 
milling the surface of the workpiece W in the direction of 
working feed DS1. The maximum possible milling width B is 
equal to the mill diameter. Then the direction of the working 
feed changes by 90 degrees, and the milling of a new section is 
continued in direction DS2. Similarly, milling is carried out in 
directions DS3 and DS4. Beginning with the position where 
machining starts in direction DS5, there takes place connection 
by width between the previously machined section DS1 and the 
being machined section DS5. Then machining is continued in 
directions DS6, DS7, DS8 in the same way. As a result, a 
completely machined surface of the workpiece was obtained. 

 
Figure 1. Milling scheme with one face mill: (1) face mill; W workpiece; 
Dmill mill diameter; В maximum possible milling width; DS1, DS2, DS3, DS4, 
DS5, DS6, DS7, DS8 directions of working feed. 

As can be seen from the given example the face mill has to 
cover a long distance making a lot of passes, until the 
machining of the workpiece surface is completed. This is 
conditioned by the fact that the width of machining with one 
mill is restricted by its diameter. As a result, considerable 
increase in the machine time and low efficiency, were obtained. 
To reduce the machine time, a special-design composite milling 
head that provides one-pass milling of extremely wide surfaces 
in mutually perpendicular directions, is proposed. The 
proposed CMH has four spindles with face mills mounted on 
them, each pair of adjacent milling heads having intersecting 
trajectories of cutting blades (Fig. 2, Fig. 3). Such heads provide 
for obtaining a continuous machined surface under relative 
movement of the workpiece and the machine table in the 
direction of longitudinal feed and cross-feed. In each pair of 
adjacent milling cutters one is right-cutting and the other – left- 
cutting. As it can be seen on the layout (Fig. 2), milling cutters 1 
and 3 are right-cutting (rotation direction Dr1 and Dr3) and 
milling cutters 2 and 4 are left-cutting (rotation direction Dr2 
and Dr4). 

 
Figure 2. Arrangement of face mills in a four-spindle milling head: (1, 3) 
right–cutting face mills; (2, 4) left–cutting face mills; Dmill mills diameter; 
Dr1, Dr2, Dr3, Dr4 directions of spindles rotations; В maximum possible 
milling width. 
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Figure 3. Scheme milling head with four face mills: (1, 3) right–cutting 
face mills; (2, 4) left–cutting face mills; (3) cutter; D1, D2, D3, D4 mills 
diameters; B milling width; Δ overlap of cutter trajectories; Ds direction 
of working supply; Dr1, Dr2, Dr3, Dr4 directions of spindle rotation. 

According to Fig. 3 the face mills 1, 2, 3 and 4 are positioned so 
that the axes of the spindle that support the mills are in a two 
parallel single plane perpendicular to the working supply in two 
ways Ds. The cutting inserts 3 of each mill on scheme are 
between those of the rest mills. This arrangement scheme, 
using the example of CMH with two face mills, has already been 
tested in [Kushnirov 2013]. The mills are rotated by an 
independent drive connected through gear transmissions to the 
spindles, which turn in directions Dr1, Dr2, Dr3 and Dr4. In the 
case of displacement of the milling head with supply Ds relative 
to the blank one way or the other, milling with width B is 
possible in mutually perpendicular directions. 

Fig. 4 shows an example of machining flat surfaces with the 
proposed milling head. The 4-spindle head, containing four face 
milling cutters of Dmill diameter each, starts milling the surface 
of the workpiece W in working feed direction DS1. The pair of 
face milling cutters 1 and 2 is involved here. Then the working 
feed direction is changed by 90 degrees, and the process of 
milling the workpiece surface in direction DS2 with milling 
cutters 2 and 3 is implemented. Having covered this section, 
the head working feed direction was again changed by 90 
degrees, and begin working in direction DS3 with milling cutters 
3 and 4. Then follows the next section in direction DS4 involving 
milling cutters 1 and 4. 

 
Figure 4. Milling scheme with a four-spindle milling head: (1, 2, 3, 4) 
four face mills with intersecting cutter trajectories; W workpiece; Dmill 
mills diameter; В maximum possible milling width; DS1, DS2, DS3, DS4 
directions of working feed. 

The proposed CMH design in the form of a 3D model is shown 
in Fig. 5. The proposed CMH can be used for machining flat 
surfaces of workpieces with the maximum milling width B equal 
to twice the diameter of the face milling cutter Dmill, minus the 
value of blade trajectories overlap. Moreover, milling can be 
realized with any perpendicular movement of the milling head 
or the workpiece (to the left, to the right, up, down). 

 
Figure 5. Milling head with four face mills for processing mutually 
perpendicular flat surfaces (3D model). 

So, each pair of adjacent cutters mills its section of the 
workpiece surface. After having completed milling, the section 
in direction DS4, completely machined workpiece was obtained. 

4 CONCLUSIONS 

Comparing the two variants of milling a workpiece surface, 
represented in Fig. 1 and Fig. 4, the maximum possible milling 
width B is much greater in the second case, represented in Fig. 
4. Hence, the proposed design of the milling head makes it 
possible to reduce both the number of passes and the machine 
time. In addition, the milling heads' technological potentialities 
expand, making it possible to mill flat surfaces in mutually 
perpendicular directions. As a result, using composite milling 
heads improves the efficiency of machining workpieces with 
flat surfaces of great width. 
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