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1.	 INTRODUCTION
The problem of avoiding oscillations is one of the most challenging tasks 
of contemporary automatic control systems. Every mechanical oscillation 
causes many unwelcome effects – the life time of clutches and gears is 
strongly reduced, and energy consumption of the drives is greater etc. 
The standard control methods like PID controllers are usually insufficient 
to reduce the oscillations in the systems with flexible joints. This problem 
is  not marginal – every crane, robotic arm, conveyer or even simple 
drive contains flexible joint. Many of these objects can be modeled by 
multi-mass system (or in the simplest example by two-mass system).

The wide range of control strategies used to damp the oscillations 
have been developed. Digital filters in feedback, adaptive controllers 
or artificial neural network causes many problems in implementation, 
tuning or usage. One of the simplest and most effective strategy to 
avoid the oscillations is input shaping. The paper is based on a work  
presented on 16th Mechatronika 2014 Conference [Gniadek 2014].

2.	 INPUT	SHAPING
2.1 Input shaping basics
Input shaping is a very simple algorithm, that can be used to reduce 
the object’s oscillations. The main idea of the input shaping method 
is based on convolution of the baseline command with a sequence of 
Dirac impulses. The impulses should be applied in specified moments 
of time and with specified amplitude. The response of each impulse 
should be in antiphase  to reduce each other. The main idea of input 
shaping is shown in figure (1) [Singhose 2011].

Figure	1. Input shaping – basic idea
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To achieve the oscillating object response like shown in figure (1) the 
simple algorithm of input shaping was used. The input command was 
convolved with a series of two impulses. The moment of application of 
the second signal has to be exact in the half of primary response period 
(Td/2). This simple algorithm can be presented symbolically as shown 
in figure (2) [Singhose 1997].

Figure	2.	Correct input shaping

2.2 Oscillation reduction
To understand why the input shaping reduces the oscillations, some basic 
examples will be needed. Consider the second-order object with two 
imaginary poles (with not damped oscillations). This object’s step response 
can be presented as convolution of two signals like presentedin equation (1):

 (1)

where ωn is natural pulsation, A0 is amplitude, and t0 is the start time. 
The response of the system for a sequence of impulses can be described 
by [Sorensen 2008]:

 (2)

where

 (3)

According to equations (1) and (2) the proper moments of time and 
amplitudes of impulses are required to reduce the oscillations. The 
equations to calculate the times and amplitudes are different for different 
algorithms of input shaping. The paper is based on the simplest algorithm 
of command generation. This choice is supplied by the statement, that 
the shaper does not have to be very robust – if the object parameters 
are changed the algorithm can be simply executed. For the selected type 
of input shaper the impulses amplitudes (Ai) and times (ti) of applying 
can be calculated from equation [Brock 2014a]:

 (4)

where

 (5)

Td is the period of oscillation, that has to be damped, and  is the 
damping coefficient for the selected resonant frequency. 

This algorithm is effective only if the resonant frequency is known and 
constant. Otherwise, the usage of more complicated structure of input 
shaping is considerable. Usage of more robust algorithms will increase 
the rise time and settling time.

Algorithm presented in equations (4) and (5) is sufficient if the object 
is not changing the parameters. If the mass, moments of inertia etc. 
are changing, the resonant frequency is changed respectively. The 
presented algorithm is also simple to supply the real system – usually 
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the system has a couple of resonant frequencies (object is 4th or higher 
order). The detection of multiple convolved and damped sine waves is 
more complicated. The algorithms presented in this paper are one of 
possible, automatic solutions to solve this task. 

2.3 Multiple frequencies damping
As in the previous chapter was mentioned, usually the object’s output is 
a sum of multiple sine waves. To damp every frequency that might cause 
problems, the algorithm has to be modified. The method presented 
in [Singhose 1997] shows that simple shaper can be used to damp a 
single oscillation frequency. Multiple shapers connected in series can 
damp multiple frequency. To simplify the object structure, the equivalent 
of multiple simple shapers can be designed. The composite shaper is 
constructed due to a convolution of simple shapers. Exemplary, having 
two robust shapers with parameters A1, t1 and A2, t2:

the convolved shaper will be equal to:

This basic dependency simplifies the algorithms of autotuning because 
unifies the structure of system. Only a single shaper is always present, 
the complexity is changed, but the structure remains still.

3.	 AUTOTUNING	ALGORITHM	BASED	ON	OBJECT	IDENTIFICATION
3.1 Introduction
As was mentioned in the previous chapter the information about the 
natural oscillation frequencies and their damping is required to tune the 
input shaper. The most natural approach in extracting this information 
is the object identification. The location of transfer function poles is 
determining those parameters. The natural pulsation is equal to the 
distance between the selected pole of transfer function and zero point 
on complex plane. The damping factor is equal to the cosine of angle 
between negative real semi-axis and line segment between zero point 
and specified pole.

If the root is located on the real axis the damping coefficient is equal 
to 1. With this parameter the root will not cause any oscillations. If the 
pole is on the imaginary axis the oscillations will not be damped. 

Of course, in practical situation, the exact transfer function is 
unknown. For this reason the object has to be identified. The algorithm 
of identification can be chosen from the wide range of well-known 
and described algorithms. This paper is based on one of the simplest 
algorithms – the Least-Square method. The basis of this algorithm is 
presented in multiple papers about objects parameters identification. 

If all parameters of oscillation are calculated all the demanded 
information to tune the shaper is available. This method will work 
properly only for object with slight nonlinearities.

3.2 Algorithm description
The autotuning of input shaper using the identification method requires 
following steps:

1)	 Object	identification	
The object input and output are supplied to the least-square algorithm. 
The model of plant is linearized and transfer function in extracted. If 
the order of transfer function is lower than 2, the input shaper is not 
needed and algorithm is terminated.

2)	 Poles	calculation
When the transfer function is known, the denominator’s roots are 
calculated. If there are no poles with imaginary part different form zero, 
the algorithm is terminated and input shaping is not needed.

3)	 Poles	selection
The roots of characteristic equation are being checked for stability. If any 
of roots has positive real part, the object is unstable and additional control 
method is required. All of complex roots are selected – one of conjugated 
pair of complex roots is sufficient to construct the shaper (the second one 
contains redundant information). Optionally only some of the roots can be 
used in the next step – if the damping factor associated with the pole is close 
to one the pole can be omitted. This operation will positively influence on the 
control time and will insignificantly negatively influence on the control quality.

4)	 Simple	shapers	designing
Every of n selected roots is a base for one simple input shaper. The data 
needed for equation (4) are calculated:

 (6)

where pk is one of the poles, X is the real part of the pi and Y is the 
complex part of pk. The Td is equal to:

 (7)

and damping rate is equal to:

   (8)

The equation (8) is proper only if X≤0. This condition was checked in step 3.

5)	Shapers	convolution	
The simple shapers has to be convolved in a loop into one complicated 
shaper. The convolution strategy is described in part 2.3. The simple 
shapers are designed to prevent oscillations for all oscillation amplitudes 
selected in previous points of algorithm. The primary formal is summing 
the amplitudes. If it is equal to 1 the algorithm was prepared properly.

4.	 AUTOTUNING	ALGORITHM	BASED	ON	FOURIER	TRANSFORM
4.1 Introduction
In various practical situations the object identification is very problematic 
or sometimes even impossible. If the object is not linear the calculations 
will be invalid for many operating points. To solve this problem the 
second approach based on the Fourier Transform is presented.

The Discrete Fourier Transform (DFT) converts the signal given as a finite 
list of samples to a finite combination of complex sinusoids, ordered by 
their frequencies. This property enables to extract the information about 
signal frequencies if sampling frequency is known. The main problem of 
this method is to get the damping factor in more complicated signals. 

4.2 Algorithm description
1)	 System	preparation
The object input is switched into a step function. The final value of the 
step should be limited to a safe value, but must not be too low – the 
oscillations of output have to be easy to measure. The other input signals 
(ex. Pseudo random signal) may be used

2)	 System	test
The prepared system should be tested. Fixed sampling frequency of 
the output is required. The test should not be shorter than 10 periods 
of natural oscillations with lowest frequency, that should be damped.

3)	 	Fourier	transform	
The output should be transformed using Fourier transform. The oscillations 
frequencies are saved as 2-by-n matrix, where first row contains frequencies 
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and second contains the magnitude of a single frequency. The anti-aliasing 
filter should be used to avoid the duplication of single information

4)	 Frequencies	filtration	
DFT on a digital signal will contain many unwanted information, that 
should be filtered. Two types of filtration are available – the first one gives 
as a result N peak frequencies with maximal magnitude (from step 3). 
The second filtration type is automatically removing the frequencies with 
magnitude lower than a parameter A and allows researcher to define 
width of a single impulse from DFT. This filtration allows shaper to work 
faster and with higher accuracy.

5)	Natural	oscillation	periods	calculation	
The oscillation periods are demanded to the equation (3). All filtered 
frequencies are calculated according to equation:

      (9)

If the output signal is a combination of more than one harmonic signal, 
the damping ratio cannot be easily calculated. In this case each simple 
input shaper’s amplitudes are arbitrary set to [0.5 0.5].

6)	 	Shapers	convolution
The simple shapers has to be convolved in a loop into one complicated 
shaper (like in part 3.2–5). Finally the shaper is being tested. The plant 
is changed to the version before point 1.

5.	AUTOTUNING	ALGORITHM	VERIFICATION
The theory presented in previous chapters has to be verified. To verify 
the algorithms the test on objects has to be executed. The objects will be 
stimulated with step function. Each test will be presented on a chart. The 
chart will contain 3 courses – the unshaped, shaped with shaper tuned using 
object identification and shaped using FFT. The verification will be done using 
Matlab/Simulink environment. The Simulink model is presented in figure (3).

Figure	3. Verification model – structure

Test will be executed on 3 different objects – two simple transfer functions 
and a two mass system model. All the results are presented in parts 5.1–5.3. 

5.1 Simple second order transfer function.
The first test will be provided on the simplest possible oscillating object 
– the second order oscillating object with damping. The object transfer 
function is equal to:

The roots are located in points 0.1±0.54i. The shaper was auto-tuned 
with both methods. The results are presented in figure (4):

Figure	4. Simple object response

The figure (4) proves that both algorithms are working. The oscillations 
are damped to 0. The algorithm based on object identification works 
with a great accuracy. The object response is fast, the oscillations are 
damped. The shaper tuned with DFT works, but the response time is 
bad. The dynamics is so low because of the shaper – the autotuner 
has found 3 additional frequencies, that are not existing in the object. 
The baseline signal is convolved with 8 impulses what influences to 
the dynamics.

5.2 Simple transfer function, fourth order.
The second test was executed on the fourth order object. To simplify 
the interpretation of results the fourth order object was created due to 
two second order objects connected in series. The transfer function of 
this object was equal to

Other conditions are the same as in the previous point. The preliminary 
tests were made using the simple algorithm of root filtration. The results 
are presented in figure (5).

Figure	5.	4th order object response

The shaper based on object identification works, as in previous example, 
with high accuracy, the oscillations are damped and dynamics is very 
good. The Fourier shaping has met the same problem like in previous 
example. To eliminate it’s occurrence advanced selection of roots was 
made. The results are presented in figure (6).

Figure	6. 4th order object response – advanced roots filtration

The shaper based on object identification was not changed. The 
FFTalgorithm had more complicated algorithm of poles filtration. The 
dynamics of this object has significantly increased. The results are much 
better. The oscillations are visible, but are significantly reduced, but are 
visible because the damping coefficient is omitted (every impulse has 
the same amplitude).

5.3 The two-mass system
The tests provided on the simple objects given as transfer function are 
good for the primary tests. The real verification has to be executed on 
more complicated object. The most common example of oscillating 
objects is two-mass system. The object is built for two masses connected 
with the elastic shaft. The speed of the first mass is known, but no 
information about the second mass is given. The idea of two-mass 
system is described in many papers. The testing model is described in 
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[Luczak 2014]. The general structure of two-mass system is presented 
in figure (7):

Figure	7. Two-mass system 

where Jm is moment of inertia of the first mass (drive motor), JL is 
moment of inertia of the second mass (load), Tm, TL and TS are the 
torques transmitted through the shaft – the torque of motor, load and 
springiness respectively, k is the springiness coefficient and ω1 and ω2 
are the speeds of both masses. 

The object response (speed of load mass) is presented in figure (8).
 

Figure	8. Two-mass system response

The results of the test for identification tuning method are good. The 
dynamics of the object with shaper is maintained, the oscillations are 
reduced to 0. The results for Fourier tuning are bad. The oscillations 
are not damped and dynamics is strongly limited. The detected 
period of oscillation is different from the actual. Advanced selection 
of roots will require the expert’s knowledge what is negation of the 
autotuning idea.

6.	CONCLUSION
Two algorithms of input shaping autotuning were designed, prepared 
and tested. The theoretical bases  for the algorithms were different. 
Both algorithms are working but the efficiency of their work is various. 

The algorithm based on object identification is working, according 
to the theory, with good accuracy. The oscillations are damped, the 
dynamics is high. The tuned shaper ensure proper work of whole system. 
The amplitudes and delays calculated by the algorithm are nearly same 
as counted using classical methods of input shaper designing. 

The algorithm based on the FFT is not working with high accuracy. The 
reduction of oscillation is significant, but the dynamics of the object is 
low. The algorithm needs plenty of additional operations provided with 
expert’s knowledge for dully satisfying work. Sometimes this approach 
is the only possible. Because of this reason it is very important that the 
algorithm is generally working.

The experiments have been conducted also for higher order objects. 
The Input Shaper tuned using identification was working with very good 
accuracy for all of tested objects (form 2nd up to 100th order). According 
to the mathematical basis described in [Singhose and Seering 2011] the 
shaper is reducing the oscillations to 0 as long as all the plant is linear 
and all the parameters are known. If there are some non-linarites in the 
control system the shaper will reduce, but not eliminate the oscillations. 

The shaping structure may also be connected with controllers using 
feedback. The strategy is presented in [Gniadek 2015] and [Brock 
2014b]. Other papers are also presenting the possibilities of industrial 
applications of input shaping.

The main target of the paper was achieved – auto tuner was designed, 
tested and works properly. The oscillations are damped with high efficiency.
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