

MM SCIENCE JOURNAL I 2016 I OCTOBER

1141

VIRTUAL REALITY AND
VEHICLE DYNAMICS IN

UNREAL ENGINE
ENVIRONMENT

JAROSLAV MATEJ

Technical University in Zvolen

Department of Mechanics, Mechanical Engineering and Design,
Zvolen, Slovak Republic

DOI:10.17973/MMSJ.2016_10_201688

e-mail: jaroslav.matej@tuzvo.sk

The paper is aimed on a vehicle dynamic simulation from scratch,
using equations of motion solved by Runge-Kutta algorithm. The
vehicle and a terrain interact in a game environment Unreal
Engine, using line-trace functionality. All the scene objects are
created in Creo Parametric, 3ds Max and Unreal Editor systems.
The vehicle can be controlled by a keyboard and a racing steering
wheel with pedals. The system allows free driving on the terrain
in game-like style, recording and playback functions. All the
computed parameters like vehicle’s locations, rotations, forces,
velocities and accelerations can be recorded and saved into file
during free drive. Then the data can be visualized in playback
mode, with displayed forces, in 2D space and 3D by means of
virtual reality headset HTC Vive. Virtual reality allows the user a
full spatial view on the vehicle’s behavior.

KEYWORDS
vehicle dynamics, vehicle simulation, unreal engine, C++, virtual

reality, virtual test facility

1 INTRODUCTION

The Unreal Engine (UE4) (Epic Games 2016) is an environment
historically focused on game development. One of the most
known game, created using this environment, is Unreal
Tournament – one of the first 3D first person shooting games. In
present the environment is freely available under a very friendly
license, and it contains a development environment connected
with Microsoft Visual Studio C++. We used Visual Studio to write
the motion equations and all the necessary code to display and
control the world (Fig. 1), and vehicle’s objects using a steering
wheel and a keyboard, and output the results.

The Unreal Engine is a game engine, which from point of view of
the paper means that it is focused on real-time side of the
simulation. In other words, if a load of the system is higher than
actual system possibilities, the system will automatically
decrease resolution or FPS (frames per second) rate to achieve
real-time simulation. This can be a source of problems if a
selected numerical integration method is used in order to get
high precision data of vehicle’s dynamical parameters.

Figure 1. Virtual test facility: 1 – test road with obstacles, 2 – rough
terrain, 3 – jump ramps, 4 – glass barrier and billboard

2 MATERIALS AND METHODS

A simulation environment we created consists of the terrain
created by the means of Unreal Editor and imported objects
from Creo Parametric 2.0. The vehicle consists of a chassis,
wheels, back lights and glass cabin with seats. All the vehicle
parts were created in Creo Parametric, exported as STEP and
converted into FBX file format.

The Unreal Engine was used in order to visualize motion of the
vehicle, and to create and use the terrain by a relatively simply
way. Motion of the vehicle is described with equations of
motion, based on theory by Zuvich (2008), Monster (2003), Vlk
(2001), Tautkus (2011), Švígler (2013), Short (2004), and solved
by Runge-Kutta 4th order (RK4) method in Tick (deltaTime)
method. The deltaTime parameter is determined by the UE4
system, and is a function of system’s performance and load. The
parameter is used in RK4 method.

To get distances of the vehicle over the terrain, in locations of
wheels (Fig. 2, AB), we used a line tracing method available in
UE4 API and forum by Rama (2016).

Figure 2. Contact with terrain after a jump, and line-tracing. 1, 2 – jump
ramps, 3 – flat terrain, A – upper end of wheel spring-dumper unit, B –
terrain, C – bottom of wheel, D – line tracing in horizontal direction. AB
distance is used in RK4, CD – can be used in future to improve model’s
abilities.

These distances were used in the equations of motion of the
vehicle. The main idea was to create the model as simple as
possible, to decrease computer performance needs as much as
possible, but on the other hand, we required an ability to visually
evaluate a motion of the vehicle model. This is why we created
a model that:

‐ allows motion of wheels in vertical direction only, considering
the vehicle’s frame,

‐ uses no tire and only one spring-dumper unit to simulate
cushioning,

‐ supposes continuous contact of a wheel with the terrain
(Fig.2), except the case when a spring’s length should be
higher than the free length of the spring,

‐ takes into the account only these forces (Fig. 3, 4): Fh – drive
forces, Fb – brake forces, Da – aerodynamic drag force, G –
gravity force, D’ Alembert forces, Fp – spring forces, Fy – side
forces on the wheels,

‐ has all the forces dependent on forces in the springs, which
are, in this case, the same as normal forces,

‐ has the wheels which allow no rotation and the drive forces
are applied directly on the wheels, without using an engine
characteristic to simplify planned simulations and
optimizations.

MM SCIENCE JOURNAL I 2016 I OCTOBER

1142

Figure 3. Visualized forces in Playback mode. 1 – test road, 2 – flat
terrain, 3 – glass barrier around test facility, A – spring forces (Fp), B –
drive forces (Fh), C – brake forces (Fb), D – rigid wheel.

We used following equations of motion, based on model on Fig.
4:

∑ 𝐹𝑥 = 0: − 𝐺𝑥 − 𝐷𝑎 + (𝐹ℎ𝐿𝐹 − 𝐹𝑏𝐿𝐹). cos 𝛾𝐿𝐹 −
𝐹𝑦𝐿𝐹 . sin 𝛾𝐿𝐹 + (𝐹ℎ𝑅𝐹 − 𝐹𝑏𝑅𝐹). cos 𝛾𝑅𝐹 − 𝐹𝑦𝑅𝐹 . sin 𝛾𝑅𝐹 +
(𝐹ℎ𝐿𝑅 − 𝐹𝑏𝐿𝑅). cos 𝛾𝐿𝑅 − 𝐹𝑦𝐿𝑅. sin 𝛾𝐿𝑅 + (𝐹ℎ𝑅𝑅 −

𝐹𝑏𝑅𝑅). cos 𝛾𝑅𝑅 − 𝐹𝑦𝑅𝑅 . sin 𝛾𝑅𝑅 = 𝑚. 𝑎𝑥 (1)

∑ 𝐹𝑦 = 0: − 𝐺𝑦 + (𝐹ℎ𝐿𝐹 − 𝐹𝑏𝐿𝐹). sin 𝛾𝐿𝐹 +

𝐹𝑦𝐿𝐹 . cos 𝛾𝐿𝐹 + (𝐹ℎ𝑅𝐹 − 𝐹𝑏𝑅𝐹). sin 𝛾𝑅𝐹 +

𝐹𝑦𝑅𝐹 . cos 𝛾𝑅𝐹 + (𝐹ℎ𝐿𝑅 − 𝐹𝑏𝐿𝑅). sin 𝛾𝐿𝑅 + 𝐹𝑦𝐿𝑅. cos 𝛾𝐿𝑅 +

(𝐹ℎ𝑅𝑅 − 𝐹𝑏𝑅𝑅). sin 𝛾𝑅𝑅 + 𝐹𝑦𝑅𝑅 . cos 𝛾𝑅𝑅 = 𝑚. 𝑎𝑦 (2)

∑ 𝐹𝑧 = 0: − 𝐺𝑧 + 𝐹𝑝𝐿𝐹 + 𝐹𝑝𝑅𝐹 + 𝐹𝑝𝐿𝑅 + 𝐹𝑝𝑅𝑅 = 𝑚. 𝑎𝑧 (3)

∑ 𝑀𝑥 = 0: − 𝑏𝐿. (𝐹𝑝𝐿𝐹 + 𝐹𝑝𝐿𝑅) + 𝑏𝑝. (𝐹𝑝𝑅𝐹 + 𝐹𝑝𝑅𝑅) +

(𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝐹 + 𝑙𝑆𝐿𝐹). (𝐹ℎ𝐿𝐹 − 𝐹𝑏𝐿𝐹). sin 𝛾𝐿𝐹 + 𝐹𝑦𝐿𝐹 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝐹 +

𝑙𝑆𝐿𝐹). cos 𝛾𝐿𝐹 + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑅 + 𝑙𝑆𝐿𝑅). (𝐹ℎ𝐿𝑅 − 𝐹𝑏𝐿𝑅). sin 𝛾𝐿𝑅 +

𝐹𝑦𝐿𝑅 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑅 + 𝑙𝑆𝐿𝑅). cos 𝛾𝐿𝑅 + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝐹 +

𝑙𝑆𝑅𝐹). (𝐹ℎ𝑅𝐹 − 𝐹𝑏𝑅𝐹). sin 𝛾𝑅𝐹 + 𝐹𝑦𝑅𝐹 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝐹 +

𝑙𝑆𝑅𝐹). cos 𝛾𝑅𝐹 + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝑅 + 𝑙𝑆𝑅𝑅). (𝐹ℎ𝑅𝑅 − 𝐹𝑏𝑅𝑅). sin 𝛾𝑅𝑅 +

𝐹𝑦𝑅𝑅 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝑅 + 𝑙𝑆𝑅𝑅). cos 𝛾𝑅𝑅 = −𝐼𝑥𝑥 . 𝜀𝑥 (4)

∑ 𝑀𝑦 = 0: 𝑏. (𝐹𝑝𝐿𝐹 + 𝐹𝑝𝑅𝐹) − 𝑐(𝐹𝑝𝐿𝑅 + 𝐹𝑝𝑅𝑅) + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝐹 +

𝑙𝑆𝐿𝐹). (𝐹ℎ𝐿𝐹 − 𝐹𝑏𝐿𝐹). cos 𝛾𝐿𝐹 − 𝐹𝑦𝐿𝐹 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝐹 +

𝑙𝑆𝐿𝐹). sin(𝛾𝐿𝐹) + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑅 + 𝑙𝑆𝐿𝑅). (𝐹ℎ𝐿𝑅 − 𝐹𝑏𝐿𝑅). cos 𝛾𝐿𝑅 −

𝐹𝑦𝐿𝑅 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑅 + 𝑙𝑆𝐿𝑅). sin(𝛾𝐿𝑅) + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝐹 +

𝑙𝑆𝑅𝐹). (𝐹ℎ𝑅𝐹 − 𝐹𝑏𝑅𝐹). cos 𝛾𝑅𝐹 − 𝐹𝑦𝑅𝐹 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝐹 +

𝑙𝑆𝑅𝐹). sin(𝛾𝑅𝐹) + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝑅 + 𝑙𝑆𝑅𝑅). (𝐹ℎ𝑅𝑅 −

𝐹𝑏𝑅𝑅). cos 𝛾𝑅𝑅 − 𝐹𝑦𝑅𝑅 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝑅 + 𝑙𝑆𝑅𝑅). sin(𝛾𝑅𝑅) +

𝐷𝑎. ℎ𝑎 = 𝐼𝑦𝑦 . 𝜀𝑦) (5)

𝜀𝑧 = 𝑣𝑥,𝑙𝑜𝑐𝑎𝑙 ∗ 𝑠𝑖𝑛(𝛾) / (𝑐 + 𝑏) (6)

Where:
Fp – spring force, Fh – drive force, Fb – brake force, Fy – side
force, γ – steering wheel angle, b – distance between T (COG)
and front axle in X axis, c - distance between T (COG) and rear
axle in X axis, bL - distance between T (COG) and left wheels in Y
axis, bP - distance between T (COG) and right wheels in Y axis,
zoffset - distance between T (COG) and upper spring-dumper
mount point in Z axis, lS – instant spring length, Da -
aerodynamic drag force, εz – angular acceleration around Z axis.
All the relevant parameters have LF, RF, LR, RR suffix (Left Front,
Right Front, Left Rear, Right Rear wheel).

The spring forces have been determined by equations:

𝐹𝑝𝐿𝐹 = 𝑣𝑧𝐿𝐹 . 𝑘𝐿𝐹 + 𝑙𝑇𝐿𝐹. 𝑐𝐿𝐹 (7)

𝐹𝑝𝑅𝐹 = 𝑣𝑧𝑅𝐹 . 𝑘𝑅𝐹 + 𝑙𝑇𝑅𝐹. 𝑐𝑅𝐹 (8)

𝐹𝑝𝐿𝑅 = 𝑣𝑧𝐿𝑅. 𝑘𝐿𝑅 + 𝑙𝑇𝐿𝑅. 𝑐𝐿𝑅 (9)

𝐹𝑝𝑅𝑅 = 𝑣𝑧𝑅𝑅 . 𝑘𝑅𝑅 + 𝑙𝑇𝑅𝑅. 𝑐𝑅𝑅 (10)

Where:
vz – velocities in Z axis, k – damping coefficients, lT – spring
deformations, c – spring stiffness’s

Figure 4. Mathematical model of the vehicle. 1 – center of a wheel, 2 –
mounting point of a spring-damper unit, 3 – a point in COG plane XY, T –
center of gravity (COG), Fp – spring force, Fb – brake force, Fh – drive
force, Fy – side force, γ – steering wheel angle, G – gravity force

Velocities vz at wheel locations were determined by equations:

𝑣𝑧𝐿𝐹 = 𝑏. 𝜔𝑦 + 𝑏𝐿 . 𝜔𝑥 + 𝑣𝑧𝑇 (11)

𝑣𝑧𝑅𝐹 = 𝑏. 𝜔𝑦 − 𝑏𝑃 . 𝜔𝑥 + 𝑣𝑧𝑇 (12)

𝑣𝑧𝐿𝑅 = −𝑐. 𝜔𝑦 − 𝑏𝐿. 𝜔𝑥 + 𝑣𝑧𝑇 (13)

𝑣𝑧𝑅𝑅 = −𝑐. 𝜔𝑦 + 𝑏𝑃. 𝜔𝑥 + 𝑣𝑧𝑇 (14)

Where:
ωx – angular speed around x-axis (Fig.4), ωy – angular speed
around y-axis

The aerodynamic drag force Da has been determined by
equation:

𝐷𝑎 = 𝑐𝑥
1

2
𝜌. 𝑆𝑥. 𝑣𝑥

2 (15)

Where:
Cx – aerodynamic drag coefficient, ρ – air density, Sx – area of
vehicle projection into a plane perpendicular on X axis, vx –
vehicle’s velocity in X axis.

To run the simulations was used a powerful game computer with
parameters listed in Tab. 1.

Table 1. Parameters of the computer we used

CPU i7 – 4790 Haswell

RAM 16 GB DDR3

HDD 1 256 GB SSD

HDD 2 1000 GB

Video Card NVidia GeForce GTX 970 4GB

Mainboard ASUSTeK Maximus VII Hero

Steering Wheel Thrustmaster Ferrari 458 Italy

3 RESULTS

The result of above described equations, implemented in UE4
C++ code is a game-like vehicle dynamics computer application
that is not too much complicated and ready to be used in
customized solutions. The vehicle’s motion is controlled by the
equations only, which can be verified by several ways. The
application allows the user:

‐ Test the vehicle in free drive mode, by game-like way,

MM SCIENCE JOURNAL I 2016 I OCTOBER

1143

‐ Record the drive, including vehicle’s locations, rotations,
forces, velocities, accelerations, and automatically output the
result into file in CVS format, which can be easy imported into
MS Excel,

‐ Evaluate the drive in Playback Mode, where recorded forces
are displayed by arrows (see the previous figures),

‐ In Playback Mode the camera has geographic orientation
(default view is North), and direction of view can be changed
in real-time by steering wheel paddle shifters,

‐ Use an automatic speed control, based on simple regulator,
‐ Visual verification of the vehicle dynamic in virtual reality.

Figure 5. Rough terrain created in Creo Parametric. 1 – Flat terrain and
barrier around the virtual test facility, 2 – the terrain.

The vehicle model is based on many parameters, which are
independent on vehicle visualization, except the wheels
locations, so they can be changed at any time, including real-
time, during simulation. The terrain can be created and modified
in Unreal Editor, 3ds Max or any CAD application (Fig. 5). It can
be also bought at Unreal Market (Epic Games 2016).

4 DISCUSSION

In the Introduction we wrote about deltaTime parameter as
input into the RK4 equations. A default value is 120 FPS (frames
per second) which produces 1/120s deltaTime. This value seems
to be acceptable, but if the value is decreased to 90 FPS, the
vehicle seems to be a little unstable, which means that it
sometimes produces a vibrations. However that is not a problem
caused by low FPS only, but it can be also a result of the
mathematical model, which is quite simple and containing low
amount of damping elements. The result is that values of forces
can change significantly in very short time. We did not solve this
problem in detail, since the results seem to be acceptable for
planned simulations and optimizations based on recorded data.
Another authors and their results are, in general, scientifically
(Chrono 2016, Švígler 2013) or game focused (Epic Games 2016,
Monster 2003, Zuvich 2008). Equations of motion of game
focused authors use higher separation of the vehicle’s
longitudinal and lateral motions, simplifications, and results may
not be accurate. The scientifically focused authors use more
detailed models with high precision outputs, however the
models have too much time consumption, unsuitable for real-
time mode of the simulation. The presented model is placed
between these limits.

It uses line trace functions by Rama (2016) that sense the terrain
in vertical direction. It is used to compute the spring forces.
However this functionality can be used also to sense the terrain
in horizontal direction (Fig.2, CD). It could enable the vehicle to
react on e.g. side slip and subsequent possible additional roll
moment. This functionality we plan to implement in future.

The application is wrote in Visual Studio C++, which is powerful
but it can be, sometimes, a little uncomfortable computer
language. While other game engines (e.g. Unity3D) can use C#

language, UE4 does not. A good new message is that Haxe
language can also be used through Unreal.hx plugin. It is a free
plugin for UE4 that enables developers to write code in Haxe, a
high-level, type-safe language. The plugin compiles directly to
C++ for high runtime performance, offering full access to the
entire UE4 API and more. Haxe is an open source toolkit based
on a modern, high level, strictly typed programming language, a
cross-compiler, a complete cross-platform standard library and
ways to access each platform's native capabilities.

5 CONCLUSIONS

The vehicle dynamical simulator was created in Unreal Engine
game development environment. It is based strictly on
equations of motion, and solved by Runge-Kutta 4th order
algorithm in Tick() method of Unreal Engine. The vehicle is
controlled by a keyboard and a racing steering wheel. The
simulator has several modes, which allow it mainly to perform a
free ride in game-like style, record such a ride, and output the
ride into a file. All the virtual world’s parts can be created or
modified in usual applications for 3D modelling, like Creo
Parametric, 3ds Max, and also Unreal Editor.

The result is that there is a vehicle dynamics tool, which can be
used in research and education of dynamics, and presentation of
virtual reality. Thanks to UE4, the visual appearance of the
application is very real and trustworthy.

ACKNOWLEDGEMENT

This research was supported by Volkswagen Slovakia Foundation
(http://www.nadacia-volkswagen.sk).

and Ministry of Education, Science, Research and Sport of the
Slovak Republic (research project VEGA 1/0676/14).

REFERENCES

[Chrono 2016] Project Chrono. [cit. 9/5/2016] Available from:
http://www.chronoengine.info
[Epic Games 2016] Unreal Engine. [cit. 5/20/2016] Available
from: https://www.unrealengine.com/
[Epic Games 2016] Epic Games, Inc. Unreal Marketplace. [cit.
5/22/2016] Available from:
https://www.unrealengine.com/marketplace
[Monster 2003] Monster, M. Car Physics for Games. 2003. [cit.
6/2/2016] Available from:
http://www.asawicki.info/Mirror/Car%20Physics%20for%20Ga
mes/Car%20Physics%20for%20Games.html
[Rama 2016] Rama. Trace Functions. [cit. 5/22/2016] Available
from: https://wiki.unrealengine.com/Trace_Functions
[Short 2004] Short, M. – Pont, M.J. – Huang, Q. Simulation of
Vehicle Longitudinal Dynamics. Embedded Systems Laboratory,
University of Leicester. 2004. [cit. 5/22/2016] Available from:
http://www.le.ac.uk/eg/embedded/pdf/ESL04-01.pdf
[Svigler 2013] Svigler, J. Drive vehicles. The project CZ.
1.07/2.2.00/15.0383 Innovation of the field of Transport and
handling equipment with a view to the needs of the labour
market. UWB in Pilsen. 2013. (in Czech) [cit. 5/22/2016]
Available from:
http://www.kme.zcu.cz/download/predmety/468-mechanika-
vozidel.pdf
[Tautkus 2011] Tautkus, A. Longitudinal and lateral dynamics.
Powering the Future With Zero Emission and Human Powered
Vehicles – Terrassa 2011 [cit. 5/22/2016] Available from:

http://www.nadacia-volkswagen.sk/
http://www.chronoengine.info/
https://www.unrealengine.com/
https://www.unrealengine.com/marketplace
http://www.asawicki.info/Mirror/Car%20Physics%20for%20Games/Car%20Physics%20for%20Games.html
http://www.asawicki.info/Mirror/Car%20Physics%20for%20Games/Car%20Physics%20for%20Games.html
https://wiki.unrealengine.com/Trace_Functions
http://www.le.ac.uk/eg/embedded/pdf/ESL04-01.pdf
http://www.kme.zcu.cz/download/predmety/468-mechanika-vozidel.pdf
http://www.kme.zcu.cz/download/predmety/468-mechanika-vozidel.pdf

MM SCIENCE JOURNAL I 2016 I OCTOBER

1144

http://www.ip-zev.gr/files/teaching/T3-
4_Lateral_longitudinal_dynamics.pdf
[Vlk 2001] Vlk, F. Dynamics of motor vehicles. Brno: Publishing
VLK, 2001. ISBN 80-238-5273-6 (in Czech)
[Zuvich 2008] Zuvich, T. Vehicle Dynamics for Racing Games.
[cit. 6/2/2016] Available from: https://transporter-
game.googlecode.com/files/VehicleDynamicsForRacingGames.
pdf

CONTACTS

Ing. Jaroslav Matej, Ph.D.
Technical University in Zvolen
Faculty of Environmental and Manufacturing Technology
Department of Mechanics, Mechanical Engineering and Design

T. G. Masaryka 24, Zvolen, 960 53, Slovak Republic
Tel.: +421-45-5206555, e-mai: jaroslav.matej@tuzvo.sk
http://www.tuzvo.sk/matej

http://www.ip-zev.gr/files/teaching/T3-4_Lateral_longitudinal_dynamics.pdf
http://www.ip-zev.gr/files/teaching/T3-4_Lateral_longitudinal_dynamics.pdf
https://transporter-game.googlecode.com/files/VehicleDynamicsForRacingGames.pdf
https://transporter-game.googlecode.com/files/VehicleDynamicsForRacingGames.pdf
https://transporter-game.googlecode.com/files/VehicleDynamicsForRacingGames.pdf
mailto:jaroslav.matej@tuzvo.sk
http://www.tuzvo.sk/matej

