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This study examines selected components of the optimization 

function, used to evaluate the optimal kinematic structure of a 

robot for a given task. Automated generation of the kinematic 

structure is based on scalable drive modules of the joints and 

modules of the carrying arms with a check on the permissible 

torque of the drive and bending moment of the carrier element. 

An optimization algorithm is used to generate variations of 

kinematic structures, the base requirement of the fitness 

function is the ability to traverse a given trajectory with a defined 

orientation of the tool. The suitability of a given kinematic 

structure is evaluated further by a set of evaluation functions 

such as a check for spatial collisions, energy consumption, 

minimization of total weight, minimization of degrees of 

freedom for a given task and several other criteria. Two of these 

criteria – evaluation of the total weight of a robotic arm with 

drives in joints and evaluation of power consumption for a 

defined handling task are examined here. 
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1 INTRODUCTION 

This paper focuses on automatically generated structures of 

manipulation arms that were created from databases of suitable 

actuators, links and grippers. This goal was created primarily as 

a supporting software tool for manufacturing system designers 

who use sets of industrial building blocks and it can also be 

applied to automatically assembled modular handling systems to 

achieve a desired handling task. Definition of some spatial 

restrictions on the desired handling system is an optional choice. 

Here we deals with selected components of the evaluation 

function used to generate an appropriate kinematic structure of 

the robot at a given position of the robot base and with a 

specified tool trajectory including its orientation. Generation of 

a kinematic structure is based on scalable joint drive modules 

and scalable carrying links with a check of the permissible torque 

of the drive and bending moment of the carrier element. In the 

first phase of the project, intelligent functional modules of 

Schunk rotary joints were used to generate the kinematic 

structure. Modules are optionally interconnected either by 

catalogue link modules or by custom modules with spatial 

variability in length or in orientation with checking of adherence 

to the permitted torque of the drive or carrying module. Within 

the project, however, custom scalable joint modules for 

rotational and translational motion are being developed. The 

principle means of generating a kinematic structure is a genetic 

algorithm that generates individual generations of kinematic 

structures. The base criterion is the ability to pass a given 

trajectory with defined tool orientation. Another major criterion 

is a check for spatial collisions of individual rotating modules and 

their links and the check of torques of individual drive modules. 

Additional criteria for assessing a given kinematic structure are a 

set of weighted complementary evaluating functions, such as 

energy consumption, weight minimization, minimization of 

degrees of freedom for a given task and several other criteria. 

Two of these criteria – evaluation of the total weight of a robotic 

arm with joints and their drive units and evaluation of power 

consumption for a defined handling task are examined in this 

study. The purpose of the paper is not to examine the 

optimization algorithm, but only to examine selected 

components of the so called fitness function (also called cost 

function), when evaluating total weight of a robotic arm with 

joints and their drive units and evaluating power consumption 

for a defined handling task as a function of the links lengths 

ratios. 

In the available literature, the area of optimization of 

manipulation tasks is concentrated for practical reasons 

primarily on minimizing energy consumption for a given handling 

task. There are three basic approaches - optimization at the level 

of local trajectory planning, i.e. optimization of velocity and 

acceleration along trajectory, jerk minimization and its 

continuity in individual trajectory segments. In 

[Björkenstam 2013] a path planning algorithm is introduced that 

calculates an initial collision free path using a convex optimal 

control, then a nonlinear optimal control is used to iteratively 

improve the trajectory. In [Porawagama 2014] the authors 

introduce a new trajectory planning method for generating 

bounded and continuous jerk trajectories in joint space using 

polynomial segmented 5-3-5 splines. In [Chen 2011] the authors 

propose computational techniques to find the maximal 

acceleration and minimal jerk along the trajectory and in 

[Zhang 2017] a new robot trajectory planning method is 

introduced based on a genetic chaos optimization algorithm. An 

algorithm for jerk bounded Synchronized Trigonometric S-curve 

Trajectory (STST) and the ‘forbidden-sphere’ technique to avoid 

obstacles have also been proposed in [Perumaal 2013] and in 

[Komak 2018] authors propose smoothed collision-free 

trajectory around the obstacles. 

A second group of work deals with optimization of the relative 

position and orientation of the desired trajectory toward the 

robot as presented in [Luo 2018]. A third approach is to optimize 

the power consumption of more robots cooperating within the 

robotic cell or whole line, optimizing the trajectory, velocity 

profile, cycle length, braking time and other parameters. In 

[Vergnano 2012] authors presented an energy-optimal schedule, 

derived by solving a mixed-integer nonlinear programming 

problem. It has been shown that by using automatic path 

planning and line balancing instead of standard offline 

programming the cycle time in welding lines can be improved by 

as much as 25% [Björkenstam 2013]. A very advanced and 



 

 

 MM SCIENCE JOURNAL I 2020 I MARCH  

3746 

 

practically validated method is presented in [Bukata 2017], 

where the authors’ hybrid heuristic algorithm was accelerated 

by using multicore processors and the Gurobi Optimizer. 

The emerging use of automated robotic systems and the need 

for automatic reconfiguration of handling systems when 

changing the manipulation task give these optimizations a new 

relevance with a strong emphasis on the weight of the resulting 

system and the associated energy consumption to perform a 

given handling task. 

Optimizing energy consumption is also becoming increasingly 

important for mobile robotic devices that have limited energy 

supplies. Numerous works have addressed the optimization of 

the kinematic structure of robotic mechanisms in terms of joints 

payload optimization and force transmission. A foot 

optimization of the hexapod’s leg utilizing an objective function 

that considers both dexterity and payload is introduced in 

[Xin 2015]. Energy consumption and load on joints are also 

significantly influenced by the current robot configuration - here 

configuration means one of the possible solutions of the inverse 

kinematics as is shown in [Gouasmi 2012]. These optimization 

tasks, however, use the fixed structure of the mechanism with 

given mass parameters, while we are concerned with creating a 

"tailor-made" mechanism for a given manipulation task by 

selecting carrying elements of optimal length or length ratio and 

optimal driving elements from a database. 

Finding the optimal ratio of lengths of individual links of the 

manipulator is based on a dynamic model of the manipulating 

arm with variable lengths of individual links, which is processed 

using the Matlab simulation system. The correctness of the 

dynamic model calculation was verified for selected arm 

configurations in the environment of the CAD software Creo 

Mechanism. This approach is often used because Matlab allows 

for greater programming variability than multibody dynamics of 

CAD systems. The simulation model was designed so that not 

only the length of individual links is varied, but for each modified 

link length a new dimensioning of the supporting link and the 

drive is performed and the effect of the individual link lengths on 

the total weight of the manipulator and also on the energy 

consumption are evaluated for the reference handling task. 

Comparisons between kinematic structures with random lengths 

of robot supporting links with a given total length are 

meaningless. A suitable approach seems to be the generation of 

varying relative lengths of individual links of the reference model 

and finding the optimal ratio of the lengths of links to minimize 

both total weight and energy consumption. The aim is to target 

another component of the evaluation function (fit function, cost 

function) for the algorithm of genetic generation of robot 

kinematic structures and to analyses its total mass. It is obvious 

that the weight of this criterion must be reduced compared to 

the main goal - to reach all points of the desired trajectory with 

the required tool orientation. In an environment with spatial 

limitation of arms by obstructions, mass optimization of link 

length is even more challenging, because the length of the links 

is primarily determined by the spatial possibilities of the work 

space. The question is whether there is any optimum of suitable 

lengths of links, here lengths ratio, for minimum weight and 

energy consumption and whether this minimum is significant 

enough and worth applying during automatic mechanism 

design. 

In Part 1, we discuss the appropriate reference model of the 

manipulating arm to examine energy consumption and choice of 

handling task. In part 2, we analyses the selected type of drive 

module and make a synthesis of the so-called continuous 

mathematical model of the drive module. In Part 3, we present 

a synthesis of the individual links and their dimensioning based 

on adherence to the permissible bending stress for the given 

cross-section and material of the link. In Part 4, we present a 

simplified dynamics model of a given manipulator structure and 

analyses weight parameters for varying ratios of individual link 

lengths and evaluate energy consumption for the reference 

handling task. 

2 REFERENCE MODEL OF THE MANIPULATION ARM  

Based on the analysis of physical phenomena related to energy 

losses in individual robot subsystems, it can be stated that only 

dissipative forces cause loss in the mechanical subsystem of the 

manipulator, specifically frictional losses in the mechanism 

joints, gears and motors, and losses caused by aerodynamic drag 

during movement. To determine these losses, it is necessary to 

build a dynamic model of the mechanism, determine the load 

forces and torques in individual joints and determine the 

corresponding frictional forces and torques. Besides the losses 

due to dissipative forces, there is no energy loss in the 

mechanism when moving within the working cycle, only changes 

in potential energy and kinetic energy, and their mutual 

transformation, occur during motion. When a trajectory is a 

closed path the sum of these energies is equal at the start and 

end point of the movement. For example, energy coming from 

the drive system accumulates to increase the potential energy, 

which in turn returns to the drive system when returning to its 

initial position. Similarly, kinetic energy accumulates in the 

movement of the links, gears, and engine rotors during 

acceleration, and returns to the drive system during braking. In 

physical terms, we can talk about power sign and the associated 

drive system's ability to recover negative power back to the 

power supply system. If the drive system is unable to recuperate 

power to the grid, or at least to a common DC link, braking losses 

are mostly dissipated by braking resistors and form a significant 

part of the energy consumption of the entire system.  

 

Figure 1 Reference model of the manipulation arm 
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Another place where losses occur in any direction of the energy 

flow, even at the steady position of the mechanism (at zero 

speed with torque holding) are the resistances aR  of the electric 

motor windings. A motor torque (positive when accelerating, 

negative when braking) is proportional to the current I  of the 

motor, the proportional constant being the torque constant. 

Thermal power losses thP   of the winding are independent of 

current direction, and are equal to 2.th aP R I   and during the 

process they change into heat energy produced by the motor. 

These winding heat losses are about 3 to 5 percent of the motor 

rated power and thus represent a relatively small portion of the 

energy consumption to perform a handling task. In any case, the 

highest energy consumption and hence energy losses are 

observed when the highest torques of the drives are needed 

during acceleration of the links. This happens unambiguously 

with the highest extension of the arm and when accelerating 

upwards against gravity. Therefore, the simplified mechanism of 

the manipulation arm with 3 degrees of freedom (DOF), shown 

in Figure 1, was chosen as the reference calculation model. The 

position at which all the links are horizontal and move upward 

against gravity was chosen as the starting position. In order not 

to consider the amount of energy recovery, we selected the 

trajectory where individual links accelerate with constant 

angular acceleration as the reference manipulation task. Figure 

1 shows the positions of the links when the handling task is 

finished. The model consists of an angular kinematic structure 

with 3 DOFs. This structure with 3 angular joints is widely used 

not only in service robotics, but it is also very common in 

industrial robotics. This concept may be easily supplemented by 

other DOFs, e.g. vertical axis in the base of a robot or wrist axes. 

Alternatively, the analysis of the effect of the link’s length ratio 

on the total weight of the mechanism and on the energy 

consumption can be based on any starting position of the 

mechanism. In the case of the "folded" position of the 

mechanism however, where some links may be near the vertical 

position, the effect of the lengths of the links will be significantly 

smaller. The same is true for a different orientation of the joint 

axes, for example, for the kinematic structure of the "scara" 

type, the influence of the weight of the drives will be 

considerably smaller. 

 

 
Figure 2 Kinematic structure with local coordinate systems 

 

Since we want to investigate the influence of the links length 

ratio on energy consumption, and the end point trajectory 

changes slightly as the length of individual links changes, the 

reference manipulation task is defined as raising the object of 

manipulation OM with a mass OMm to a height h  during time 

maxt with constant angular acceleration of the all links  . Initial 

parameters of the task are the required mass of the object OMm

and the required range of the handling arm, which defines the 

total length cl  of the handling arm as the sum of the individual 

link’s lengths. This handling task is investigated for different link 

length ratios and energy consumption is evaluated as a change 

in the sum of kinetic and potential energy of the entire system. 

In the starting position, all the links are in a horizontal position 

in which the highest bending moments are caused by 

gravitational forces and thus the highest tensile stress is exerted 

at the connection point of the link and the joint and at the same 

time the highest load torques are applied to the drives. The 

kinematic structure of the reference model is shown in the 

Figure 2. Local coordinate systems were defined using Denavit-

Hartenberg notation. As mentioned above, the change in length 

of a given link is not only reflected by the change in the torque 

that the drive has to develop, but also the cross section of the 

link is adapted to the changed tilting moment according to the 

maximal permissible stress  in the carrier element in the 

calculation cycle. The drive size is adjusted to the needed torque 

taking into account the reduced moment of inertia of the motor 

and gearbox. 

The arm links in the reference model are tubes of radius R  with 

wall thickness s , of material aluminum alloy Al 6061. The cross-

section dimensions may vary in two ways: by changing radius R  

while keeping thickness s  constant or changing the s  while 

keeping R  constant. The first method is preferable, with the 

possibility of entering a suitable wall thickness according to 

market availability. The second method of increasing the wall 

thickness of the tube at the same diameter is less advantageous 

because it leads to higher link weights at the same load capacity. 

Increasing the diameter results in a higher weight of the support 

element, which in turn causes an increase in the bending 

moment. Thus, the process is iterative and a new outer tube 

diameter is calculated for each link length so that the maximum 

tensile stress max  at the point of attachment of the link to the 

joint is constant and less than the allowable stress with some 

safety factor.  

The task is further complicated by the mass parameters of the 

drive located in the joint - its mass and reduced moment of 

inertia. The mass of the drive loads the link by bending moment 

and increases the required drive torque in the previous joint, 

while the reduced moment of inertia of the motor-gearbox is 

added to the moment of inertia of the following link and 

increases the torque in the joint needed to accelerate the link. 

The weight of the motor is often not such a problem as the 

moment of inertia of the rotor. Reducing even the low moment 

of inertia of the rotor to the gearbox output is proportional to 

the square of the transmission gear ratio, and thus a relatively 

small moment of inertia at high gear ratio and at high 

accelerations causes a high dynamic torque that the drive must 

overcome.  

In this way, the designer comes to a situation where they 

propose pre-drives for the lengths of the links found in the 

kinematic structure and for the given acceleration and end-

effector load, which increases the weight of the links by the 

drives’ weights and increases the required torque in the joint by 

the motor and gearbox reduced moment of inertia. This will 

require larger drives and/or larger gears which, by their reduced 
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moment of inertia result in a further increase in the required 

torque in the joint and, again, in larger drives and more massive 

links with higher carrying capacity. 

Often, this iterative process does not have a solution for a given 

length, required load capacity, and especially for the desired 

acceleration, and after several laborious iterations, the designer 

is forced to compromise the input requirements for accelerating 

the links. 

3 CONTINUOUS DRIVE MODEL 

In order to optimize the calculation of the arm system with 

actuators in the joints, it was necessary to create a physical 

interpretation of the motor and gearbox assembly and create a 

"continuous" mathematical model of the drive. The continuous 

mathematical model expresses the relationship between mass 

and reduced moment of inertia of the drive on one site and the 

maximal allowed output torque of the drive on the other site. 

This functional dependency is based on the analysis of real 

motors of the manufacturer TG Drives (motors type TGT) 

connected to gearboxes of Harmonic Drive manufacturer 

(HDUR-20-IH to HDUR-100-IH). These units were used during 

design, assembly and production of the heavy manipulation arm 

of the mobile robot Hardy [Pozary.cz 2011] that is supposed to 

help fire fighters during their missions.  

 
Figure 3 Total mass of drive unit related to peak torque of selected 

combinations 

 

The motors and gearboxes were coupled into suitable 

combinations considering a range of nominal and peak torques. 

The total mass of a drive unit was calculated as the sum of the 

motor mass and gearbox mass and reduced moments of inertia 

were calculated for these drives using the gear ratio. Figures 3 

and 4 show values of total masses and reduced moments of 

inertia of the drives related to peak torque for all the drive unit 

combinations. The results are particularly significant for 

harmonic gearheads. Using regression analysis, straight lines can 

be used to approximate drive weight curves based on maximum 

output torque for individual gear ratios. Individual points on the 

corresponding graph indicate catalogue values of the sum of 

motor and gearbox weights. For some torque sizes, there are 

two points in the graph because two different motor and 

gearbox combinations correspond to the respective maximum 

output torque. 

 
Figure 4 Reduced moment of inertia related to peak torque on 

gearhead’s output of selected combinations 

 

Regression line of the drive unit with the ratio i = 50 is 

extrapolated for comparison. The regression lines are 

represented by equations (1) to (4). 

50 maxm   0.0201   0.6009M    (1) 

80 maxm   0.0128   1.4611M    (2) 

100 maxm   0.0106   0.6697M    (3) 

160 maxm   0.0067   0.9225M    (4) 

A regression for values of the reduced moment of inertia related 

to peak torque on the gearhead’s output was done in a similar 

way using a second degree polynomial function. The distribution 

is represented by equations (5) to (8). Again, the distribution of 

moment of inertia related to gear ratio i = 50 is extrapolated to 

see the results more clearly.  

2
50 max maxJ 6.550 05. 3.943 03. +4.860 01E M E M E       (5) 

2
80 max maxJ 2.393 05. 8.779 03. 4.073 02E M E M E        (6) 

2
100 max maxJ 1.135 05  1.979 02 4.497E M E M       (7) 

2
160 max maxJ 4.198 06  2.190 02 5.961E M E M       (8) 

It can be seen from the Figure 3 and Figure 4 that the choice of 

a higher ratio is a more advantageous solution for given torque 

at the gearbox output, as it results in lower overall drive weight 

and a lower reduced moment of inertia. However, this is only 

true for harmonic gearboxes. With the use of conventional 

gearboxes with higher ratios, the number of gears increases and 

thus considerably increases their weight and moment of inertia. 

The presented mathematical model of a drive has a certain 

disadvantage in its “continuity”. The continuity is contrary to 

discrete sizes of real motors and gears that are always 

manufactured in a series. On the other hand, this approach 

brings an easier convergence of the optimization model when 
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searching a manipulator’s parameters. For the actual solution, 

the closest available drive in the manufacturer's range must be 

used and all related parameters rechecked. In the simulation 

model, gears with a ratio of 160i   were used and for 

calculation purposes the absolute term in relation (8) was 

zeroed. 

4 COMPUTATIONAL MODEL OF MECHANISM DYNAMICS 

The rigid links and drives of the manipulation arm are 

dimensioned for a given handling task of raising the 

manipulation object OM to a height h  in time maxt  with a 

constant angular acceleration   of individual joints as is shown 

in Figure 2. The load of the of the arm links and drives is 

calculated as the sum of static and dynamic moments. 

Calculation of the parameters of bearing and driving elements of 

the manipulator is performed repeatedly for different lengths of 

individual manipulator links. The links lengths are 1 2 3, ,l l l , total 

length of the manipulator is 1 2 3cl l l l   . The length ratio 

between the links is described by the coefficient k , so the 

lengths of individual links can be expressed as: 

1 2 1 3 22 1

cll l l k l l k
k k

    
 

  (9) 

The coefficient k is changed in the program cycle within a defined 

range - e.g. 0.5 to 2.0 with a defined step. For each link’s length, 

the angular acceleration   of the links is first calculated to 

achieve the desired height h  in time maxt  with constant link 

angular acceleration  . The position of the first link for 

uniformly accelerated motion can be calculated from the 

equation 

2
1 max

1
.

2
q t     (10) 

The angular acceleration of individual links can be calculated on 

the basis of goniometric relations according to Figure 5, but the 

calculation leads to a numerical solution of the transcendental 

equation according to equations (11) and (12). 

1 2 3sin( ) sin(2 ) sin(3 )h l l l       (11) 

 2 2 2
1 max 2 max 3 max

1 3
sin . sin . sin .

2 2
h l t l t l t  

   
     

   
 (12) 

 

 
Figure 5 Computing of the links angles 

 

The use of inverse kinematics to calculate link angles is not 

appropriate here, since the mechanism is in its singular position, 

and in addition, endpoint trajectories vary with variable link 

lengths. Therefore, an elegant solution of the direct kinematics 

is to use a simple iterative calculation of the product of 

exponentials. Initial angular acceleration 20.0 [ / ]rad s   is 

increasing in a cycle until the OM achieves desired height h  in a 

time maxt . The links are moving with continuous angular 

acceleration and during this process the system is continuously 

calculating the z-coordinate of the OM. The z-coordinate is a 

component of the homogenous transformation matrix 3bT  

between the reference coordinate system , ,b b bx y z  and the last 

coordinate system 3 3 3, ,x y z  in the center of OM. 

 

The algorithm is as follows: 

1. Initialization – common angular acceleration of the joints is 

set to zero, height z is set to zero 

20, 0, 0.001[ / ]z step rad s     

In accordance with Figure 2, the “zero configuration” 

transformation matrix from the base coordinate system 

, ,b b bx y z  to the coordinate system of the OM 3 3 3, ,x y z  is 

1 0 0 0

0 1 0

0 0 1 0

0 0 0 1

cl

 
 
 
 
 
 

M   (13) 

The screw vector and screw matrix are defined as 

screw vector 
i

i
i

 
  
 

ω
S

v
  (14) 

screw matrix 
ˆ

ˆ

0

i i

i T

 
  
 

ω v
S

0
  (15) 

where ˆ
iω  is the skew vector of iω . Components of the 

screw vectors expressed in the base frame are shown in 

Table 1: 

 

i iω   ip   iv   

1  1 0 0
T

   0 0 0
T

  0 0 0
T

 

2  1 0 0
T

  10 0
T

l   10 0
T

l  

3  1 0 0
T

  1 20 0
T

l l   1 20 0 ( )
T

l l 

 

Table 1. Components of the screw vectors 

 

where translational velocity vector is computed as 

i i i  v ω p  (16)
 

2. While z h  increase acceleration   by step , step     
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 when the condition isn´t true go to step 6 – end of iteration. 

 

3. Actual joints positions are computed as 

2 2 2
1 max 2 max 3 max

1 1 1
. . .

2 2 2
q t q t q t       (17) 

4. The transformation matrix from the base coordinate system 

to the coordinate system of the OM can be computed as a 

product of exponentials 

31 2
ˆˆ ˆ .. .

3 1 2 3( , , ) . . .qq q
b q q q e e e 31 2 SS S

T M   (18) 

5. The z - coordinate of the OM can be computed as the 

element of the transformation matrix 3bT   

 3 3,4b
z T   (19) 

Return to the step 2 

 

6.  End of iteration,   contains the desired angular acceleration 

of the joints.  

 

The load calculation of the individual links begins with the last 

link. Based on the known mass OMm  of the OM and given link 

length 3l  in the iteration cycle, the outer diameter 3R  of the link 

tube is consecutively increased from a minimum value until the 

bending stress at the connection point is less than the allowable 

stress of the given material, or the desired link stiffness can be 

used here. This yields a cross section of the supporting tube of 

the link and for the known length 3l of the link, the mass 3m  and 

the position 33cp  of the center of gravity of the link 3 (including 

OM) are expressed in the third local coordinate system of the 

last link  

3
3 3

33

. / ( )
2

0

0

OM

c

l
m m m

 
 

 
  
 
 
 

p  (20) 

with the components of 33 33, and c c c33x y z . The next step is 

calculation of the inertia matrix of the third link (including OM) 

3

3 3

3

0 0

0 0

0 0

OMx

OMc OM y

OMz

J

J

J

 
 

  
 
  

J  (21) 

where the following equations determine the moments of 

inertia related to the center of gravity of the third link including 

OM: 

3 3OMx cx OMJ J J    (22) 

2
23

3 3 3 33 33.
2

OMy cy c OM OM c

l
J J m x J m x

 
     

 
  (23) 

2
23

3 3 3 33 33.
2

OMz cz c OM OM c

l
J J m x J m x

 
     

 
  (24) 

The moments of inertia of the carrying tube and OM (that has a 

spherical shape) are expressed in the following equation 

 2 2
3 3 3 3 / 2cxJ m R r    (25) 

 2 2 2
3 3 3 3 3 33 3 /12cy czJ J m R r l      (26) 

 22

5
OM OM OMJ m r   (27) 

Using Newton-Euler recurrent equations the vector of the 

translational acceleration 3ca  at the center of gravity and vector 

of the angular acceleration 3ε  are calculated. Based on these 

values an action torque 3n  and an action force 3f , that load the 

joint between the second and third link, can be determined as 

follows in equations (28) and (29). 

 3 3 3 4cm  f G a f   (28) 

 3 4 3 23 3 3 3 4c c      n n N p p f p f   (29) 

where 

-2

0

0 9.80665 [ms ]g

g

 
 

 
 
  

G   (30) 

is a vector of gravitational acceleration 

 3 3 3 3 3 3. .OMc OMc    N J J      (31) 

is inertial torque caused by tangential and centrifugal 

accelerations, 23p  is a position vector from the origin of the 2nd 

coordinate system to the origin of the 3rd local coordinate 

system expressed in the reference (basic) coordinate system and 

3cp  is a position vector of the center of gravity of the 3rd link 

33cp  also expressed in the reference coordinate system. When 

evaluating the balance of forces and moments of the last link, 

there are zero values of the torque 4n  and force 4f  acting to 

the object of manipulation OM. Mass properties of the OM are 

already included in the mass properties of the third link. The 

stress value 3  is calculated in the connection of a link and a 

joint 

3
3

3

z

oW
 

n
  (32) 

where 3oW  stands for the cross-section module of the tube 

 4 4
3 3

3
34

o

R r
W

R

 
   (33) 
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A projection of the torque 3n  into the rotation axis 2z  is a 

generalized force 3  that must be produced by the drive. The 

results of this iteration step are mass properties of the third link 

including OM and the torque required to move the third link with 

given acceleration and that loads the drive of the third link. The 

iterative calculation of the drive parameters follows in the next 

step. First, the starting parameters of the drive are found based 

on the relationships (4) and (8) for the load torque calculated in 

the previous step - the starting drive weight 3pm  and starting 

reduced moment of inertia 3mpJ . While the mass 3pm  of the 

drive is held by the previous second link, the reduced moment 

of inertia 3mpJ  increases the moment of inertia of the third link 

and must be added to the moment of inertia of the third link 

around the rotation axis 2z  according to equation (34). 

2
23

3 3 3 33 33 3.
2

OMz cz c OM OM c mp

l
J J m x J m x J

 
      

 
 (34) 

As the total moment of inertia of the third link increases by 

adding the reduced moment of inertia of the drive, the torque 

needed to be exerted by the drive for the given acceleration 

must be recalculated. This leads to its enlargement and to the 

higher weight and the higher moment of inertia of the third drive 

that is added again to the inertia of the third link. This calculation 

is iterated as long as the required drive torque increases. After 

the iterative calculation for the third drive, the complete mass 

properties of the third link are known - its mass and moment of 

inertia including OM and the mass properties of the third drive - 

its mass, which loads the second link and the reduced moment 

of inertia, which must be added to the moment of inertia of the 

third link.  

Calculation of the loads of the second and the first link are 

analogous, instead of the mass OMm  in the equations (18) and 

(20) to (22) we use the masses of motors 3pm  and subsequently 

2pm , the link is loaded on its end by the action torque 3n  and 

by the action force 3f  caused by the third link, subsequently by 

the torque 2n  and by the force 2f  caused by the second link.  

An iterative approach is used again for the calculation of an 

optimal cross-section of the carrier-link and for determining a 

size of a motor, whose reduced moment of inertia is always 

added to the moment of inertia of the appropriate link. The 

mechanism is examined in the initial position when the forces 

and torques achieve their peaks. Masses of the joints are 

determined using the coefficient multiplying the mass of the 

motors by a value of 1.5mpk  . Finally, the value of the 

mechanical work that has to be spent to lift OM to a given height 

over a set time is calculated. The work is calculated as the sum 

of kinetic and potential energy of all manipulator bodies, 

including drives. The work of dissipative forces is not included 

here. Correctness of calculation of load forces and joint torques 

and simulation of the mechanism’s dynamics were verified in 

CAD system Creo 5. 

5 SIMULATION RESULTS 

The simulation model was performed in Matlab as a script. The 

presented results correspond with input values of mass of 

manipulated object 50 kgOMm  , total length of the 

manipulator 2 mcl  and height 1mh   representing the final 

position that must be achieved by the manipulator with a 

constant angular acceleration in time maxt . In order to obtain 

load results for different accelerations, the cycle time maxt  is 

consecutively reduced in the program cycle, this leads to an 

increase in the angular acceleration of the links up to the limit, 

where a drive solution is no longer found for the given 

acceleration. In the inner loop, the links length ratio is varied 

within a specified range – in this case 0.5 to 2.0. 

The main observed objective - finding such a ratio of links lengths 

which minimizes energy consumption or the total weight of the 

manipulator – was not achieved. As an example, Figure 6 shows 

the overall weight of the manipulator and energy consumption 

of the given manipulation task as a function of the links length 

ratio. The angular acceleration of the links in this case is 

1.03[ / ].rad s   

 

 
Figure 6 Total mass m and consumed energy E of the manipulator 

related to length ratio k for the desired manipulation task  

 

These results lead to a recommendation to select a length ratio 

with a longer first link and consecutively shortening other links. 

The relationship between energy consumption and the lengths 

ratio of the links is very flat, as is also shown in Figure 6, and, in 

contrast, it results in a better variant by consecutively extending 

links, but the impact of this criterion is much smaller than the 

impact of the criterion considering the total mass of the 

mechanism. 

The total mass of a manipulator is mostly generated by the mass 

of the drive units – motors, drives and joints. In the reference 

mechanism the mass of armatures of joints is calculated by 

multiplying the motor mass by a coefficient 1.5mpk  . The 

weight of the drives increases significantly for higher 

accelerations. Figure 7 shows the course of the total weight of 

the manipulator as a function of the links length ratio for three 

different accelerations 2[ / ]rad s . 

A reason for this behavior is the increasing influence of the 

reduced moment of inertia of the drives in higher angular 

accelerations of the links and thus of the drives, where it is 

necessary to choose significantly larger drives. The dependence 

of the required torque of the drive on a given angular 

acceleration is shown in Figure 8 as a multiple of the required 

drive torque at zero angular acceleration, i.e. only under static 

load. 
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Figure 7 Total mass m related to length ratio for 3 different angular 

accelerations 

 

Today, robotic handling system are highly dynamic and achieve 

relatively high accelerations of a tool center point - accelerations 

around 20 -2[ms ]  are commonly used. In our simulation model, 

this acceleration corresponds to the angular acceleration about 

4[ / ]rad s   at the highest extension of the links and thus the 

maximum (nominal) torque of the drive is almost double the 

torque needed under static load.  

 

 
Figure 8 Coefficient of increase of needed motor torque in relation to 

angular acceleration  

 

Using gear drives with higher values of moments of inertia will 

increase the drive size even further. Therefore, the 

recommended preliminary value of the coefficient of increase of 

the drive torque is suggested to be 1.5 to 2.0 based on known 

static torques. In any case it is necessary to verify a maximal 

value of the motor torque for the desired configuration of the 

manipulator, using its dynamic model that includes all reduced 

moments of inertia of the drives.  

Finally, the search for the minimum of material and energy 

requirements in the manipulator synthesis has achieved partial 

success by finding the minimum weight of the manipulator links 

– in our case aluminum alloy tubes. In contrast to the overall 

weight trajectories depending on the links length ratio, the total 

mass of the all links has a minimum as is shown in Figure 9 for 

the acceleration of 1.03[ / ]rad s   as an example. The arm 

links in the simulation model consist of a tube of Al6061 material 

with a defined wall thickness of 2 mm, the maximum stress was 

set to 100 MPa.  

Similar results have also been found for other cross-sections of 

arm links. The minimum for weight of the arm links is not very 

conspicuous, only 3 to 6% of the total mass of the links, and for 

higher angular accelerations, this minimum of the total weight 

of the arm links shifts slightly to higher values of the links length 

ratio, i.e. towards longer links. 
   

 
Figure 9 Total mass of the rigid-body links related to length ratio of the 

links 

6 CONCLUSION 

In conclusion, it can be stated that there is no unambiguous 

recommendation on length of links or more precisely on lengths 

ratio of individual links in this type of manipulator with drives in 

joints. The weight of such a manipulator is formed particularly 

by the weight of the drives, which is significantly increased by 

the need to overcome the reduced moment of inertia for higher 

angular accelerations of the links. 

An insignificant minimum of the total weight of the arm links was 

found at approximately the same lengths of the individual links, 

and in consecutively lengthening links for higher accelerations. 

However, to optimize the total weight of the manipulator, a 

longer first link and consecutively shortening links are 

preferable. Thus, the decisive parameter remains the 

requirements for working space, obstacle collision avoidance in 

that work space and also collision avoidance between 

manipulator links. Only when it is possible to choose the lengths 

of the links is the more advantageous variant available, with 

consecutively shortening links. In this case it is possible to 

achieve at least 20% savings in the total weight of the 

manipulator, mainly due to significantly smaller drives of 

shortening links on the second, third and other axes. 
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