MECHANICAL PROPERTIES OF BIOPOLYMER COMPOSITE WITH NATURAL FIBERS SURFACE MODIFIED BY LOW-TEMPERATURE PLASMA

Abstract

The paper deals with the evaluation of mechanical properties of a biopolymer composite, where a low-temperature plasma, atmospheric dielectric barrier discharge (DBD) physical treatment was used to improve adhesion at the interface between the polymer and natural fibers. The polymer composite matrix was PLA polymer from NatureWorks LLC. The reinforcing filler were natural coconut fibers, which were in three weight percentage in the composite system. Tests of evaluation of mechanical properties, tensile and bending test, and impact strength test, and differential scanning calorimetry were performed on prepared samples. Electron microscopy was used to evaluate the effect of plasma treatment on the surface of natural fibers as well as adhesion at the interface between fibers and matrix. Experimental results of mechanical properties confirmed that the use of plasma surface treatment of natural coconut fibers using DBD technology influences the final properties of biocomposites.

Recommended articles

MODELING OF THE HEAT DISSIPATION PROCESS OF COMPOSITE MATERIALS DURING STABILIZATION OF THE STRUCTURE USING THE EXAMPLE OF NON-AUTOCLAVED FOAM CONCRETE

Kseniia L. Domnina, Maxim O. Bakanov, Maros Soldan, Sergey V. Fedosov
Keywords: cellular composite | foam concrete | heat release | hydration | heat and mass transfer