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The stability of a machining process is a function of the dynamic 
response between the spindle and table, which varies within 
the machine work volume. This paper deals with 
computationally efficient methodology to evaluate and 
simulate dynamic performance of the machine tool. A position-
dependent virtual model is assembled using finite element 
model reduced via component mode synthesis and 
transformed to a state-space multi-input-multi-output system. 
Combination of these techniques allow time-efficient response 
simulations with significantly less computational effort than 
conventionally used full finite element models. The presented 
approach can be used to create position-dependent dynamic 
stiffness map within the work volume used to predict and 
reduce unstable behaviour during operation. Furthermore, 
these techniques are not reserved for machine tools exclusively 
and can be used in wider spectrum of technical applications, 
that require time-efficient response simulations. 
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1 INTRODUCTION 
The development of the present machine tool industry requires 
time-efficient analysis of the structural dynamics and stability 
of the cutting process. Machine tool’s behaviour during 
operation is directly affected by the dynamic stiffness between 
the tool and the workpiece, its stability due to chatter 
constraints depending on various operating parameters such as 
depth of cut and spindle speed. Furthermore, the dynamic 
stiffness changes as the tool moves along the path within the 
machine tools work volume, resulting in position-varying 
structural vibrations.  
 
The objective during the design process is to maximize dynamic 
stiffness between the tool and the workpiece while keeping the 
overall mass of the machine tool low for high-speed positioning 
and efficient productivity. Up to date, many steps have been 
made to compensate geometric errors due to the position-
dependent  static stiffness of the machine during operation 
[Holub et al. 2016], but unstable behaviour due to the position-
dependent dynamic stiffness has not yet been thoroughly 
described. While static stiffness in one particular point of the 
machine can be described as a set of numbers in each position 
within the machine work volume (i.e. stiffness in 3 
coordinates), the nature of the dynamic stiffness as a complex 
function of frequency makes it much harder to determine in a 
similar way as the static stiffness.  
 

Up to date, problems related to unstable behaviour due to 
insufficient dynamic stiffness have been mostly solved on 
existing machines in a way that required some kind of response 
measurements and compensation [Zaghbani et al. 2009] or 
simplified analytical models based on spring-damper elements 
[Siddhpura et al. 2012]. Parameters of the spring-damper 
system are usually determined by impact hammer 
measurements with relatively high estimation errors. For 
complex machine with multiple modes within required 
frequency range, representation as a 1 degree of freedom 
(DOF) spring-damper element for each axis is insufficient.  
To fulfil demands of modern manufacturing industry, it is 
necessary to predict and describe dynamic behaviour in the 
pre-production phase where optimization of the machine takes 
place, and implement control systems for automatic 
compensation in later stages of the development, if the 
dynamic stiffness is still insufficient. However, before it can be 
achieved, a reliable and time-efficient method to determine 
dynamic stiffness as a function of position in one or more 
directions in the global work volume of the machine is required. 

2 MODELLING METHODS 
The approach presented in this paper is based on complex 
virtual model of the machine tool [Kšica et al. 2017], which 
combines multiple modelling techniques in specialized software 
Ansys and Matlab.  
 

2.1 Reduced FEM Model 
Conventional FEM models of large structures usually consist of 
hundreds of thousands DOF, making them unsuitable for 
response analyses in time and/or frequency domain. Multiple 
reduction techniques are available for large-scale FEM models, 
but only a few are beneficial for dynamic analyses. One of them 
is component-mode synthesis (CMS), which has these 
prerequisites: 

 system is linear 

 response is required in a pre-defined frequency range 

 number of reduced DOF is ordinarily lower that 
number of DOF in full FEM model  

CMS is based on an idea that deformation of the structure can 
be described as linear combination of its modal shapes. This 
method allows us to disassemble the structure into sub-
structures that have common interfaces connected by joints.  
 
Because each sub-system has its own structural matrices, for 
large-scale system where only some parts are subjected to 
change, CMS is very beneficial.  
 
Each of these sub-structures is subjected to a modal analysis 
which considers these interfaces either as free or fixed. 
Structural matrices (i.e. mass and stiffness) are transformed 
into more concentrated matrices that contain modal data. As a 
result, previous structural elements are transformed into so 
called super elements that no longer contain information in 
each node of the full FEM mode, but only in user-defined nodes 
called master nodes. The set of these nodes includes interface 
nodes, nodes where input and output variables are present, 
and nodes we want to observe. The requirement that number 
of reduced DOF (master nodes) is ordinarily lower than number 
of DEF in full FEM model is necessary for achieving reduction of 
matrices, because for similar number of DOF, CMS would be 
counterproductive. 
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This method is frequently used in dynamic analyses, because of 
its principle based on modal analysis. An example of CMS 
method is Craig-Bampton method formulated in 1968, which 
considers the interface as fixed [Bampton et al. 1968]. CMS is 
implemented in specialized FEM software such as Ansys. Its 
application for a simple mechanical structure and comparison 
of responses of full FEM and reduced FEM models was made 
[Ksica 2016]. Both full FEM and reduced FEM had within a pre-
defined frequency range the same harmonic and impulse 
response. 
 

2.2 Transfer-function and State-space System  
The initial idea is based on the fact that the dynamic 
compliance (inverse of the dynamic stiffness) is mathematically 
a transfer function between the input forces and output 
displacements of the system, as described in equation (1) 
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where G is transfer function matrix representing dynamic 
compliance, Y is output matrix representing displacement, U is 
input matrix representing forces, and s is a complex number 
frequency operator. This transfer function can be easily written 
as a combination of state-space matrices, as described by 
equation (2)  
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where A, B, C, and D are state-space matrices, and I is unity 
matrix.  For mechanical structure, these state-space matrices 
can be assembled using modal data (i.e. eigenfrequencies, 
eigenvectors, and damping). The size of the state-space 
matrices depends on number of inputs and outputs to the 
system.  
 
State-space system equations can be written as 
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where x is the state vector, y is the output vector, u is the input 
vector, A, B, C, and D are state-space matrices. Consider n 
number of modes, i number of inputs and o number of outputs. 
Then A has size of 2n×2n, B has size of 2n×i, C has size of 3o×2n 
and D has size of 3o×i.  
 
System matrix A is defined as 
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where 0 is null matrix, I is unity matrix. Matrix Λ1 is diagonal 
matrix defined as 
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where ωj is eigenfrequency of mode j. Matrix Λ2 is diagonal 
matrix defined as 
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where ξj is effective modal damping of mode j, and ωj is 
eigenfrequency of mode j. 

 
Input matrix B is defined as  
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where 0 is null matrix. Matrix Λ3 is defined as 

u
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where Φ is the matrix of eigenvectors and Fuis a unit force 
matrix with size n×i, which contains 1 at DOF where input force 
is active and 0 elsewhere. 
 
Output matrix C is defined as 
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Matrix Λ2 is defined as 

 uU4  (10) 

where Uu is unit displacement matrix with size o×n, which 
contains 1 at DOF where output is requested and 0 elsewhere.  
 
Matrix D is defined as 
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Presented form of matrix C and D in equations (9) and (11) is 
valid for system, where not only displacement, but velocity and 
acceleration is required as an output. If only displacement is 
required, the last row of matrix C and D is not written. 
 
State-space system is suitable for description of systems with 
relatively small number of inputs and outputs. In case of 
machine tools and analysis of their stability during operation, 
this requirement could be met, because the inputs usually 
include forces in 3 perpendicular directions applied to the tool, 
and outputs represent data from sensors (accelerometers), that 
are fixed at finite and relatively small number of locations.  
 
Because of the complexity of machine tools, they can no longer 
be represented as single-input-single-output (SISO) system, 
because there are generally multiple axes of motion. The 
simplest state-space system for general machine tool would 
have 3 inputs and 3 outputs, resulting in multi-input-multi-
output (MIMO) system. 
 

2.3 Position-dependent Dynamic Stiffness 
In case of machine tool, the topology of parts changes as the 
tool moves along the path. This directly affect static and 
dynamic stiffness of the machine and its response between the 
tool and the workpiece. Because the goal of current machine 
tool development is to identify and minimize the effects of 
unstable behaviour, such as chatter vibrations, it is crucial to 
describe the variable dynamic stiffness with enough accuracy. 
As described above, dynamic stiffness reflects modal behaviour 
of the machine tool. It is crucial to determine dynamic stiffness 
for enough positions, as the modes may have multiple 
extremes within the work volume.  
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If we used conventional approach of transient analysis using full 
FEM models, we would be forced to repeatedly run very time-
consuming simulations. Furthermore, as the inputs to those 
simulations are the forces acting upon the system (e.g. cutting 
forces), which are variables of depth of cut etc., the results 
would be very limited. Having access to state-space system in 
each of the crucial positions within the work volume solves this 
problem, as we can apply any force load as necessary and the 
response is obtained in seconds, not hours. 
 
Similar approach including position-dependency of the dynamic 
stiffness was used for an analysis of stability of a vertical mill in 
[Law et al. 2013], where three vertical positions of headstock 
were considered. The authors, however, did not use state-
space system. 

3 VIRTUAL MODEL OF MACHINE TOOL 
Previously described methodology is used to create a virtual 
model of vertical mill, where these parts were included: 

 column 

 headstock  

 spindle 

 tool magazine 

 drive 
The worktable, tool and the tool holding mechanism was not 
included in the model. Photo of modelled vertical mill is 
illustrated in Figure 1, respective CAD model of the selected 
parts is shown in Figure 2. 

 

Figure 1. Photography of modelled vertical mill 

 

Figure 2. CAD model of vertical mill 

3.1 FEM Model 
Finite element model of the vertical mill was assembled for the 
purposes of dynamic simulations. The geometry was simplified, 
small features (e.g. holes, bevels, chamfers) were removed. 
Geometry of joints (e.g. ball bearings, ball screws, and linear 
guides) was not considered and the joints were substituted by 
mass-less elements. Geometry was cut into separate bodies to 
allow mapped (swept) meshing. The global model of vertical 
mill was disassembled into submodels of column, headstock, 
spindle, drive, and tool magazine, each reduced separately 
using CMS. The CMS was based on modal analysis with the first 
50 modes within range 0÷1400 Hz. Super elements were 
assembled back into a global model, interface nodes were 
coupled and connected with spring-damper elements. The 
amount of DOF in full FEM and reduced FEM via CMS is 
compared in Table 1. 

Method Nodes Elements 

Full FEM 130,000 270,000 
270,000 solid elements 

17 spring-damper elem. 

Reduced 
FEM  

8,600 22 
5 superelements 

17 spring-damper elem. 

Table 1. Number of nodes and elements of full FEM and reduced FEM 
models 

As a separate analysis, effects of the drive belt preload forces 
and angular velocity of the spindle were evaluated. They did 
not significantly influence eigenfrequencies and modal shapes 
(0÷1 %). In the following analyses, they were not included as 
they would introduce complications and different solving 
algorithm would be necessary. 
 

3.2 Joints 
Three types of joints were considered in this model: ball 
bearings, linear guides, and a ball screw. Because joint stiffness 
has significant impact on dynamic behaviour of virtual model, it 
was crucial to determine their parameters with enough 
accuracy.  
 
Two pairs of high-speed ball bearings with contact angle 25° in 
QBC configuration were used to connect spindle and 
headstock. Because ball bearings have two stiffness 
parameters, axial and radial, they were modelled with planar 
spring-damper bearing element COMBI214. Because spring-
damper elements that are functional only in pressure, are not 
available in Ansys, axial stiffness of each bearing was 
determined as a half of axial stiffness of a ball bearing pair. 
Axial stiffness of each bearing was kZ = 59.5 N/µm, radial 
stiffness was kR = 119.8 N/µm. 
 
Four linear guides connected headstock and column. Each 
linear guide has two stiffness parameters in two axes 
perpendicular to the direction of free motion (x axis and y axis). 
Therefore, a pair of 1 DOF spring-damper elements COMBIN14 
was used for x and y axis. Stiffness in both directions was 
kX=kY=77 N/µm. 
 
A ball screw is a relatively complex mechanical system with a 
lot of parts, which contribute to its overall axial stiffness (z 
axis). For a fixed-free arrangement, the screw shaft has the 
lowest rigidity compared to the other parts [Collins 2015], 
therefore it is possible to exclude the other parts. The shaft of 
the ball bearing can be modelled as a beam with circular cross 
section, whose stiffness is a parameter of the distance from the 
fixed interface. A 1 DOF spring-damper element COMBIN14 was 
used to model the ball screw, and its variable stiffness was 
calculated using equation 
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where E is Young’s modulus of steel, S is cross-section area of 
the ball-screw, L is the variable distance from the fixed 
interface, and D is the diameter if the ball screw.  
 
Interface between the column and the magazine, as well as the 
headstock and the drive, was considered fixed. Position of 
joints is highlighted in Figure 3. 

 

Figure 3. Vertical mill – model of joints 

3.3 Damping 
Evaluation of damping in complicated machinery has always 
been a problem. To preserve simplicity, at this stage of 
research, damping was not included. However, as the structure 
of state-space matrices implies (equation (4) – (11)), it is 
possible to easily include modal damping. The damping 
coefficients can be either based on similar technical problems, 
or the existing machine tool can be subjected to a response 
measurement and for each eigenfrequency, modal damping 
can be determined. 

4 STATE-SPACE SYSTEM  
The main idea behind obtaining state-space system of the 
vertical mill without a tool attached is based on the assumption 
that we can connect multiple state-space systems (or transfer 
functions) in a chain. In case of machine tools, we want to 
observe response of tool – workpiece pair, but we are usually 
unable to measure any mechanical parameters precisely on the 
tool during operation. If we were to know transfer function 
between a tool and a sensor attached somewhere else on the 
machine, we would easily add that to a response of tool and 
workpiece itself. This is illustrated in Figure 4.  

 

Figure 4. Chain of transfer functions 

The problem is, however, more complicated due to the 
dependence on the current position within work volume, 
resulting in a series of state-space systems, one for each 
position respectively.  
 
Therefore, an algorithm that selects the state-space system for 
the respective position is necessary. In order to assemble state-
space matrices A, B, C, and D, reduced FEM model is subjected 
to a series of modal analysis to extract eigenfrequencies, 
eigenvectors and damping. Pre-defined range of frequencies 
was 0÷900 Hz, in which 30 modes were computed. As inputs, 
acting forces on tool holder in a global coordinate system were 
chosen, and as outputs, displacements in a global coordinate 
system of a user-defined sensor location were chosen (Figure 
5). A set of positions within range of 0÷600 mm with step size 
of 5 mm was used. 

 

Figure 5. Defined inputs and outputs 

Each extracted state-space system is loaded into Matlab as a 
part of a structure, that among the matrices A, B, C, and D 
contains position, eigenvalues, eigenvectors and modal 
damping, as illustrated in Figure 6. This structure serves as a 
database of state-space systems for each position within work 
volume, currently only for vertical axis z. 

 

Figure 6.Matlab structure with position-dependent state-space 

matrices 
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A selection algorithm picks a respective state-space system for 
an input position within the work volume. These state-space 
matrices are loaded into a simple Simulink model (Figure 7), 
that simulates response for the input forces.  

 

Figure 7. State-space model of tool holder – sensor in Simulink 

Because the state-space systems are extracted for discrete 
positions, the transition between them is not smooth. The 
selection algorithm is based on a ceiling function and the 
transition is stepped. However, the position steps were small 
enough to make the transitions as smooth as possible. In the 
future, a state-space system interpolation method will be 
included [Caigny et al. 2011]. 

5 RESULTS 
Presented algorithms were used to simulate the response of 
the machine tool as an example of their functionality. To 
illustrate the necessity to determine response as a function of 
position, a graph containing eigenfrequencies of the machine 
based on vertical position of the headstock was made (Figure 
8). 

 

Figure 8. Eigenfrequencies for variable position of the headstock 

For several modes, minimum frequency, maximum frequency, 
and percental difference is compared in Table 2. 
 

As can be seen, for some modes, the frequency shift due to the 
variable position can be over 30 %. Furthermore, some modes 
exhibit extremes in between the topmost (0 m) and the 
bottommost (-0.6 m) position. It can be seen that describing 
dynamic behaviour only in the topmost and bottommost 
position of the headstock can introduce significant errors and 
linear interpolation between the end positions is out of the 
question. 
 
The response simulation of the extracted state-space systems 
was done in Matlab/Simulink environment. This choice was 
made because this software allows easy work with state-space 
systems, their transformation into transfer functions and it can 
be used as a base for future simulations, where response of the 
tool and workpiece is included. Also, since some of the 
interfaces can exhibit behaviour that is hard to describe in 
Ansys (e.g. friction, backlash etc.), additional joint functions can 
be added between the subsystems in Simulink. 
 
As mentioned above, position-dependent response of the 
system with unitary force impulse as inputs was made. Impulse 
peak was 1 N and impulse length was 1 ms, unitary force was 
applied simultaneously in all three global directions. Firstly, a 
time-domain response (Figure 9), then a frequency-domain 
response (FRF) using Fast Fourier transform (FFT) was made 
(Figure 10). FFT data were subjected to an average filter with 
kernel size of 5 samples for smoothening. 
 
It is important to mention that each response simulation took 
only seconds to finish, compared to the alternative which might 
include full transient or harmonic analysis in Ansys, and that 
would take hours instead.  

Mode 
number 

Minimum Maximum Difference 

[Hz] [Hz] [%] 

5 61.7 66.3 7.5 

6 67.4 72.0 6.8 

7 105.4 134.4 27.5 

8 94.4 119.2 26.3 

9 140.9 170.9 21.3 

16 428.2 566.6 32.3 

17 512.8 629.6 22.8 

Table 2. Comparison of eigenfrequencies for variable position of the 

headstock 
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Figure 9. Time-domain impulse response for the topmost position 

 

Figure 10. Frequency-domain impulse response for the topmost 
position 

These simulations were done for each position step on the 
vertical axis. The position vector was added as a third axis to a 
3D plot of the final FRF results. In Figure 11 - Figure 13, shift in 
amplitudes can be compared. In Figure 14 - Figure 16, shift in 
frequency can be compared. These figures are similar to the 
Figure 8, but show only those modes that were excited by the 
input forces.  

 

Figure 11. FRF in X direction, amplitude view 

 

Figure 12. FRF in Y direction, amplitude view 

 

Figure 13. FRF in Z direction, amplitude view 

 

 

Figure 14. FRF in X direction, frequency view 
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Figure 15. FRF in Y direction, frequency view 

 

Figure 16. FRF in Z direction, frequency view 

As can be seen, some modes have amplitude as well as 
frequency extremes between the topmost and the bottommost 
positions, and such phenomenon is hard to predict when 
simulations are made only for the end positions. 

6 DISCUSSION 
Proposed method based on transformation of full FEM or 
reduced FEM model into a state-space system proved to be 
viable for response simulations, where time is crucial. This 
paper focused mainly on application of this approach for a real 
problem, however, some questions might emerge. 
 
Firstly, there might be a question of linearity. Modal analysis 
can be done only for linear systems, meaning systems that do 
not introduce nonlinear behaviour due to material, joints, large 
deflections etc. For an application that involves machine tool, 
this is might not seem as a significant limitation. Noticeable 
nonlinear behaviour may be introduced in joints, mainly as 
friction and backlash, but these effects can be implemented 
separately to the Simulink model. Furthermore, state-space and 
transfer-function based models only work for linear time-
invariant systems (LTI)[Brezina et al. 2012].   
 
Secondly, there is a question of experimental validation of this 
approach. These methods were previously discussed in a 
diploma thesis [Kšica 2016], where some techniques that might 
be used for experimental validation were described. 
Experimental validation is based on measurement of some key 
parameters that might be directly or indirectly compared with 
the validated virtual model. In case of dynamics, these 
parameters might be, among other things, eigenfrequencies, 
amplitudes of vibrations, and damping. Time-domain response 
comparison is not suitable for validation, as it is subjected to 
noise, phase shift, and overall it is difficult to compare 

objectively. However, time-domain data can be used for 
dynamic system identification to create a mathematical model 
(e.g. transfer function, state-space model) of the system that 
could be used for response comparison for different, more 
suitable inputs. Dynamic system identification is usually based 
on the least-squares method, where parameters of the chosen 
mathematical model are tuned to match the target measured 
response [Ljung 2007]. For SISO systems, the identification 
process is rather straightforward. However, for MIMO systems 
it becomes more complicated because we are tuning 
parameters for n×m different combinations, where n is the 
number of inputs and m it the number of outputs. Frequency-
domain response might be used to adjust eigenfrequencies and 
more importantly damping, which might be calculated for each 
mode separately. 
 
Thirdly, a question related to the implementation of tool tip – 
tool holder response and cutting forces, that would reflect real 
system. A tool in its simplest form can be substituted by a 
beam, for which a response is relatively easy to compute. This 
beam can be substituted by a more detailed geometry, but it 
would ultimately be based around the same idea that this 
paper discusses. Implementing cutting forces to simulate 
machining process would only mean to substitute unity force 
impulses with more complicated functions [Özs et al. 
2015][Putz et al. 2016].  

7 CONCLUSIONS 
This paper introduced methods for virtual modelling of 
machine tool based on transformation of reduced FEM models 
into state-space domain. Because the stability of the cutting 
process is directly affected by the dynamic stiffness of the 
machine tool, it is important to describe it with enough 
accuracy. The focus was position-dependent dynamic stiffness 
that significantly affects frequencies and amplitudes of excited 
vibrations, and its use for time-efficient response simulation for 
specific working conditions of the machine. 
 
Mechanical structure of a vertical mill can be disassembled into 
separate substructures (e.g. column, headstock, spindle etc.) 
and modelled as single entities. In the Simulink model, they are 
connected using direct joints or joints functions in much 
simpler manner than in FEM software.  
 
Firstly, a reduced FEM model of each part of a vertical mill 
using CMS method was created in Ansys. This significantly 
reduced number of nodes and elements of the FEM model and 
drastically decreased time required for subsequent analyses.  
 
Secondly, this reduced model was transformed into state-space 
system using modal analysis. The state-space system had three 
defined inputs, forces in each of the global axes respectively. 
The outputs were displacement of the structure in one chosen 
location, which is an assumed location of a sensor. This location 
can be easily changed to match sensor location on an existing 
machine, as the model is fully parametric. These state-space 
systems were calculated for each position step on a vertical axis 
of the headstock and loaded into Matlab, where a complex 
structure with state-space matrices, eigenfrequencies, 
eigenvectors and damping was assembled. A selection 
algorithm was used to find state-space system for the specific 
position within database and unitary force response simulation 
was made using model in Simulink.  
 
Presented method proved to be more than viable for response 
simulations where time is crucial. The goal of this paper is to 
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propose an algorithm to create a state-space system (transfer 
function) map within the work volume, that might be used for 
adjustments of speed, depth of cut and an input to regulation 
algorithm to minimize effects of unstable vibrations (i.e. 
chatter) during operation. The machine would calculate its 
path, segmented this path into steps, for each segment find 
respective state-space system within its database for the 
current tool, set required speed and depth of cut, calculate 
cutting forces and response of the system and forward it to the 
regulation algorithm, that would adjust necessary parameters 
to maximize precision and speed.  
 
Presented technique is not limited to use for machine tools 
exclusively, it can be implemented in various areas including 
energy harvesting and aeronautics. It is a subject of an ongoing 
research, which aims to provide a general algorithm for time-
efficient response simulations of complex structures, mainly in 
the manufacturing industry. 
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