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The present paper deals with predictive modelling of thermal 
deviation of the machine tool due to thermal deformations. 
Thermal deformation of the machine tool structure is one of 
the basic problems that need to be addressed when increasing 
the accuracy of machine tools. For each particular machine 
tool, it is necessary to measure its behaviour, evaluate it, and, 
based on the acquired knowledge, create compensation 
functions, which is time consuming. This study is concerned 
with whether it is possible to reproduce a compensation model 
created for one particular machine tool on the machine tools of 
the same production series. A reproducibility of the model was 
examined on two machine tools. Temperature measurements 
were performed at different machine tool locations along with 
the positioning of the tool centre point (TCP). A regression 
analysis was used to find the relationship between the 
temperature on the components and the observed change of 
TCP position. A method of calculating linear regression 
coefficients of a regression model has been defined. 
Furthermore, a predictive capability of the regression model 
among the manufactured machine tools was compared based 
on the size of the data set and whether the model can also be 
reproduced under different ambient conditions. 
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1 INTRODUCTION 
In the machine tool components, changes in the ambient 
temperature, along with the surface temperature of the 
surrounding bodies and the hall structure, generate the 
changes in length and geometry that will be reflected by the 
TCP deviation from the original position. Linear and angular 
deviations occur in the structure of the machine tool [Zuo et al., 
2013]. These are also greatly affected by the heat generated 
inside the machine tool. The effects of internal and external 
heat sources are described in [Weck et al., 1995]. These effects 
are observing for more than 30 years. There are multiple 
approaches to elimination of the error on the workpiece 
resulting from this process. The basic methods are the machine 
tool start-up prior to the machining process itself and 
additional compensations based on the component re-
measurement. However, these methods are time and energy 
inefficient. The general measure recommended by machine 
tool makers is to place the machine tool in a thermally-stable 
environment; however, this leads to the construction of air-

conditioned premises and higher operating costs, including a 
reduction in the ecological production. In addition, to 
particularly compensate for the Z-axis, compensating tables 
with a pre-measured temperature dependence of a selected 
component or a combination of multiple components and 
variations on the TCP are used. Advanced techniques for 
predicting the TCP deviation based on temperature information 
such as deployment of neural networks, transmission functions, 
fuzzy logic, and others are presented in publications [Turek et 
al., 2010][Chen 1996][Lee et al. Al., 2001]. Based on these 
articles, it is possible to compare the effectiveness of predictive 
models over a short time interval of several hours. In the article 
[Tan et al., 2014], the method of predicting the change of 
ambient temperature and its effect on the TCP deviation is 
analysed in detail. This relationship is also evaluated in 
between the seasons. 

2 TASK FORMULATION 
It is well known that a degree of influence on the machine tool 
in respect of the ambient environment and internal heat 
sources is high. At the same time, the approaches to how to 
solve the predictive model were in past compared. The trend in 
this field is to propose a methodology that is as simple as 
possible in terms of reproducibility to another machine tool. 
One option is to create a parameterized predictive model based 
on a kinematic structure of the machine tool that can adjust its 
parameters based on the measured data and adapt it to 
another machine tool with another kinematic structure. This, 
however, requires a relatively large amount of data measured 
on the machine tool to which the model is to be reproduced. 
This procedure is undoubtedly beneficial when reproducing a 
model between the machine tools that are significantly 
different in terms of their structure. However, if machine tools 
are similar, this procedure seems unnecessarily lengthy. 
Therefore, the question arises, if it is not possible to directly 
apply the predictive algorithm to another machine tool without 
the need for further modelling? Major tasks of this study are to 
address this issue and to compare the behaviour of two same 
machine tools of the same type series. A reproducibility of the 
predictive algorithm created by linear regression will be 
examined. In order to create a model, it is necessary to 
measure the temperature courses characterizing the behaviour 
of the machine tool and TCP deviations. A degree of compliance 
of the thermal deformation behaviour between the two 
machine tools will be compared, and since one series of 
measurements is performed in the summer while the other in 
the winter, the behaviour of the machine tool at different 
seasons will also be compared. The predictive algorithm 
created from the data measured on the 1stmachine tool will be 
applied to the 2ndmachine tool, the prediction quality will be 
evaluated, and the reproducibility of the model will be 
evaluated. Also, the predictive capability of the model will be 
compared between the production pieces of the machine tool, 
depending on the size of the learning data set. 

3 THERMAL ERROR MODEL 
The compensation function was created using the linear 
regression method. Therefore, the shape of the function is 
a polynomial that is linear in its parameters. Specifically, the 
first-degree polynomial was used. The function represents the 
dependence of the TCP deviation on the temperature change of 
a machine tool structure.It can be used for all observed axes. 
The TCP was considered as only one constant coordinate. The 
desired function y is a dependent variable of the measured 
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temperatures  and has the following shape. The linear 
regression coefficients are labelled as .  

 (1) 

 
The regression function is provided with the measured 
temperature courses and the corresponding TCP 
displacementcourses for the given axis. The task of the 
regression function is to find the coefficients , this is done 
by minimizing the MSE (mean square error) between the 
desired function and the measured course of displacement. 

 
(2) 

 
Where  is the vector of  values of the predicted 
displacement, is the vector of  values of measured 
displacement. The mean square deviation was also used as 
a benchmark in predicting the model; it was used in the form of 
"root MSE (rMSE)". This will be obtained bysquare root of MSE; 
the advantage of this variable is that it acquires its values in the 
same units as the original variable under examination. 
 
The created compensation algorithm consists of two 
compensation functions. One of them describes the effect of 
changing the ambient temperature on the TCP displacement. 
The other function describes the structural behaviour of the 
machine tool depending on the heat generated by the machine 
tool itself. In the case of the executed tests, this is in particular 
the heat generated by the rotation of the spindle, i.e. losses in 
spindle windings, the heat generated in the spindle bearings, 
etc. 
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Figure 1.Block diagram of fitting 

First, the function representing the ambient effects is created; 
it is further used to predict a deviation that is subtracted from 
the measured deviation. The obtained vector is then used as a 
model when fitting the function that represents the internal 
effects. When fitting, each regression function uses another set 
of the measured data and also uses different points of 
placement of temperature sensors. The function representing 
the ambient effects uses temperature sensors that are only 
slightly affected by the heat generated in the machine tool 
structure. At the same time, to create this function, the used 
data were measured during the tests when the machine tool 
drives were not active or the machine tool was completely 
switched off. On the contrary, the part of the model, which 
represents the internal effects, uses the sensors that are 
positioned close to heat sources; it is fitted to the data from the 

tests when the drives were active. Functions created in this way 
are more likely to be able to accurately describe the respective 
effect. 
 
Thus, by performing the fitting process, we obtain two partial 
compensation functions. The resulting functions can then be 
used to predict the deviation as indicated in the following 
diagram in Fig. 2. 
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Figure 2. Prediction diagram 

In the prediction, enter each function the same temperature 
sensors as in fitting. The resulting predicted value of TCP 
deviation is obtained for each time point as the sum of partial 
predicted values. This approach, when the individual effects are 
separated, is particularly beneficial because, when fitting the 
compensation functions, two simpler functions are more lucid 
than one more complex, and we can affect the quality of 
compensation for each effect separately. 

4 EXPERIMENTAL VERIFICATION 
The study was carried out on a 3-axis machining centre of the 
upper gantry type with a work table of 1 200 mm x 1000 mm 
and the ram feed of 600 mm. 
 
The machine tool was equipped with 41 temperature sensors, 
of which 10 were selected using statistical methods of a 
regression and cluster analysis; these measuring points 
represent the temperature field of the machine tool for all 3 
axes, see Fig. 3. 

 

Figure 3. Positioning of sensors for the compensation algorithm 

A measurement method of TCP deviation was in compliance 
with ISO 230-3, see Fig. 4. Five position probes and a precise 
measuring arbour were used. The orientation of position 
probes corresponds to machine tool coordination system in Fig. 
3. Further, the study focuses only on the behaviour in the Y-
axis, since in this axis, in terms of manufacturing accuracy of 
the machine tool, TCP deviations in relation to temperature are 
relatively significant.  
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Figure 4. Arrangement of measurement 

Throughout the tests, the values of temperatures and 
deviations were recorded at intervals of 60s continuously. The 
test cycle always included the test of ambient effect on the off-
state machine tool, a start-up test of the machine tool up to a 
standby mode androtation cycles of spindle idle run. In order 
for the measured data from both experiments to be 
comparable, the temperature sensors and the TCP deviation 
measurement device for both machine tools were positioned at 
the same locations. 

5 RESULTS AND DISCUSSION 
In the next sections, the circumstances of experiments, fitting 
process, results of prediction and the impact of the size of 
learning data set on the prediction quality are presented. 

5.1 Ambient conditions 
Dominant circumstances affecting a thermal deformation 
behaviour of the machine tool are its ambient temperature. Fig. 
5 - 8, and the Tab. 1 and Tab. 2 show a comparison of the 
ambient temperature in different height above the ground 
level.  The machine tool was tested in a standard production 
hall with windows and skylights in the roof. The hall has a hot-
air heating (in the case of machine tool 2, winter season), in the 
case of machine tool 1, heating was not activated (summer 
season).The average and the standard temperature deviation in 
the Tab. 1 and 2 are derived from periodic peaks of observed 
temperature, see Fig. 5 and 6.   
 

Average height difference of temperatures [K/m] 

 Summer – M1. evening Winter – M2. evening 

Height 
[m] 

Average Stand. 
deviation 

Average Stand. 
deviation 

0.5–1.4 0.74 0.12 0.52 0.19 
1.4–2.3 0.11 0.14 0.58 0.21 
Table 1. Height difference of temperatures 

The temperature in the hall is, in long-term, more reproducible 
in the winter (heating) period than in the summer when the 
indoor environment of the hall is sensitive to changing weather 
conditions. The temperature sensors are positioned in a vertical 
line on different high levels above the floor level (Tair down = 
0.5 m, Tair mid = 1.4 m,Tair up = 2.3 m). In Fig. 5-8 mentioned 
Tair Machine volume represents the temperature inside a 
cutting area. The scale of the time axis on all next figures is in 
days (d). 
 

Change in temperature during the day (height 2.3 m) 

 Summer – M1 Winter – M2 

Average [K] 3.14 3.20 
Stand. Deviation [K] 0.61 1.28 
Table 2. Change in ambient temperature 

 

  

Figure 5. Air temperature – 
machine tool 1 

Figure 6. Air temperature – 
machine tool 2 

  

Figure 7. Air temperature – 

machine tool 1 detail 

Figure 8. Air temperature – 

machine tool 2 detail 

5.2 Thermal behaviour of machine tools 
In the further subsections, the fitting process and the results of 
prediction for both machine tools are presented. 

5.2.1 Machine tool 1 
To create the compensation model, measured TCP deviations 
and temperatures from the measurements on the 1stmachine 
tool were used. Based on these data, partial compensation 
functions were created using the methodology described 
above. 

  

Figure 9. M1 – Predicted deviation 
caused by ambient effects 

Figure 10.M1 – Predicted deviation 
caused by internal effects 

 

Figure 11. S1 - Total predicted deviation (compensation value) 

 
Fig. 9 shows the course of measured displacement and the 
displacement predicted by the function that describes the 
ambient effects. There is a difference between the prediction 
and measurement, because another tests were focused on 
internal heat sources. The influence of internal heat sources 
causes the difference. To learn this compensation function, the 
first part of the measureddata (machine tool stand-by mode) 
was used; this is highlighted in the graph and forms 16% of the 
length of the course measured on the 1stmachine tool. The 
second part of the plotted courses never entered the fitting 
process and the predicted displacement is therefore obtained 
only on the basis of measured temperatures as a result of 
ambient conditions. While fitting, rMSE was 2.8 % and the 
following function was used: 

 (3) 
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The graph in Fig. 10 shows the result of prediction of internal 
effects. The highlighted part of the plotted course was used in 
fitting and forms 18 %. The rMSE in fitting was 2.8 % and the 
rMSE prediction was 6.8 %. 

 (4) 

Fig. 11 shows a graph with the measured displacement in the Y 
axis and the total compensation value (after summation). A 
total rMSE between the measured and predicted displacements 
is 6.0 %, and the improvement in accuracy is 91 %. 

5.2.2 Machine tool 2 
After reproducing the compensation algorithm created for the 
first machine tool to the second machine tool, the TCP 
deviation was again predicted. The courses obtained are 
plotted in the following graphs. 
 

  

Figure 12. M2 – Predicted 

deviation caused by ambient 
effects 

Figure 13. M2 – Predicted 

deviation caused by internal effects 

 

Figure 14. M2 - Total predicted deviation (compensation value) 

Fig. 12 shows the measured deviation and the predicted 
deviation caused by the ambient effects. The predicted 
deviation caused by internal effects is shown in Fig. 13. The 
total compensation value is then plotted in Fig. 14. Its rMSE 
relative to the measured course is 6.8 %. When using this 
compensation function, the accuracy of the machine tool 
increased by 88% in the monitored section (2nd series of 
measurements). 
 
The predicted TCP deviations caused by ambient effects (Fig. 9 
and Fig. 12) show a periodic course which, according to our 
assumptions, corresponds to the course of ambient 
temperature (Fig. 5 and Fig. 6), with a course period of one day. 
The machine tool load on individual tests started at 
approximately the same hour, i.e. at the same phase of daily 
cycle. Therefore, the internal effects always act against the 
ambient effects and are clearly distinguishable in the measured 
courses. Therefore, during the machine tool loading, the 
measured TCP deviation differs from the predicted ambient 
conditions and returns to them once the load has been 
released. Based on this, it can be assumed that the created 
model describes, quite credibly, the ambient effects for both 
sets of data. 
 
From the graphs in Fig. 10 and Fig. 13 and the above rMSE 
values, it is clear that the model describes the internal effects 
slightly better for the 1st set of data, but in both cases, the 
compliance with the measured courses is satisfactory. 
 
The quality of the overall model prediction is satisfactory for 
both sets of data. For the first set, rMSE = 6 % and for the 

second one, rMSE = 6.8 %. Therefore, in the case of the second 
set, the prediction is worse by 0.8 %. However, both values 
meet the preselected criterion and are less than 10 %. This 
criterion was selected based on experience. 
 
From the above findings, it can be concluded that the 
prediction model is reproducible between the individual 
machine tools and periods. Therefore, in the further research 
and creation of compensation functions, the data measured on 
various production pieces of one type of machine tool can be 
used. Also, the compensation function may be reproduced 
within different seasons, and whether the hall is running in 
heating mode or not, it also does not have a significant 
influence on the quality of prediction. 

5.3 Impact of the size of learning set on the prediction 
quality 

It has also been compared how the increase in the size of the 
learning data measured on the 1stmachine toolaffects the 
success rate of the prediction for the data measured on the 
2ndmachine tool. 
 

Size of learning set rMSEfitting 
[µm] 

rMSE prediction 
[µm] 

34 % 1.3 3.4 

49 % 2.0 3.9 

54 % 2.1 3.6 

100 % 2.2 3.7 

Table 3. Impact of the size of learning set on the prediction quality 

Although it may seem that the more data is used to learn the 
model, the better its predictive capability, in this case it is not 
true. By increasing the size of the learning set, rMSE for the 
fitting part stays on similar level, which can lead to the 
resultant function with the same predictive capability.Due to 
less claim on the length of measuring, the smallest size of the 
learning data is useful and fully sufficient. 

6 CONCLUSIONS 
The present study deals with the reproducibility of the 
predictive model between the machine tools from one type 
series. Therefore, a predictive model was proposed and learned 
on the set of the data obtained from the experiment performed 
on the first test machine tool. Furthermore, the TCP deviation 
was predicted using this model. For the prediction evaluation, 
the remaining part of the data from the 1st set of 
measurements and the data measured on the 2ndmachine tool 
were used. For both data sets, the predicted deviation was 
compared with the measured one. For each machine tool, the 
predictive quality was evaluated and quantified. The predictive 
quality between both machine tools was also compared. For 
the first machine tool, on which the model was learned, the 
predictive capability was only slightly better than that for the 
second machine tool. Therefore, it was assessed that the 
predictive model is reproducible between the individual 
machine tools. The main benefit of the study is that it is 
possible to reproduce a model created for one machine tool to 
another machine tool from the same production series without 
any significant deterioration in its predictive capabilities. It has 
also been assessed that the model is reproducible within the 
respective seasons; therefore, it is not necessary to implement 
any adaptive model modifications depending on the changes in 
the season or heating conditions in the production hall where 
the respective machine tool is operated. 
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