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Pneumatic muscle actuators have the highest power/weight 
ratio of any actuator and therefore it has a broad application 
prospect in soft robotics. This paper presents a two degree of 
freedom (2-DOF) pneumatic muscle actuator that consists of 
four pneumatic artificial muscles (PAMs) and two rotation joins. 
However, this pneumatic muscle actuator has highly nonlinear 
and hysteretic properties (among muscle force, muscle 
displacement and pressure in the muscle), which lead to 
difficulty in accurate position control. Pneumatic muscle 
actuator usually necessitate the use various nonlinear 
techniques for control in order to improve their performance. 
The paper contains selection of computational intelligence 
methods designed for application in pneumatic muscle 
actuator. There are described and compared MLP neural 
network and RBF neural network. 
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1 INTRODUCTION 

Pneumatic artificial muscles (PAMs) due to their unique 
properties are used for constructors such as actuator in the 
proposals to various types of machineries and equipment. The 
use have found for example in the automotive industry, the 
manufacture of consumer electronics and medicine [Zidek 
2012]. An interesting application is their use in so-called 
exoskeleton [Chang 2010], [Fodor 2010], i.e. external skeleton 
that can serve handicapped people or soldiers. When used in 
industry with the assumption of the minimal contact 
manipulators with humans [Hopen 2005], it is possible to use 
the maximum stiffness of the antagonistic connection of PAMs 
under all operating conditions. In the domain of humanoid 
robots and manipulators with the need for fine attachment, the 
lower stiffness (higher flexibility), respectively control of 
stiffness/flexibility will be used [Hosovsky 2016a]. 

Muscles working medium is a gas, usually modified compressed 
air. Gas is not inherently the preferred source of energy. 
Change its properties (state variables) during the working 
process is a source of many problems in precise positioning 
[Oliver-Salazar 2017]. Ideally, the behavior is described by the 
equation [Kundu 2004], [Riccardi 2012] of an ideal gas: 

TRp   , (1) 

where p is the pressure in the muscle, ρ is the density and T is 
the thermodynamic temperature gas. All these state variables 
are the time dependencies. Even individual gas constant R is 
not really constant. Its value depends on the current gas 
humidity. 

It is therefore evident that the control of pneumatic systems 
may not be a trivial matter. Mostly classical conventional 
control systems with controllers with fixed parameters may not 
always have adequate quality control process. In this case, 
regulators are used, which react quickly enough to the change 
the properties of the controlled system [Bukovsky 2012]. 
Therefore the computational intelligence methods are may be 
used. PID parameters are tuned online using RBF neural 
network for a 1-DOF manipulator actuated in [Zhao 2015]. A 
nonlinear PID controller for 2 axes manipulator based on PAM 
in [Thanh 2006] combines the conventional PID controller and 
the neural network.  

2 PNEUMATIC MUSCLE ACTUATOR 

PAM is contractile device that acts by force only in one 
direction (its length is increased or decreased). In order to have 
a two direction actuated revolute joint, two PAMs have to be 
used (an antagonistic connection).  

An approximate mathematical model that describes muscle 
characteristics (muscle contraction, muscle force and pressure 
in the muscle) can be found in [Pitel 2014], [Tothova 2013]. 
Under the assumption of zero wall thickness of the muscle, the 
force exerted by the artificial muscle is given by 

 rlflpF t /, 000  , (2) 

where p is the pressure, l0 is the muscle length (or the 
maximum length), r is the radius of the muscle, ε is the muscle 
contraction, ft0 is the dimensionless nonlinear function that 
depends on muscle contraction and the time parameter l0/r 
(called the slenderness) [Van Damme 2008]. 

Two degree of freedom (2-DOF) manipulator actuated by 
pneumatic muscle actuator with two rotary axis is shown in 
Fig. 1. The main part of the actuator is formed by four artificial 
muscles. Every muscle in a pair of muscles (muscles 1 and 2 or 
muscles 3 and 4) is connected in antagonistic connection 
through the chain gear. At the end of the actuator an arm with 
screwed weight is attached [Hosovsky 2016b]. Then the 
position of the actuator arm (rotation angle φ of actuator) is 
determined by equilibrium of forces in the first and second pair 
of muscles through the chain to the roller according to different 
pressures in each muscle. Inflation and deflation of the muscles 
is controlled by four ON/OFF twin-solenoid valves (not shown). 
The compressed air is supplied into the muscles in a form of 
pressure impulses. 

From the knowledge of the kinematic parameters (i.e. point 
locations of the joins) and actuator parameters, it can be 
determined the torque characteristics of both joints. Using the 
nonlinear relation of muscle force, pressure in the muscle and 
muscle contraction, the torque generated by a artificial muscle 
can be written as [Van Damme 2008] 

  fp , (3) 

where γ = φ1 for muscles 1 and 2 and γ = φ2 for muscles 3 and 
4. The total torque (in both joints) of pneumatic muscle 
actuator can be [Van Damme 2008]: 
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where pi (i = 1,…,4) is the air pressure in the muscle i and fi is 
the torque function associated with that muscle. 
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Figure 1.  Working principle of 2-DOF pneumatic muscle actuator 

3 ARTIFICIAL NEURAL NETWORKS FOR STATIC MODELS 

Artificial neural network (ANN) has been motivated by the 
structures in the brain of human, because they are proper for 
processing, learning and adaptation of difficult information.  
Neural network (NN) is a form of artificial intelligence and it can 
be characterized as a network where all occurring functions are 
of the same type. Neural network is made of elements called 
neurons. The general model of the neural network consists of 
functions that are linked by weights. The network consists of 
input neurons on the input layer, of output neuron on the 
output layer and of units on hidden layers. It is not necessary 
for the neural network to have the hidden layers. Their number 
is more dependent on the complexity of the problem studied. 
The input layer receives impulses (signals) from the 
environment as well as from other neurons. Hidden layers are 
tasked to process the inputs. The output layer is used to 
complete statement of the output neuron (in numerical form). 
Fast implementation of neural networks is ensured by their 
special characteristics, which provides many advantages.  For 
such characteristics are considered for example that the units 
are highly parallel and strongly connected, units are resistant to 
failure and network learns from data [Abraham 2005], [Jain 
1996]. 

Type of neural networks: 
- Single-layer Perceptron Networks, 
- Multilayer Perceptron Network (MLP), 
- Radial Basis Function Network (RBF). 

Single-layer perceptron networks can only classify the input 
objects and assign them into the classes. They represent the 
neurons with jump activation functions, which are grouped into 
a single layer. They classify only linearly separable problems. 
 

3.1 Multilayer Perceptron Network (MLP) 

MLP is considered to be the most famous architecture of neural 
networks, and therefore it is widely used. It is a feedforward 
network with at least one hidden layer. The feedforward 
attribute means that the direction of data flow is from input to 
output. The network is learning by the back-propagation 
algorithm. Algorithm considers a mistake, which will be 
promoted in the opposite direction; it means from output to 
input. The basic construction unit of the neural network is 
a neuron. The neuron of the hidden layer of the multi-layer 
feedforward network is shown in Fig. 2 [Nelles 2001], [Haykin 
2001]. 
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Figure 2.  A perceptron of a multilayer perceptron network 

Such an individual neuron is called the perceptron. Perceptron 
summarizes the input u1 - up that assigns weights of connection 
wi1 - wip before summarization. Each neuron has a certain 
sensitivity wi0. Xi expresses the internal activity of the neuron. 
Inputs are transformed to the output y by using activation 
function Фi. Typical activation functions for MLP neuron are 
defined on intervals <0;1> for sigmoid [Nelles 2001]:  

 
 x

x



exp1

1
 logistic , (5) 

or <-1;1> for hyperbolic tangent:  
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2exp1

2exp1
 tanh




 . (6) 

The parameters that appear in the MLP networks are of two 
types. Linear parameter shows the weight of the output layer. 
They define the functions of the amplitudes and working point. 
Nonlinear parameter shows the weight of the hidden layer and 
determines the position, direction and slope of the basic 
functions. MLP network is obtained by linking several 
perceptron neurons, which are used in parallel and they are 
connected to neuron in the output layer. The function of the 
MLP network is to approximate every function of non-linear 
character. Basic diagram of MLP network is shown in Fig. 3 
[Nelles 2001]. 

As for the neuron itself, so for the scheme MLP network and 
mathematical model as well is valid that uj are the inputs, wij 
are weights on the hidden layer, wi are weights of output 
neuron, Фi is activation function and y is the output. For MLP 
network can be determined the total number of network 
parameters. This is dependent on the number of neurons in the 
hidden layer and the number of inputs. The mathematical 
formulation for this kind of network is shown as [Nelles 2001]: 
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Figure 3.  A multilayer perceptron network 

 

3.2 Radial Basis Function Network (RBF) 

RBF network is a type of neural network, which is using the 
approximation of the radial basis functions. Compared to the 
MLP neural network this type of the network function does not 
affect the result in global scale, only in local. RBF is in contrast 
with MLP network. RBF is feedforward network, but only with 
one hidden layer. RBF network can handle even more complex 
modelling, where MLP networks for similar tasks require 
several hidden layers. In Fig. 4 can see a neuron of RBF 
network. Its basic activity can be divided into two tasks. The 
first task is to formulate scalar distance xi between the input 
vector u and the central vector ci. Second task is transformation 
of scalar distance to the resulting linear function y using non-
linear activation function Фi [Nelles 2001], [Haykin 2001]. 
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Figure 4.  A neuron of a radial basis function network 

The radial activation functions are considered more 
mathematical functions, but the mostly used are in particular 
Gaussian function (also the activation function for the neuron 
in Fig. 4 is the Gaussian function [Haykin 2001]), Cauchy 
function and inverse function MultiCriteria:  

   2exp xx  , (8) 
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x


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The scheme of RBF neural network is shown in Fig. 5. Every 
perceptron of each layer carries the basis function. In radial 
basis function network there are three types of parameters. 
Weights wi to output layer are linear parameters that are 
determining the significance of basis function and output value. 
Centers ci are the parameters of the hidden layer, which are 
reflecting the position basis function. Another parameter of the 
hidden layer is the standard deviation, which determines the 
rotation and height of the basis function. In the given scheme it 
is presented as Σi (norm matrix). Both of these parameters, ci 

and Σi are non-linear [Nelles 2001]. 

The mathematical formulation of the RBF neural network for 
Gaussian activation function is  

 




M

i
iiii cuwy

0

 . (11) 

The total numbers of parameters depend on the number of 
input parameters and their flexibility, on the number of output 
weights and the number of coordinates of the center [Nelles 
2001]. 
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Figure 5.  A radial basis function network 

 

3.3 Comparing of the properties of MLP and RBF networks 

In previous subsections were approached two types of the 
neural networks (MLP and RBF). These networks differ in many 
attributes. Some basic properties are shown and compared in 
Tab 1. The network MLP has a lot of very favourable 
characteristics compared to the RBF network, but RBF network 
gives many positives too. It provides the ability to a local 
approximation and the training speed for local optimalization is 
favourable [Nelles 2001]. 

Moreover, the networks vary in the number of hidden layers. 
RBF network has just one hidden layer, while MLP network may 
have one or more hidden layers (the number depends on the 
complexity of the problem solved). MLP network uses one type 
of neuron, whereas the RBF network uses different type neuron 
for hidden layer and for the output (which varies not only in 
type but also in function). Hidden and output layer for the MLP 
network is usually non-linear, while the hidden layer of RBF 
network is non-linear, but the output layer is linear. The output 
layer of the MLP network is only rarely linear. MLP network 
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uses for learning phase supervised learning, RBF network 
unsupervised learning. Fundamental difference is the extent of 
approximation. MLP approximates in global, while RBF only 
locally. There is also a difference in the activation function 
between these two networks. The activation function of the 
MLP determines the scalar product of the input and respective 
weight. The activation function of RBF defines the distance 
between the input and the central value of the function 
[Kvasnicka 1997]. 

Table 1.  Some properties of MLP and RBF networks and their possible 

effect 

Properties RBF MLP 

Locality very favourable undesirable 

Accuracy neutral very favourable 

Smoothness neutral very favourable 

Sensitivity to noise favourable very favourable 

Training speed 
favourable*/ 

very undesirable** 
very undesirable 

Evaluation speed neutral favourable 

(* for linear optimalization, ** for non-linear optimalization) 

4 NEURAL NETWORK TOOLBOX 

Neural network toolbox in MATLAB environment provides 
algorithms, functions and apps to create, train, visualize and 
simulate neural networks [MathWorks 2017]. Neural network 
diagram showing in Fig. 6 will be used for design of the neural 
networks. 

 

 

Figure 6.  Neural network diagram 

Simple equations are created for the structure of the neural 
network MLP and RBF in MATLAB. These equations provide 
knowledges about inputs necessary for the compilation of the 
basic structure. 

For MLP neural network structure applies:  

 EMLMTAFOLAFHLNHLOInewffnet ,,,,,,, , (12) 

where newff is command for feedforward neural network, I is 
inputs, O is outputs, NHL is number of hidden layer, AFHL is an 
activation function for hidden layers (often used 'logsig' or 
'tansig'), AFOL is an activation function for output layer 
('purelin'), MT is method of training ('traingdx' or 'trainlm'), ML 
is method of learning ('learngdm') and E is error function 
('mse') [Foltin 2008]. 

For RBF neural network structure applies:  

 NNMNCSEELOInewrbnet ,,,,, ,  (13) 

where newrb is the command for radial basis neural network, I 
is inputs, O is outputs, EEL is an ended error of learning (often 
used '0'), CS is the coefficient of the stretching RB functions 
(often used '1'), MN is the maximal number of neurons and NN 
is the number of neurons between showing. 

Three neural network architectures can be introduced in neural 
network toolbox for prediction and control in two steps (system 
identification and control design) when using neural networks 
[MathWorks 2017]: 

- Model Predictive Control - the controller uses a neural 
network model to predict future plant responses and an 
optimization algorithm is used to select the control input that 
optimizes future performance, 

- NARMA-L2 (or Feedback Linearization) Control - the 
controller is simply a rearrangement of the system model,  

- Model Reference Control - the controller is a neural network 
that is trained to control a system so that it follows 
a reference model (the neural network system model is used 
to assist in the controller training). 

The blocks for three neural network architectures in MATLAB 
environment are shown in Fig. 7 and their advantages and 
disadvantages for neural network control are compared in 
Table 2. 

 

 
Figure 7.  Blocks for neural network architectures 

Table 2. Some advantages and disadvantages of neural network 

architectures 

 Advantages    Disadvantages 

Model 
Predictive 
Control 

an optimization 
algorithm computes the 
control signals; 

is trained offline, in 
batch form 

the controller requires 
a amount of online 
computation 

NARMA-L2 
Control 

the controller requires 
the least computation; 

is trained offline, in 
batch form 

the system must either 
be in companion form, 
or be capable of 
approximation by 
a companion form 
model 

Model 
Reference 
Control 

the online computation 
is minimal; 

model reference control 
applies to a larger class 
of system 

a separate neural 
network controller must 
be trained offline; 

the controller training is 
computationally 
expensive 

5 CONCLUSIONS 

2-DOF pneumatic muscle actuator with two rotation joins 
(showing in Fig. 1) consisting of four artificial muscles in 
antagonistic connection was designed and realized in order to 
use in manufacturing technologies and non-productive sphere. 
Most restrictions on the use of this pneumatic muscle actuator 
are to achieve the positioning accuracy which is within ±1 mm. 
This positioning accuracy does not allow the use these 
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actuators in manipulators with required high precision of the 
manipulation. Improving the positioning accuracy can be 
achieved by application of advanced control algorithms for 
example using methods of computational intelligence.  

This paper presents and compares two neural networks: MLP 
and RBF. Multilayer perceptron network (MLP) usually 
comprises a continuous non-linear activation function and they 
are able to approximate any nonlinear transformation. Radial 
basis function network (RBF) contains three layers of neurons 
and the hidden layer realizes a nonlinear transformation. 

Since in the further research, the practical comparing of the 
various computational intelligence methods for application in 
the model of pneumatic muscle actuator in MATLAB 
environment is expected. 
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