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Gas consumption prediction in buildings is very important with 
regard to the improved decision making and better energy 
utilization rate. Our objective is to perform introductory analysis 
of gas consumption time series in three different types of non-
residential buildings (elementary school, national health 
institute and railway station) using wavelet transform intended 
for prediction model identification. We use initial FFT analysis of 
frequency spectrum using which it was possible to identify 
interesting frequency components related to specific 
consumption patterns. In order to find out the optimal level of 
wavelet decomposition we use entropy-based algorithm applied 
to maximum level wavelet trees. It was found that gas 
consumption time series that optimal wavelet decomposition 
level in elementary school time series was 3 and other two 
objects was 6. Using sample autocorrelation function plots for 
obtained components, we were able to the components 
containing mainly noise which could be removed from prediction 
model.  
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1 INTRODUCTION  

 
The problem of prediction of time series – which is a sequence 
of time observations taken sequentially [Box 2016] – appears in 
many areas and is currently of great interest.  The prediction of 
energy use in buildings is of particular interest in effort to 
improve the energy performance and reducing environmental 
impact [Zhao 2012]. Wavelets is one of the most powerful signal 
processing tools allowing for the analysis of signals on several 
timescales of the local properties of complex signals [Misiti 
2007] and have great potential to be applied in the field of time 
series prediction/forecasting. 
A high number of recent works utilizing wavelet analysis and 
wavelet-hybridized models attest to extreme importance of this 
technique in the field of time series forecasting regardless the 
field of application including electrical power engineering [Rana 
2016, Li 2015], wind power engineering [Chitsaz 2015, Yu 2017], 
environmental engineering [Zainuddin 2011], hydrology 

[Adamowski 2011, Raj 2017] and thermal engineering 
[Panapakidis 2017].  
[Soltani 2002] might be considered one of the seminal works in 
the area of wavelet analysis-based time series prediction where 
wavelet decomposition of the original time series is used in order 
to obtain components that might be better to predict separately. 
Zhang and other researchers in [Zhang 2017] compared using 
traditional approach with ARMA/ARIMA models and wavelet-
ARMA/ARIMA models for predicting PM10 time series and shown 
that the latter could reduce the forecasting error and realize 
multi-scale prediction. In contrast to that, a wavelet neural 
network approach was used in [Adamowski 2011] to predict 
groundwater level forecasting and performance was compared 
to that of common artificial network and ARIMA model. This 
approach was found to be more accurate in predicting monthly 
average groundwater level. Similarly, in [Chitsaz 2015] a neural 
network with Morlet wavelets used in activation functions and 
trained by means of new improved Clonal selection algorithm 
was utilized for predicting wind power which is important for the 
operation of wind farms. Wavelet neural network was also used 
in [Wang 2017] where Variational Mode Decomposition (VDM) 
method was first used for the decomposition of predicted time 
series to improve the prediction accuracy and then multi-step 
ahead forecasting using GA-optimized neural network model 
was performed with input-output pairs being selected using 
phase space reconstruction method. Researchers in [Raj 2017] 
used the combination of standard ANN and wavelet 
decomposition to predict water table depth with respect to the 
rainfall in given region. The wavelet decomposition of given time 
series is usually combined with linear or nonlinear model used 
for prediction which is quite often of ARIMA type (linear) or ANN 
type (nonlinear). It is then interesting to compare the 
performance of these models in given application which was 
done in [Nury 2017] for temperature time series prediction. 
Initial time series decomposition using wavelet transform was 
also used in [Panapakidis 2017] where the obtained components 
(details and approximation) were predicted using hybrid 
approach with GA-optimized ANFIS and feedforward neural 
network. Since detail components at lower scales may contain 
a significant amount of noise and be thus difficult to predict, it 
was proposed in [Yu 2017] to use singular spectrum analysis 
(SSA) to further process highest frequency component. The 
prediction model itself was based on Elman neural network 
[Hosovsky 2015] in contrast to commonly used FFNN. In cases 
where linear model can be used for forecasting, wavelet 
transform can improve the forecasting accuracy by performing 
the time series decomposition – such an approach was used in 
[Choi 2011] where SARIMA model was combined with wavelet 
transform for sales forecasting and outperformed pure SARIMA 
model, linear extrapolation with seasonal adjustment as well as 
evolutionary neural network. In [Maheswaran 2015] the 
combination of wavelet transform and high order Volterra 
models was used together with Kalman filter and tested on 
synthethically generated and actual time series.  
It is quite obvious even from this very short review of works 
related to the use of wavelet transform in time series forecasting 
that either wavelet decomposition is performed initially 
followed by the use of mostly nonlinear prediction model (very 
often in the form of neural network) or it can be directly 
embedded into the structure of neural network in the form of 
wavelet activation functions. Our objective is to analyze the gas 
consumption time series from three non-residential buildings 
which differ in their consumption profiles with the purpose of 
using them for prediction purposes. We thus apply the former of 
the aforementioned approaches where time series are initially 
decomposed using the wavelet transform. It is expected that 
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using WT decomposition, the final prediction error can be 
decreased compared to the approach where prediction model is 
identified directly from the original time series. In addition to 
that, it remains open question how to determine the optimal 
wavelet decomposition level. While it is often done based on 
some heuristic criteria, we use more rigorous entropy-based 
(logenergy) criterion which is typically used in wavelet packet 
decomposition. On the other hand, to determine the optimal 
level we applied it on full wavelet tree with maximum 
decomposition level dictated by the number of samples. To 
estimate the predictability of particular components, sample 
autocorrelation plots are examined.  

2 USED METHODS  

According to [Tangirala 2015], continuous wavelet transform 
(CWT) of signal x(t) is defined as  

 

𝑊𝑥(𝜏, 𝑠) =
〈𝑥,𝜓𝑡,𝑠〉

‖𝜓𝑡,𝑠‖
2

2 = ∫ 𝑥(𝑡), 𝜓𝑡,𝑠
∗ (𝑡)𝑑𝑡

+∞

−∞
                                (1) 

where 𝜓𝑡,𝑠 is wavelet generated by scaling and translation of so-

called mother wavelet 𝜓(𝑡) 

 

𝜓𝑡,𝑠 =
1

√|𝑠|
𝜓 (

𝑡−𝜏

𝑠
) ,     𝜏, 𝑠 ∈ ℝ    𝑠 ≠ 0                                     (2) 

for which the following must hold 

∫ 𝜓(𝑡)𝑑𝑡 = 0                      ‖𝜓(𝑡)‖2 = 1
+∞

−∞
                               (3) 

Wavelet transform is interesting from filtering perspective due 
to its adaptable band-pass filter capability, which can be 
controlled through scaling by shifting the center frequency and 
the width of pass band. The Eq.1 can then be rewritten to the 
following form 

𝑊𝑥(𝜏, 𝑠) = 𝑥 ∗ �̅�𝑠(𝜏), 𝑤ℎ𝑒𝑟𝑒 �̅�𝑠(𝜏) =
1

√𝑠
𝜓∗(𝜏)                    (4) 

where  - convolution. 

If s = 1 as a reference point the filters for s  1 are replaced by a 
low-pass filter, which may be considered as equivalent to 
introducing a scaling function φ(t)   
 

|�̂�(𝜔)|2 = ∫ |�̂�(𝑠𝜔)|
2 𝑑𝑠

𝑠
  𝑎𝑛𝑑 lim

𝜔→0
|�̂�(𝜔)|2 = 𝐶𝜑

∞

1
                 (5) 

Using this scaling function, the following transform can be 
defined 

𝑆𝑥(𝜏, 𝑠) = 〈𝑥(𝑡), 𝜑𝜏,𝑠(𝑡)〉 = 𝑥 ∗ �̅�𝑠(𝜏)                                     (6) 

Then, the signal can be re-written into the form which is a sum 
of an approximation and details at scale s0: 

 

𝑥(𝑡) =
1

𝐶𝜓𝑠0
𝑆𝑥(. , 𝑠) ∗ 𝜑𝑠0(𝑡) +

1

𝐶𝜓
∫ 𝑊𝑥(. , 𝑠) ∗ 𝜓𝑠(𝑡)

𝑑𝑠

𝑠2

𝑠0

0
      (7) 

Here a discrete version of wavelet transform (DWT) is used, 
which is a special case of continuous wavelet transform where 
evaluation is done only at certain scales and translations, 𝑠 =

2𝑗 , 𝑗 ∈ ℤ and 𝜏 = 𝑚2𝑗 , 𝑚 ∈ ℤ [Tang 2009].  

It can be defined in the following manner  

𝑊𝑓(𝑚, 𝑗) = ∫ 𝑓(𝑡)𝜓𝑚2𝑗,2𝑗(𝑡)𝑑𝑡
+∞

−∞
                                              (8) 

with  

𝜓𝑚2𝑗,2𝑗 (𝑡) =
1

2𝑗/2
𝜓 (

𝑡−𝑚2𝑗

2𝑗
)                                                            (9) 

The signal decomposition given in Eq.7 can now be expressed for 
a discrete case as follows:  

 

𝑥(𝑡) = ∑ 𝑎𝑚,𝑗0
𝜑𝑚,𝑗0

(𝑡) + ∑ ∑ 𝑑𝑚,𝑗0

𝑚𝑗≥𝑗0𝑚

𝜓𝑚,𝑗0
(𝑡)  = 

 = 𝐴𝑗0
+ ∑ 𝐷𝑗

𝑗0

𝑗=1                                                                                (10) 

 

where 𝑎𝑚,𝑗0
 - approximation coefficients at scale j0 and  

𝑑𝑚,𝑗0
, 𝑗 = 1, … , 𝑗0- detail coefficients at level j0 and all finer 

scales, 𝐴𝑗0
- approximation component of signal x(t) and 𝐷𝑗0

- 

detail components of signal x(t) at level j0.  

In practical cases the values of both types of coefficients 
(approximation and detail) are computed with the help of 
impulse responses denoted with {𝑔𝑙[. ]} and {𝑔ℎ[. ]} 
corresponding to low- and high-pass filters, respectively. It is 
important that for computation of coefficient values (whether 
approximation or detail), the values of approximation details of 
one scale above are used : 

𝑎𝑗+1[𝑚] = ∑ 𝑔𝑙[𝑛 − 2𝑚]𝑎𝑗[𝑛] = (𝑎𝑗 ∗ 𝑔
𝑙
)[2𝑚]∞

𝑛=−∞               (11) 

𝑑𝑗+1[𝑚] = ∑ 𝑔ℎ[𝑛 − 2𝑚]𝑎𝑗[𝑛] = (𝑑𝑗 ∗ 𝑔
ℎ

)[2𝑚]∞
𝑛=−∞           (12) 

 

with 𝑔
𝑙

= 𝑔[−𝑛] denoting the IR sequence reflection and * - 

convolution. Then, actually four distinctive objects can be 
identified [Misiti 2007] : 
I. Detail coefficients 𝑑𝑚,𝑗0

= ∫ 𝑥(𝑡)𝜑𝑚,𝑗0
(𝑡)𝑑𝑡 

II. Detail signals 𝐷𝑗(𝑡) = ∑ 𝑎𝑚,𝑗0𝑘∈ℤ 𝜓𝑚,𝑗0
(𝑡) 

III. Approximation coefficients 𝑎𝑚,𝑗0
= ∫ 𝑥(𝑡)𝜑𝑚,𝑗0

(𝑡)𝑑𝑡 

IV. Approximation signals 𝐴𝑗(𝑡) = ∑ 𝑎𝑚,𝑗0𝑘∈ℤ 𝜑𝑚,𝑗0
(𝑡) 

In (discrete) wavelet transform (DWT), only approximation 
components of the signal are further decomposed into 
approximation and detail part while the latter are not analyzed 
in any way forming partial decomposition tree as shown in Fig.1. 
In wavelet packet transform the concept of full signal 
decomposition is utilized, where each of the detail components 
is decomposed in the same way as approximation components 
in DWT. This allows for a much richer analysis of given signal yet 
at the cost of increased computational complexity which is on 
the order of O(Nlog2N) in contrast to O(N) for DWT [Sundarjan 
2015].  
If we assume the following, 𝑤0(𝑡) = 𝜙(𝑡), 𝑤1(𝑡) = 𝜓(𝑡) the 

functions with odd superscripts 2j+1 are generated from 𝑤𝑗(𝑡) 
using wavelet filter g and those with even superscripts (i.e. 2j) 

are generated from 𝑤𝑗(𝑡) using the scaling filter h [Ruch 2009]. 
The wavelet packet function can be then defined in the following 
way: 
Suppose that 𝜙(𝑡) generates an orthogonal multiresolution 

analysis {𝑉𝑗}
𝑗∈ℤ

 with associated wavelet function 𝜓(𝑡). The 

wavelet packet functions are defined by 𝑤0(𝑡) = 𝜙(𝑡), 𝑤1(𝑡) =
𝜓(𝑡) and for 𝑛 = 2,3, … 

𝑤2𝑛(𝑡) = √2 ∑ ℎ𝑘𝑤𝑛(2𝑡 − 𝑘)𝑘∈ℤ                                               (13) 

𝑤2𝑛+1(𝑡) = √2 ∑ 𝑔𝑘𝑤𝑛(2𝑡 − 𝑘)𝑘∈ℤ                                           (14) 
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Figure 1. Fourth-level wavelet analysis (left) and wavelet packet analysis 
(right)   

A signal containing N = 2L samples can be decomposed in  

different ways, where is the number of binary subtrees of a 
complete binary tree the depth of which is L. Then the following 

holds : 𝛾 ≥ 2𝑁/2 [Misiti 2016]. Since this is obviously a huge 
number for typical time series (in our case the time series have 

a length in excess of 1000, giving 𝛾 > 2500) entropy-based 
criteria are usually applied to find optimal decomposition. If s is 
the signal and si is i-th coefficient in orthonormal basis [Misiti 
2016], the entropy can be defined as  
 
𝐸(𝑠) = ∑ 𝐸(𝑠𝑖)𝑖                                                                                  (15) 
 
so that it is an additive cost function with E(0)=0. We use 
logenergy criterion where 
 

𝐸(𝑠𝑖) = log(𝑠𝑖
2)   and   𝐸(𝑠) = ∑ log(𝑠𝑖

2)𝑖                                   (16) 

Given time series are actually decomposed to the form given by 
(10) using Eqs. (11) and (12). Then WPD method in Eqs.(13) and 
(14) is used to obtain a wavelet tree, in which an optimal level is 
determined using Eq.16.  

3 ANALYZED OBJECTS AND USED DATA  

Three different non-residential objects were selected for further 
analysis using wavelet transform. These objects are shown in 
Fig.2 and include: elementary school in Krompachy, National 
Institute of Rheumatic Diseases in Piestany and railway station 
in Tatranska Strba. Completely different purpose of each of the 
buildings meant that relatively distinctive gas consumption 
patterns could be expected. Each of the objects was subject to 
modernization of its boiler rooms with the installment of new 
Hoval UltraGas condensing boilers (Fig.3)  
 

 

Figure 2. Analyzed objects – elementary school in Krompachy (left), 
National Institute of Rheumatic Diseases in Piestany (middle) and railway 

station in Tatranska Strba [DevelArt.sk 2018] 

 

Figure 3. Hoval UltraGas condensing boiler used in each of the examined 
objects [Hoval.sk 2018] 

The data of daily gas consumption for analysis were obtained 
during three-years period lasting from September 1, 2014 until 
September 1, 2017. Each data sample thus corresponds to the 
total gas consumption during given day in one of the buildings 
and one day was also used as the basic time unit in further 
analysis. The total number of days (and thus also samples) in 
every time series is 1097. These datasets can be quickly 
examined by looking at Fig.4, where the raw data (without any 
preprocessing) for all objects are shown. For prediction purposes 
it might be very important to take into account also the outdoor 
temperature which is naturally the single most important 
variable affecting the actual gas consumption in any of the 
analyzed buildings [Corny 2017]. Equally diverse as the purpose 
of objects in question was their geographic distribution within 
the country which also affected observed consumption profiles. 
Actual daily mean temperatures can be observed from Fig.5 
together with the differences in whole period mean 
temperature. Only regularity that can be detected by inspecting 
raw time series of gas consumption is, as expected, a strong 
seasonal component which correspond with heating and non-
heating periods during year. This period typically starts around 
the beginning of October and ends at the end of April, lasting 
around 213 days. Some basic data about the datasets can be 
found in Tab.1. Even though the object in Piestany is located in 
the warmest region (three years average of daily mean 
temperature is 5.1 and 6.6 oC higher than in Krompachy and 
Tatranska Strba respectively), absolute maximum and average 
values are dominated by the size of the object (Tab.1). The 
railway station is located in the coldest region (three years 
average of 7.8 oC) yet its small size gives lowest absolute 
maximum and whole period mean consumption values 
(approximately 258 m3 and 89 m3 respectively). Also, in contrast 
to other two objects, the gas consumption during non-heating 
period is significantly higher in National Institute in Piestany, 
caused almost surely by its specific purpose which necessitates 
non-negligible gas consumption even during this part of the year. 
 

 

Figure 4. Raw data of gas consumption in three selected types of 

buildings during three consecutive heating periods (data correspond to 
a period from September 1, 2014 to September 1, 2017)   

 

Figure 5. Daily mean and whole period mean temperatures at given 

locations during observed period (from September 1, 2014 to September 
1, 2017)   

 



 

 

MM SCIENCE JOURNAL I 2018 I issue  

2651 

 

Table 1. Basic data about the gas consumption and temperature time 

series for given locations (gas in m3, temperature in oC) 

 Krompachy Piestany 
Tatranska 

Strba 

Absolute maximum 
(gas) 

1003.6 1638 257.9 

Whole period mean 
(gas) 

199.5 528.5 89.1 

Heating periods 
mean (gas) 

333.9 782.1 137.1 

Standard deviation 
in heating periods 

(gas) 
169.1 291.2 43.5 

Absolute minimum 
(temp) 

-15.2 -10.4 -20.6 

Absolute maximum 
(temp) 

26.2 33.1 27.5 

Whole period mean 

(temp) 
9.3 14.4 7.8 

 
Although the main seasonal component corresponding to 
alternating heating and non-heating periods is clearly visible 
from time series shown in Fig.4, it is much more difficult to 
detect other cyclic components that might be present and which 
are related to typical patterns of human activity in given 
buildings. Analysis of frequency spectrum of time series may 
reveal the most important cyclic components, which was 
performed using FFT. Single-sided amplitude spectra for gas 
consumption in each of the analysed objects are shown in Fig.6    
(Krompachy), Fig.7 (Piestany) and Fig.8 (Tatranska Strba).  

4 WAVELET ANALYSIS OF GAS CONSUMPTION TIME SERIES  

 
Frequency spectrum analysis of given time series reveal some 
interesting information about the cyclic components that are 
present in gas consumption waveforms. These components are 
affected by many factors but appear to be strongly related to the 
specific patterns of gas consumption in analyzed types of 
buildings. We can observe the single-sided frequency spectrum 
of Krompachy gas consumption time series in Fig.6. We marked 
the most prominent peaks that might correspond to interesting 
cyclic components related to typical activities in given type of 
building as well the number indicating the period of this 
component (in days). The most prominent of all (in each type of 
building) is naturally the seasonal component associated with 
alternating heating and non-heating periods during the year – 
which is also the only component visible in raw time series 
shown in Fig.4.  The frequency of this component is in each case 
approximately 0.0027 Hz corresponding to a period of 365.63 
days. Compared to objects in Piestany and Tatransk Strba, we 
can observe the presence of higher number of isolated peaks in 
frequency spectrum of Krompachy time series which can be 
attributed to a stronger manifestation of repeating patterns-
related consumption profile – of these, biannual period (182.85 
days) and weekly period (6.99 days) appear to be the most 
significant.  
 

 

Figure 6. Single-sided amplitude spectrum of gas consumption time 

series at Krompachy location using FFT 

Three of the prominent frequency components are also present 
in frequency spectrum of gas consumption time series in 
Piestany object (with period of 365.63, 182.85 and 6.99 days) 
(Fig.7). The first one naturally corresponds to a seasonal 
component of alternating heating and non-heating periods and 
the third one obviously corresponds to weekend-related drops 
in gas consumption. Biannual period found in both spectra can 
possibly be associated with the presence of two longer lasting 
holidays (in summer and in winter).  

Apart from the strongest (annual) seasonal component of time 
series, the spectrum of gas consumption time series in Tatranska 
Strba (Fig.8) lacks the prominent peak corresponding to biannual 
period (182.85 days) yet it contains quarterly period (91.41 days) 
similar to National Institute. Although higher number of peaks in 
spectrum is indicated in Fig.8 compared to Piestany spectrum, it 
has to be noted that similar periodic components can be 
observed in both spectra with slightly smaller prominence in 
Fig.7 (this was evaluated only subjectively). On the other hand, 
easily observable is the absence of prominent higher frequency 
peaks in contrast to Krompachy spectrum.   

 

Figure 7. Single-sided amplitude spectrum of gas consumption time 

series at Piešťany location using FFT 

 

Figure 8. Single-sided amplitude spectrum of gas consumption time 
series at Tatranská Štrba location using FFT 

Although FFT method is valuable for identifiying possible 
periodic components, its usefulness for time series analysis 
related to prediction is limited due to the absence of time 
localization.  In this case we can use wavelet analysis which 
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features time-frequency localization and is thus very 
advantageous to use for this purpose.  

The maximum level of decomposition j0 from Eq.10 depends on 
the number samples in time series N as 𝑗0𝑚𝑎𝑥 = log2𝑁 and for 
1097 samples yields 𝑗0𝑚𝑎𝑥 = log21097 = 10.1 ≅ 10. If time 
series prediction is the main purpose of wavelet analysis, such a 
high number of decomposition components (approximation and 
all details up to this level) is seldom used. Then it remains an 
open issue how to determine the optimal level of decomposition 
[Yang 2016]. By examining the spectra in Figs.6, 7 and 8 we could 
choose the decomposition level to isolate all periodic 
components that might be interesting in approximation 
(possibly annual period) and details (biannual or quarterly 
period, monthly and weekly period). If j0max = 6 was used, the D6 
signal would contain components with approximately monthly 
(32 days) and bimonthly (64 days) periods.  

Another option is to base the selection of decomposition level 
on entropy criterion – specifically logenergy criterion show in 
Eq.16. For wavelet analysis we use db5 wavelet function from 
Daubechies wavelet family the shape of which, together with 
scaling function, can be seen in Fig.9. This particular wavelet 
family is very often applied in the area of time series prediction 
and it generated smooth approximation and detail signals that 
were deemed suitable for a given task (of gas consumption 
prediction). The initial wavelet tree corresponding to a 
maximum level dictated by the number of samples in time series 
is shown in Fig.10.  

 

Figure 9. Db5 (Daubechies family) scaling function (left) and wavelet 
function (right) 

The results of optimal selection of wavelet decomposition level 
can be observed in Fig.10. An initial wavelet tree of depth of 10 
was considered for each of the series (shown in figure as first, 
third and fifth tree from left). Trees were cut at given depth 
based on the algorithm described in [Misiti 2016]. The entropy 
value shown in blue corresponds to initial entropy of a signal 
calculated using the logenergy criterion (Eq.16). It can be seen 
that optimal levels of decomposition were 6 for both Piestany 
and Tatranska Strba series and 3 for Krompachy series. Possible 
explanation for this might be related to the presence of higher 
number of volatile factors affecting the gas consumption profiles 
in Piestany and Tatranska Strba objects compared to elementary 
school in Krompachy. 

 

Figure 10. Initial wavelet tree and optimal level wavelet tree based on 

logenergy entropy criterion for each of the time series (Krompachy left, 
Piestany middle, Tatranska Strba right) 

After making full decomposition with optimal levels, we obtain 3 
approximation signals (a1, a2, a3) and 3 detail signals (d1, d2, d3) 
for Krompachy series and 6 approximation signals (a1, a2, a3, a4, 
a5, a6) and 6 detail signals (d1, d2, d3, d4, d5, d6) for both 
Piestany and Tatranska Strba series. The decomposition of 
original signals is then given as: 

K = a3+d1+d2+d3 

P = a6+d1+d2+d3+d4+d5+d6 

TS = a6+d1+d2+d3+d4+d5+d6 

where K – Krompachy time series, P – Piestany time series and 
TS – Tatranska Strba time series.  

The wavelet decomposition at level 3 for Krompachy time series 
is shown in Fig.11.  Performing the decomposition at this level 
allows us to observe the signals with periods between 1-2 days, 
2-4 days, 4-8 days in details and greater than 8 days in 
approximation signal. In the case of approximation signal, in 
addition to the most prominent annual seasonal pattern also 
cycles with approximately monthly period are visible 
superimposed on the main series. Since the decomposition level 
was determined based on the entropy, we do not see this 
component isolated – this would be observable in d5 detail 
signal. It will be the subject to further research whether the 
optimal level based on entropy directly transfers to better 
results in predictions of gas consumption with wavelet 
decomposition.  

 

Figure 11. Level 3 wavelet decomposition of Krompachy time series (a3 
– approximation signal at level 3, d1,d2,d3 – detail signals at levels 1,2 
and 3) 
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In relation to its prediction, it is interesting to observe the 
autocorrelation function of given time series to see how it is 
correlated with the delayed copy of itself.  Samples 
corresponding to lags with statistically significant non-zero value 
contain predictable information about the time series [Tangirala 
2015]. Sample autocorrelation functions with 30 lag interval for 
each component of Krompachy time series after wavelet 
decomposition are shown in Fig.12. The ACF for approximation 
signal (a3) shows slow decay which is in accordance with ACF of 
non-stationary process. Brief inspection of all remaining ACFs for 
detail signals reveals also very strong presence of seasonal 
cycles. In case of d3 component the alternating period of 7 and 
10 days can be observed in ACF while for d2 component the cycle 
with weekly period appears to be dominant. Identification of 
prediction model for these components could be done using an 
approach similiar to [Krivobokova 2012], where a combination 
of Bayesian splines was used for trend and seasonal component 
modeling and ARMA model was used for modeling residuals. 

 

Figure 12. Sample autocorrelation functions for each component of 

Krompachy time series wavelet decomposition (a3, d1, d2, d3) 

In accordance with the results of entropy-based determination 
of optimal wavelet decomposition, all seven component signals 
(a6 and d6, d5, d4, d3, d2, d1) are presented in Figs.13-19. Higher 
level of decomposition allows to obtain signal components with 
coarser frequency (i.e. longer periods). Approximation signals 
(a6) now reveal the course of the main seasonal component with 
roughly yearly period (365 days), which is typically associated 
with seasonal variations in gas consumption.  

 

Figure 13. Approximation signals of Piestany and Tatranska Strba time 
series at level 6 

D6 detail signal shown in Fig.14 reveals the components of 
original time series with time period between 32-64 days. This 
particular detail signal has more balanced amplitude in 
Tatranska Strba series compared to Piestany that might be 
related either to weather differences at given locations or other 
factors having greater effect on gas consumption profile in 
National institute than in railway station.  

 

Figure 14. Detail signals of Piestany and Tatranska Strba time series at 

level 6 

Detail signals d5 and d4 (shown in Figs.15, 16) contain 
components with time periods between 16-32 and 8-16 days 
respectively. Again, more balanced amplitude of this detail signal 
can be observed in Tatranska Strba series, with interruptions at 
non-heating periods in years 2015 and 2016. The variations in 
amplitude of detail value for particular components are most 
likely strongly related to outdoor temperatures during period in 
question throughout given years. 

 

Figure 15. Detail signals of Piestany and Tatranska Strba time series at 
level 5 

 

Figure 16. Detail signals of Piestany and Tatranska Strba time series at 

level 4 

Detail signals d3, d2 and d1 shown in Fig.17, Fig.18 and Fig.19 
contain components with periods between 4-8, 2-4 and 1-2 days 
respectively. The predictability of these components would be 
lower in comparison to previous ones due to the higher content 
of noise.  

 

Figure 17. Detail signals of Piestany and Tatranska Strba time series at 

level 3 
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Figure 18. Detail signals of Piestany and Tatranska Strba time series at 
level 2 

 

Figure 19. Detail signals of Piestany and Tatranska Strba time series at 
level 1 

More useful information about the possible predictability of 
given component can be extracted from sample autocorrelation 
function plots, which are shown (for details) in Fig.20 for lag 
interval of 30. All of the plots show strong correlation between 
the successive lag samples with gradually decreasing time period 
– which is in accordance with increasing frequency of 
components passed through the wavelet filters. Less correlated 
lag samples can be observed only for d1 components of both 
time series where most of the correlation for higher lags is found 
within (or slightly out of) the confidence bounds. Even though in 
this case some portion of d1 component is still predictable, the 
proportion of noise within would make it likely candidate for 
removal from the final prediction model. Its inclusion or removal 
would depend on the requirements for the final prediction error 
(possibly with regard to accuracy/complexity of the resulting 
model). 

 

Figure 20. Sample autocorrelation function plots for detail signals of 
wavelet decomposition for Piestany and Tatranska Strba time series 

5 CONCLUSION AND FURTHER RESEARCH 

The main objective of the paper was to perform introductory 
analysis of gas consumption time series in different types of non-
residential buildings intended using wavelet transform for 
prediction purposes. By performing initial FFT analysis of 
frequency spectrum of gas consumption profiles during three 
years, it was possible to identify the cycles that might be of 
interest in derivation of prediction models. In all analyzed time 
series naturally the most important cycle is annual seasonality 
which is associated with alternation of heating and non-heating 
periods. Other cycles corresponding to typical gas consumption 
patterns were also found – to isolate them as a function of time 
wavelet transform was used. In order to determine the optimal 
level of decomposition, logenergy entropy-based criterion was 
used and level 3 was found optimal for Krompachy time series 
and level 6 for both Piestany and Tatranska Strba time series. 
Sample autocorrelation function plots (lag interval 30) for each 
of the components confirmed strong correlation between the 
lags (with cyclic character) which implies possibly good 
predictability with approach typical for seasonal time series 
(SARIMA models for instance). On the other hand, D1 
components of Piestany and Tatranska Strba time series showed 
only weak correlation, with ACF resembling that of white noise 
which could point to their possible removal from the 
components considered for prediction.  

Several points will be subject to further research – it remains to 
be found out whether the optimal level determined based on the 
entropy criterion also translates to lower prediction errors in 
final prediction model and also what is the relationship between 
the particular components (approximation and details) and 
outdoor temperature in terms of prediction accuracy. This can 
be included into ARIMAX models which make use of exogenous 
variable – in this case outdoor temperature.  
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