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Modification of thin metallic films using ultrashort laser pulses 
involves interplay of numerous physical processes. Finding a 
right combination of laser parameters is essential for achieving 
the desired modification of a thin film deposited on a substrate. 
Numerical modeling is a convenient tool for gaining insights into 
ultrafast evolution of material properties and to predict an 
optimal range of irradiation parameters. In this work, a 
mathematical model is presented that describes the ultrafast 
laser heating and temperature relaxation in a thin molybdenum 
film deposited on a glass substrate. The laser energy absorption 
by molybdenum is described using a two-temperature model. 
The model takes into account the heat exchange between the 
film and the substrate through a boundary condition applied on 
the lattice temperature. The implicit numerical scheme 
employed for simulations was verified in respect of energy 
conservation. The model has been validated by comparison with 
experimental data on melting threshold fluences. 
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INTRODUCTION 
Laser-matter interaction is a topic that is employed in a wide 
range of applications in industry. Among the laser parameters, 
the pulse duration has significant influence on the quality of 
materials processing, which led to favour the use of ultrashort 
pulses. 
An advantage of shorter laser pulses in respect of longer 
durations can be clearly seen in ablation of metal targets. The 
application of fs-pulses results in sharper contours of ablated 
structure as compared to ps- or ns-pulses [Kautek 1994, 
Chichkov 1996]. This feature is directly connected with a smaller 
heat-affected zone (HAZ) caused by shorter pulses [Krause 
2017], which is important also for material processing in the 
vicinity of temperature sensitive structures (such as p-n 
junctions). The laser processing of a multilayer structures 
consisting of thin films [Krause 2017] used in photovoltaic 
industry [Bovatsek 2010] is another demonstrative example.   
For performing controlled modifications of thin films, a deep 
understanding of the involved processes is required that 
increases the necessity of numerical modeling of laser-matter 
interaction phenomena which could enable accurate predictions 
of material evolution. In this paper, a numerical method is 
presented for determination of the temperature distribution 
and energy relaxation in a thin molybdenum film after irradiation 

by single ultrashort laser pulses of 200 fs pulse duration (FWHM) 
with central wavelength 𝜆 =  400 nm.   
In the first section, the physical model of the studied system is 
presented. The main equations describing laser-induced 
material heating and the temperature evolution are introduced 
along with the boundary conditions, description of laser light 
absorption, and material melting. The temperature-dependent 
material properties involved in this study are also provided in 
this section. The second section describes discretization of the 
equations and the corresponding boundary conditions on a 
numerical grid. The numerical scheme was developed and 
implemented in C programming language. Validity of the 
approach is tested in two steps in the third section: in the first 
step by controlling the energy conservation and in the second 
step by the comparison of the computed thickness-dependent 
melting threshold fluence of Mo films with the experimental 
data.   

1 MODEL 

In this section, the thermodynamic model of the studied system 
(molybdenum film deposited on fused silica substrate) irradiated 
by a laser pulse is described. A schematic drawing of the system 
is presented in Fig. 1, summarizing the three main equations, 
which describe the temperature distribution, and the boundary 
conditions. 

Assuming a laser spot of a sufficiently large size as compared to 
the optical absorption depth, the transversal heat flow (parallel 
to the Mo surface) is neglected and the equations can be solved 
in one dimension. The initial temperature of the whole system is 
the room temperature (293 K) before the irradiation. 

 

Figure 1. Schematic description of the system modeled, which consists 
of a thin molybdenum film deposited on the glass substrate. 

Temperature distribution is described by the three equations at the 
bottom of the figure, completed by the boundary conditions shown on 
the top.  

 

1.1 Equations of the two-temperature model (TTM) 

The two-temperature model is commonly employed for metals, 
in which free electrons and atomic lattice can be considered as 
two different but connected subsystems, each with its own 
temperature [Kaganov 1957, Anisimov 1974, Corkum 1988, 
Huang 2009]. This description can be particularly handy to 
address the case of irradiation of solid materials by ultrashort 
laser pulses. Indeed during an ultrashort pulse action, 
significantly non-equilibrium situation takes place between 
electrons (absorbing directly the laser radiation) and the ions of 
the solid remaining at a temperature comparable to the room 
temperature. Assuming a local thermal equilibrium, the system 
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can be described as two subsystems with different 
temperatures. Each subsystem is assumed thermalized. The 
advantage of this simplified approach is the possibility to 
perform relatively fast simulations for the real size of the 
experimental problem.  
The evolution of the temperature of the electronic subsystem 𝑻𝒆 
is expressed in the form of heat flow equation [Anisimov 1974, 
Wellershoff 1999] 
 

𝑪𝒆

𝝏𝑻𝒆

𝝏𝒕
=  𝜵 ⋅ (𝜿𝒆𝜵𝑻𝒆)  −  𝒈(𝑻𝒆  −  𝑻𝒍)  +  𝑺, (𝟏) 

 
where 𝑪𝒆 is the heat capacity of electronic subsystem, 𝒕 is time, 
𝜿𝒆 is the thermal conductivity of electronic subsystem, 𝑻𝒍 is the 

temperature of the lattice, 𝒈 =  𝟏𝟑 ⋅ 𝟏𝟎𝟏𝟔 𝑾 ⋅ 𝒎−𝟑 ⋅ 𝑲−𝟏 is the 
electron-phonon coupling factor [Wellershoff 1999] and 𝑺 the 
source term describing the absorption of the laser energy. The 
first term on the right-hand side describes the thermal energy 
diffusion within the electronic subsystem and the term with the 
coupling factor 𝒈 is responsible for heat exchange between two 
subsystems. The equation for the molybdenum lattice 
temperature 𝑻𝒍 is given by [Anisimov 1974, Wellershoff 1999, 
Bovatsek 2010] 
 

(𝑪𝒍  +  𝑳𝒎𝜹(𝑻𝒍  −  𝑻𝑴))
𝝏𝑻𝒍

𝝏𝒕
=  𝜵 ⋅ (𝜿𝒍𝜵𝑻𝒍)  +  𝒈(𝑻𝒆  −  𝑻𝒍), (𝟐) 

 
where 𝑪𝒍 is the heat capacity of molybdenum lattice, 𝑳𝒎 the 
latent heat of fusion, 𝜹 is the Dirac delta function used for the 
description of melting (see section 1.4), 𝑻𝑴 is the melting 
temperature of molybdenum, 𝜿𝒍 is the thermal conductivity of 
the lattice. The first term on the right-hand side stands for the 
heat diffusion within the lattice subsystem. In this model, the 
only source of energy received by the lattice is the heat transfer 
from the electronic subsystem expressed by the                    
electron-phonon coupling factor 𝒈. The glass substrate is 
described using a single temperature 𝑻𝒈, thus only one heat 

diffusion equation is needed [Özişik 1980], which is given by 
 

𝑪𝐠

𝛛𝑻𝐠

𝛛𝒕
=  𝛁 ⋅ (𝜿𝐠𝛁𝑻𝐠). (𝟑) 

 
Here, 𝑪𝒈 and 𝜿𝒈 are the heat capacity and the thermal 

conductivity of glass respectively.  
 

1.2 Boundary conditions 

Zero heat flux boundary conditions [Bovatsek 2010] are applied 
at the boundaries of the system (see Fig. 1). This means that, at 
the front surface x1 of molybdenum (for both electronic and 
lattice subsystems), the following equations are considered 

 

𝜅𝑒

𝜕𝑇𝑒

𝜕𝑥
|

𝑥1

=  0, 𝜅𝑙

𝜕𝑇𝑙

𝜕𝑥
|

𝑥1

=  0. (4) 

We note that the radiation losses from the film surface are 
negligible for the considered conditions [Bäuerle 2011]. 

At the rear surface of the glass substrate x3, a similar condition is 
applied which writes as  

 

𝜅𝑔

𝜕𝑇𝑔

𝜕𝑥
|

𝑥3

=  0. (5) 

The glass is taken sufficiently thick so that the energy provided 
by the laser pulse has not enough time to reach the rear surface 
x3 during the time of simulations (tens of picoseconds). 

Heat transfer between the Mo film and glass is assumed to take 
place through phonons. To account for the heat flow between 
the Mo lattice and the substrate these two subsystems are 
connected by equality of heat flows [Bovatsek 2010], described 
as 

 

𝜅𝑙

𝜕𝑇𝑙

𝜕𝑥
|

𝑥2,𝑀𝑜

=  𝜅𝑔

𝜕𝑇𝑔

𝜕𝑥
|

𝑥2,𝑔𝑙𝑎𝑠𝑠

. (6) 

The same temperature is considered at both sides of the 
interface (the possibility of a temperature jump in the interface 
is discussed in section 4 together with the effect of the Kapitza 
resistance) by writing  

𝑇𝑙|𝑥2,𝑀𝑜
=  𝑇𝑔|

𝑥2,𝑔𝑙𝑎𝑠𝑠
. (7) 

Because the energy transfer between molybdenum and the glass 
substrate is provided through the lattice, the boundary condition 
used for electronic subsystem at the Mo-glass interface is: 

𝜅𝑒

𝜕𝑇𝑒

𝜕𝑥
|

𝑥2

=  0. (8) 

1.3 Description of the laser source 

The laser pulse incident on the metal film is described by the 
intensity 𝐼(𝑡) at the front surface. It has a temporal Gaussian 
shape centered on 𝑡 =  2𝜏 

 

𝐼(𝑡)  =
𝐹

𝜏
 √

4 ln(2)

𝜋
exp (−

1

2
(

𝑡 − 2𝜏

𝜎
)

2

) . (9) 

 

In the Eq. (9), 𝐹 is the incident peak fluence of the laser pulse, 𝜏 
is pulse duration (FWHM), and 𝜎 is the normalization parameter 
of the Gaussian pulse given by 

𝜎 =  
𝜏

2√2 ln(2)
. (10) 

Because the objects of interest are thin films, the multilayer 
reflection (transmission) formula [Stenzel 2005] was used to 
calculate reflection 𝑅 and transmission 𝑇 of the molybdenum 
film. More precisely, a system composed of three domains was 
considered: a semi-infinite air region, the Mo thin film of a given 
thickness, and a semi-infinite glass substrate. The refractive 
indices and the extinction coefficients of Mo and glass, 
considered constant, are respectively 𝑛𝑀𝑜,400  =  3.03, 

𝑘𝑀𝑜,400  =  3.22 [Palik 1998] and 𝑛𝑔,400  =  1.522, 𝑘𝑔,400  =  7 ⋅

10−8 [Khashan 2001]. The obtained reflectivity and transmission 
were applied at the front surface. The angle of incidence is 
normal. 

In the molybdenum film, the intensity is decaying exponentially 
with the depth according to the Lambert-Beer law, which results 
in the source term of the laser energy 𝑆(𝑥, 𝑡) [Wellershoff 1999], 
introduced in Eq. (1), given by 

 

𝑆(𝑥, 𝑡) = 𝐼(𝑡) ⋅ (1 − 𝑅 − 𝑇) ⋅
exp (−

𝑥
𝜆0

)

𝜆0
⋅

1

(1 − exp (−
𝑑
𝜆0

))
, (11) 

 

where 𝑑 is the thickness of the film and 𝜆0 is the absorption 
depth given by 

𝜆0 =  
1

𝛼
 =  

𝜆

4𝜋𝑘400
. (12) 

In Eq. (12) 𝛼 is the absorption coefficient and 𝜆 =  400 nm the 
wavelength of the laser. 
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As in [Wellershoff 1999], since both reflection and transmission 
are already taken into account via the corresponding coefficients 

𝑅 and 𝑇, the fraction 
1

(1−exp(
−𝑑

𝜆0
))

 is added in Eq. (11) to ensure 

that, in the model, ∫ 𝑆(𝑥, 𝑡) 𝑑𝑥
𝑑

0
 is equal to 𝐼(𝑡) ⋅ (1 − 𝑅 − 𝑇) 

which represents the part of the intensity that is completely 
absorbed within the metal film.  

 

1.4 Melting 

In the Eq. (2) for the lattice subsystem, the term  

𝐿𝑚𝛿(𝑇𝑙 − 𝑇𝑀)
𝜕𝑇𝑙

𝜕𝑡
(13) 

accounts for the consumption of the molybdenum melting 
enthalpy [Bovatsek 2010]. The value of the latent heat of fusion 
𝐿𝑚  =  39 100 J ⋅ mol−1, selected on the basis of the 
comparison of 10 different measurements [Desai 1987], was 
modified by the molybdenum molar volume 𝑉mol  =  9.334 ⋅
10−6 m3 ⋅ mol−1 to get 𝐿𝑚  =  2.958 ⋅ 109 J ⋅ m−3. The Dirac 
delta function 𝛿 accounts for the latent heat of fusion at the 
melting temperature of molybdenum 𝑇𝑀  =  2897 K [Desai 
1987] (comparison of 11 references). 

 

1.5 Temperature-dependent material properties 

Electronic heat capacity 

The temperature-dependent electronic heat capacity of Mo was 
introduced in the model using four polynomial functions of the 
orders equal to or less than 4, each in different temperature 
range. The coefficients in the functions were obtained by careful 
fitting the data by [Lin 2008, University of Virginia] which are 
presented in Fig. 2.  

 

Figure 2. Dependence of the electronic heat capacity 𝐶𝑒 of Mo on 

electronic temperature 𝑇𝑒  computed from the first principles 
[University of Virginia]. 

 

Electronic thermal conductivity 

The electronic thermal conductivity 𝜅𝑒 is the major part of the 
total thermal conductivity 𝜅 of molybdenum [Wellershoff 1999]. 
Hence the experimental data on thermal conductivity 𝜅 of 
molybdenum can be used for determination of the parameters 
applied in the model of the electronic thermal conductivity 𝜅𝑒. 
The thermal conductivity of electrons can be expressed by a 
Drude formulation [Ashcroft 2016] as 

𝜅𝑒  =  
1

3
𝑣𝐹

2
𝐶𝑒

𝜈𝑐𝑜𝑙𝑙
, (14) 

where 𝑣𝐹  is the Fermi velocity, 𝐶𝑒 the heat capacity of electrons 
and 𝜈coll the collision frequency. The Fermi velocity 𝑣𝐹  is 
obtained according to 

𝑣𝐹  =  √
2 ⋅ 𝐸𝐹

𝑚𝑒
 (15) 

from the Fermi energy 𝐸𝐹  =  6.773 eV [Bennett 1969] and the 
mass of electron 𝑚𝑒  =  9.1 ⋅  10−31 kg, which gives the value 
𝑣𝐹  ≅  1.544 ⋅ 106 m ⋅ 𝑠−1. 

At temperatures below the Fermi temperature, the collision 
frequency can be described as the sum of the electron-electron 
and electron-phonon collision frequencies (using the 
Matthiessen rule [Ashcroft 2016]) that is described by [Kaveh 
1984] 

𝜈coll  =  𝐴 ⋅ 𝑇𝑒
2  +  𝐵 ⋅ 𝑇𝑙 , (16)            

where the parameters 𝐴 and 𝐵 are assumed to be constant.  

The 𝐴 and 𝐵 values were determined by rewriting Eq. (14) as 

𝜈coll  =  
1

3
𝑣𝐹

2
𝐶𝑒(𝑇)

𝜅𝑒(𝑇)
. (17) 

With experimentally known thermal conductivities 𝜅 = 𝜅𝑒 at 
given temperatures (in Tab. 1 taken from [Gray 1972] and [Taluts 
1988]) and values of the electronic heat capacity 𝐶𝑒 introduced 
above, it is possible to determine 𝐴 and 𝐵. 

𝑇 [K] 273 373 573 973 

𝜅 [W ⋅ m−1 ⋅ K−1] 135 132 130 113 

Table 1. Thermal conductivity 𝜿 of molybdenum at different 
temperatures 𝑻 [Gray 1972].  

Indeed the experimental data on the thermal conductivity are 
measured at thermal equilibrium between the electronic and 
lattice subsystems, i.e., 𝑇𝑒 = 𝑇𝑙  =  𝑇. After obtaining the 
dependency of the collision frequency 𝜈coll on temperature 𝑇 
from the right hand term of (17),  the function (16) was used for 
fitting the collision frequency 𝜈coll with only one temperature 
𝑇 =  𝑇𝑒 = 𝑇𝑙 and the parameters 𝐴 and 𝐵 were determined.  

Fig. 3 shows experimental data on the thermal conductivity 𝜅 
(taken from [Gray 1972] and [Mills 1996], which also compares 
the data from references [Filippov 1973, Taluts 1984, Taluts 
1988]) and the 𝜅𝑒 value calculated by Eq. (14) assuming 𝑇𝑒 = 𝑇𝑙 
and using the parameters 𝐴 and 𝐵 provided by the fitting 
procedure described above. 

 

Figure 3. Comparison of the experimental data of the thermal 

conductivity of molybdenum 𝜅 as a function of temperature reported 
in [Gray 1972, Filippov 1973, Taluts 1984] and [Taluts 1988] with the 

calculated values based on the collision frequency with the parameters 
𝐴 =  4.97734 ⋅ 108 K−2 ⋅ s−1 and 𝐵 =  5.90062 ⋅ 1011 K−1 ⋅ s−1. 

 

Lattice heat capacity 

At temperatures below the melting temperature under normal 
conditions, the heat capacity of the lattice 𝐶𝑙 is considered to be 
equal to the total heat capacity of molybdenum 𝐶. The heat 
capacity of molybdenum, valid up to its melting point 𝑇𝑀  =
 2897 K, can be expressed as [Chase 1998, NIST] 

𝐶 [J ⋅ mol−1 ⋅ K−1] =  𝐴′ + 𝐵′ ⋅ 𝑇′ + 𝐶′ ⋅ 𝑇′2 + 𝐷′ ⋅ 𝑇′3 +
𝐸′

𝑇′2 . (18) 
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Here 𝑇′ is the lattice temperature divided by 1000 e.g. 𝑇′ =
𝑇𝑙

1000
. 

The coefficients of Eq. (18) are listed in the Tab. 2 for two ranges 
of temperature, 298 – 1900 and 1900 – 2896 K. 

To convert Eq. (18) from J ⋅ mol−1 ⋅ K−1 to J ⋅ m−3 ⋅ K−1, the 
molybdenum molar volume 𝑉𝜌  =  9.334 ⋅ 10−6 m3 ⋅ mol−1 was 

used. 

𝑇 [K] 298 - 1900 1900 - 2896 

𝐴′ [J ⋅ mol−1 ⋅ K−1] 24.72736 1231.192 

𝐵′ [J ⋅ mol−1 ⋅ K−2] 3.960425 -963.4246 

𝐶′ [J ⋅ mol−1 ⋅ K−3] -1.270706 283.7292 

𝐷′ [J ⋅ mol−1 ⋅ K−4] 1.153065 -28.04100 

𝐸′ [J ⋅ mol−1 ⋅ K] -0.170246 -712.2047 

Table 2. Coefficients in Eq. (18) for the lattice heat capacity [Chase 1998, 
NIST].  

 

Lattice thermal conductivity 

The value of the lattice thermal conductivity 𝜅𝑙 is considered 
constant and equal to 1 % of the thermal conductivity of the 
electronic subsystem at room temperature, 𝜅𝑙  =  1.35 W ⋅
m−1 ⋅ K−1 [Wellershoff 1999]. 

 

Fused silica thermal conductivity 

By fitting the experimental data on thermal conductivity 𝜅𝑔 of 

fused silica [Carwile 1967], a polynomial function of the third 
order was derived and employed in the model (see Fig. 4). 

 

Figure 4. Experimental data on the thermal conductivity 𝜅𝑔 of fused 

silica (taken from [Carwile 1967]) dependent on temperature 𝑇𝑔. 

Fused silica heat capacity 

To include the temperature dependence of fused silica heat 
capacity 𝐶𝒈 in the model, the data were adapted from [Bansal 

1986].  

𝐶𝑔[kJ ⋅ mol−1 ⋅ K−1] =  55.98 + 15.4 ⋅ 10−3 ⋅ 𝑇𝑔 

−14.4 ⋅ 105 ⋅ 𝑇𝑔
−2. (19) 

The molar mass 𝑀SiO2
= 60.06 ⋅ 10−3 𝑘g ⋅ mol−1 and density of 

fused silica 𝜌FS = 2.2 ⋅ 103 𝑘g ⋅ m−3 were used to express 𝐶𝑔 in 

J ⋅ m−3 ⋅ K−1. 

2 NUMERICAL SCHEME 

The equations (1), (2) and (3) are solved numerically in one 
dimension using the finite volume method. The finite volume 
method involves application of the Gauss divergence theorem 
(Ostrogradsky theorem) [Mazumder 2016], which is expressed 
as: 

∫ ∇ ⋅ �⃗� 𝑑𝑉

𝑉

=  ∮ �⃗� ⋅

𝑆

𝑑𝑆. (20) 

In the other words, the flow of vector field �⃗� out of volume 𝑉 
through the surface 𝑆 bounding this volume is equal to the 

volumetric integral of divergence of the field �⃗� over the volume 
𝑉.   

First, all three equations (1), (2) and (3) are integrated over the 
volume of one computational cell which, in this 1D model, is a 
segment of length ℎ =  10−10 m (in this model a regular mesh 
is used). Then the Gauss theorem is used to eliminate the 
divergence in the heat diffusion term and the resulting equations 
are discretized into an implicit numerical scheme. 

To build the numerical scheme, we introduce the superscript 𝑝 
and subscript 𝑚, which correspond respectively to the number 
of the time steps from the beginning of the simulation and to the 
number of a cell in the numerical grid. Then the value of a given 
quantity 𝑄 at the time moment 𝑡 =  𝑝 ⋅ 𝜏 in the coordinate 𝑥 =

 𝑚 ⋅ ℎ can be written as 𝑄𝑚
𝑝

. In all simulations below, the time 

step 𝜏 is equal to 10−15 s. 

The electron and lattice temperatures are discretized at the 
center of each computational cell. 

 

2.1 Discretization of TTM and heat diffusion equation 

After integration over the computational cell of volume ℎ and 
application of the Gauss theorem (Eq. (20)), Eq. (1) can be 
rewritten into the following form 

 

ℎ ⋅ 𝐶𝑒,𝑚
𝑝 𝑇𝑒,𝑚

𝑝+1
− 𝑇𝑒,𝑚

𝑝

𝜏
 +  𝜅

𝑒,𝑚−
1
2

𝑝
⋅

𝑇𝑒,𝑚
𝑝+1

− 𝑇𝑒,𝑚−1
𝑝+1

ℎ
 − 𝜅

𝑒,𝑚+
1
2

𝑝

⋅
𝑇𝑒,𝑚+1

𝑝+1
− 𝑇𝑒,𝑚

𝑝+1

ℎ
 

 =  𝑆𝑚
𝑝

⋅ ℎ −  𝑔(𝑇𝑒,𝑚
𝑝

− 𝑇𝑙,𝑚
𝑝

) ⋅ ℎ,       (21) 

 

where the value of thermal conductivity 𝜅
𝑒,𝑚−

1

2

𝑝
 determined at 

the boundary between (m-1)th and mth computational cells is 
calculated as the average value of the thermal conductivities in 
these cells calculated according to Eq. (14). The thermal 

conductivity of electronic subsystem 𝜅
𝑒,𝑚+

1

2

𝑝
 is calculated in the 

same way between the cells m and (m+1). The Eq. (21) can be 
rewritten as 

𝑇𝑒,𝑚−1
𝑝+1

⋅ [−

𝜅
𝑒,𝑚−

1
2

𝑝

ℎ
]  +  𝑇𝑒,𝑚

𝑝+1
⋅ [𝐶𝑒,𝑚

𝑝 ℎ

𝜏
 + 

𝜅
𝑒,𝑚−

1
2

𝑝

ℎ
 + 

𝜅
𝑒,𝑚+

1
2

𝑝

ℎ
] 

 + 𝑇𝑒,𝑚+1
𝑝+1

⋅ [−

𝜅
𝑒,𝑚+

1
2

𝑝

ℎ
]  

=  𝑆𝑚
𝑝

⋅ ℎ −  𝑔(𝑇𝑒,𝑚
𝑝

−  𝑇𝑙,𝑚
𝑝

) ⋅ ℎ + 𝐶𝑒,𝑚
𝑝

⋅ 𝑇𝑒,𝑚
𝑝 ℎ

𝜏
 .  (22) 

This equation provides the relation between the temperatures 

in three consecutive cells 𝑇𝑒,𝑚−1
𝑝+1

, 𝑇𝑒,𝑚
𝑝+1

, and 𝑇𝑒,𝑚
𝑝+1

 

 

𝑎𝑚 ⋅ 𝑇𝑚−1
𝑝+1

 +  𝑏𝑚 ⋅ 𝑇𝑚
𝑝+1

 +  𝑐𝑚 ⋅ 𝑇𝑚+1
𝑝+1

 =  𝑓𝑚 (23) 

 

that can be solved by the Thomas (FEBS, Forward Elimination 
Backward Substitution) algorithm [Godunov 1987].  

The heat flow equation for the lattice (Eq. (2)) can be discretized 
in a similar way 
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ℎ ⋅ [𝐶𝑙,𝑚
𝑝

 +  𝐿𝑚𝛿(𝑇𝑙,𝑚
𝑝

 −  𝑇𝑀)]
𝑇𝑙,𝑚

𝑝+1
− 𝑇𝑙,𝑚

𝑝

𝜏
 + 𝜅

𝑙,𝑚−
1
2

𝑝

⋅
𝑇𝑙,𝑚

𝑝+1
− 𝑇𝑙,𝑚−1

𝑝+1

ℎ
 − 𝜅

𝑙,𝑚+
1
2

𝑝
⋅

𝑇𝑙,𝑚+1
𝑝+1

− 𝑇𝑙,𝑚
𝑝+1

ℎ
  

=  𝑔(𝑇𝑒,𝑚
𝑝

−  𝑇𝑙,𝑚
𝑝

) ⋅ ℎ (24) 

 

and adjusted to the same form as Eq. (23), that can be again 
solved by the Thomas algorithm together with the heat diffusion 
equation for the glass substrate 

 

ℎ ⋅ 𝐶𝑔,𝑚
𝑝 𝑇𝑔,𝑚

𝑝+1
− 𝑇𝑔,𝑚

𝑝

𝜏
 + 𝜅

𝑔,𝑚−
1
2

𝑝
⋅

𝑇𝑔,𝑚
𝑝+1

−  𝑇𝑔,𝑚−1
𝑝+1

ℎ
 − 𝜅

𝑔,𝑚+
1
2

𝑝
 

⋅
𝑇𝑔,𝑚+1

𝑝+1
− 𝑇𝑔,𝑚

𝑝+1

ℎ
 =  0.       (25) 

 

For practical reasons, the delta function 𝛿(𝑇𝑙 − 𝑇𝑀) is described 
by a sufficiently narrow Gaussian function [Zhvavyi 1996] 

  

𝛿(𝑇𝑙 − 𝑇𝑀, Δ)  =
1

√2𝜋Δ
exp (−

(𝑇𝑙 − 𝑇𝑀)2

2Δ2 ) , (26) 

 

where Δ is a parameter of Gaussian function governing its shape. 
The value of Δ must be chosen appropriately. It has to be small 
enough to keep the Gaussian function similar to the Dirac delta 
function. However, the Gaussian function should have a width of 
at least three computational cells [Zhvavyi 1996]. In the present 
work Δ =  1 K.                                   

2.2 Discretized boundary conditions 

The Neumann boundary conditions at the front and rear 
surfaces, Eqs. (4) and (5), and at the interface for electronic 
subsystem, Eq. (8), can be implemented by setting the same 
temperatures in the two cells belonging to the same domain, the 
boundary cell and the cell adjacent to it. For more precise 
calculations of the temperature distribution at the interfaces 
and for better energy conservation in the model, a so-called 
fictitious cell is added, where the Neumann boundary conditions 
are applied. In the fictitious cell, the same temperature is set as 
in the adjacent cell belonging to material.  

The situation is more complicated at the interface for describing 
the heat transport between the lattice subsystem of 
molybdenum and the glass substrate. For an accurate 
description of the interface, we introduce the temperature of 

interface 𝑇int
𝑝+1

 and consider the relation between this value and 

the values of the Mo lattice temperature and the substrate 

temperature in the cells adjacent to the interface, 𝑇Mo
𝑝+1

 and 

𝑇glass
𝑝+1

 respectively (see Fig. 5). 

Discretization of Eq. (6) expressing the conservation of the heat 
flow at the interface between molybdenum and the substrate 
can be supplemented by an equation expressing the heat flow 
between those two adjacent cells directly (assuming that energy 

is not accumulated at the interface - note that - 𝑇int
𝑝+1

 does not 

belong to any cell). The assumption is that the direct connection 
between two cells adjacent to the interface can be described by 

an effective thermal conductivity 𝜅eff
𝑝

, to be determined. 

Because the energy is not accumulated at the interface, the 
following three values of the heat flux must be equal, 

 

𝜅Mo
𝑝 𝑇int

𝑝+1
 −  𝑇Mo

𝑝+1

ℎ
2

 =  𝜅glass
𝑝

𝑇glass
𝑝+1

 −  𝑇int
𝑝+1

ℎ
2

 = 

 =  𝜅eff
𝑝

𝑇glass
𝑝+1

 −  𝑇Mo
𝑝+1

ℎ
. (27) 

 

Figure 5. Schematics of the interface between molybdenum and glass 

substrate. 

Note that, in Eq. (27), we use the condition of the equality of the 

temperature 𝑇int
𝑝+1

 at both sides of the interface (as imposed by 

Eq. (7)). From the equality  

𝜅Mo
𝑝 𝑇int

𝑝+1
 −  𝑇Mo

𝑝+1

ℎ
2

 =  𝜅eff
𝑝

𝑇glass
𝑝+1

 −  𝑇Mo
𝑝+1

ℎ
, (28) 

 

the temperature of the interface can be derived 

𝑇int
𝑝+1

 =  
𝜅eff

𝑝
𝑇glass

𝑝+1
 −  𝜅eff

𝑝
𝑇Mo

𝑝+1
 +  2𝜅Mo

𝑝
𝑇Mo

𝑝+1

2𝜅Mo
𝑝 (29) 

and eliminated from the second equality of Eq. (27). Thus, the 

effective heat conductivity 𝜅eff
𝑝

 can be deduced as 

𝜅eff
𝑝

 =  
2𝜅Mo

𝑝
𝜅glass

𝑝

𝜅Mo
𝑝

 +  𝜅glass
𝑝 . (30) 

The latter is used in the Thomas algorithm as a common heat 
conductivity between the last cell of the molybdenum lattice and 
the first cell of glass. In this way, the Thomas algorithm can be 
solved via throughout calculations for the lattice subsystem and 
the substrate. 

3 RESULTS 

The model described in the section 1 and discretized in the 
section 2 was applied to the case of laser irradiation of 
molybdenum thin films deposited on fused silica. The laser 
pulses of duration 𝜏 =  200 fs (FWHM) have a Gaussian form 
with the central wavelength 𝜆 =  400 nm. Additionally, the case 
of free-standing molybdenum film was also considered. The 
model of free-standing film differs from the model of film 
deposited on substrate by the boundary condition at the remote 
film boundary. At the interface x2, the Eq. (6) and (7) were 
replaced by the Neumann boundary condition for the lattice 
system, similar to the one for electrons (Eq. (8)) instead of the 
conditions at the Mo-glass interface. Additionally, the third layer 
(glass) in multilayer model of reflectivity (see section 1.3) was 
substituted by air for accurate calculations of the reflection and 
transmission coefficients. 
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In this section, the results provided by the model are compared 
with the experimental data on melting threshold and the energy 
conservation of the model is discussed. 

 

3.1 Energy conservation 

The conservation of the laser energy was controlled during the 
simulation.  

Fig. 6 shows the evolution of the energy in different subsystems 
in the case of molybdenum film of thickness 25 nm deposited on 
glass substrate and irradiated by the laser pulse with the incident 

fluence 74 mJ ⋅ cm−2 corresponding to the calculated melting 
threshold.  The melting threshold was determined to be the 
lowest fluence leading to complete melting of the first numerical 
cell, i.e. when the melting enthalpy is fully consumed in this cell. 

In Fig. 7 the same information is plotted for the case of a free-
standing molybdenum film of thickness 60 nm and irradiated by 

laser pulse with incident fluence 98 mJ ⋅ cm−2 corresponding to 
the calculated melting threshold in this case. 

Comparison of the absorbed laser energy (light blue solid lines) 
with total energy (red dashed line) in the materials (in Mo film 
and glass for Fig. 6, in free-standing Mo film for Fig. 7) confirms 
that energy is conserved during computation with high accuracy 
in both cases with and without the substrate. The energy of 
electrons (green dashed lines), which is increasing abruptly as 
the light is absorbed during the ultrashort laser pulse, is then 
dropping due the electron-phonon coupling and corresponding 
thermalization between electronics and lattice subsystems. The 
curve for Mo lattice energy in both figures accounts for the 
energy consumed for lattice heating and the curve labeled 
‘Melting energy’ (black dashed line) corresponds to the 
consumption (upon melting) and release (upon solidification) of 
the melting enthalpy. The heat transport through the Mo-glass 
interface increases energy in the substrate with time while the 
film is gradually cooling as can be seen in Fig. 6.  

 

Figure 6. Temporal evolution of the energy in different subsystems of 
the molybdenum film of thickness 25 nm deposited on fused silica. The 
film was irradiated by a laser pulse (λ = 400 nm, τ = 200 fs (FWHM)). 

The incident laser fluence of 74 mJ ⋅ cm−2 corresponds to the 
calculated melting threshold (complete melting of the surface cell of 

the film). 

 

Figure 7. Temporal evolution of the energy in different subsystems of 
the molybdenum free-standing film of thickness 60 nm. The film was 

irradiated by a laser pulse (λ = 400 nm, τ = 200 fs (FWHM)). The incident 

laser fluence of 98 mJ ⋅ cm−2 corresponds to the calculated melting 

threshold. 

 

3.2 Comparison with experimental data 

The aim is to reproduce the experimentally observed 
dependence of the absorbed fluence corresponding to the 
melting threshold as a function of the Mo film thickness. Two 
sets of simulations were prepared, one with the molybdenum 
films deposited on substrate and another one with the 
molybdenum free-standing films. The results of both simulations 
are shown in Fig. 8 together with the experimental data 
[Wellershoff 1999]. 

 

Figure 8. Absorbed fluence corresponding to the melting threshold for 
the Gaussian laser pulse (λ = 400 nm, τ = 200 fs (FWHM)) as function of 
molybdenum film thickness. Numerical simulations were performed for 

free-standing films and films deposited on the substrate (fused silica). 
Experimental data are taken from [Wellershoff 1999]. 

From Fig. 8 it is clearly seen that both models (for molybdenum 
films with and without substrate) reproduce very well the 
experimental data on melting threshold fluence in the range of 
experimentally investigated thicknesses.  

For the relatively thick films (𝑑 > 50 nm), the melting threshold 
fluence is saturating and film melting behaves as the case of bulk 
irradiation. For thinner films (𝑑 < 50 nm), the melting 
threshold fluence is decreasing with decreasing film thickness. 
The change of the threshold fluence tendency from thin film to 
the bulk behavior is observed around 50 nm in both numerical 
and experimental data. 

4 DISCUSSION 

According to the results shown in the previous section, the 
developed numerical model is capable of providing values of the 
melting threshold fluence for molybdenum films, which are in 
very good agreement with the experimental data (see Fig. 8). 
The numerical scheme conserves the energy with a high 
precision during the simulations (see Figs. 6 and 7) for films of 
different thicknesses. However, several points in our approach 
need discussion. 

It is reasonable to assume that the model can be successfully 
applied to the cases of irradiation by the laser pulse (𝜆 =
 400 nm, 𝜏 =  200 fs (FWHM)) with lower fluences than the 
calculated melting threshold. However, we neglect here a 
possible damage caused by stress. It should be noted that the 
damage threshold fluence can occur to be lower than the 
melting threshold due to mechanical effects like microcracks 
caused by thermally-induced stress [Domke 2014]. 

To apply the two-temperature model, the temperature must be 
already established in each subsystem. However, at very short 
time periods, during or right after ultrashort laser pulse 
irradiation, the electronic subsystem may not have been 
thermalized yet [Rethfeld 2002].  However, good agreement 
with the experimental data supports the assumption of minor 



 

 

MM SCIENCE JOURNAL I 2019 I DECEMBER  

3591 

 

influence of the processes related to the mentioned situation, at 
least for molybdenum in the irradiation regime described here. 

Radiation losses due to the emissivity of the front surface of the 
thin film [Honnerová 2017] was neglected. The energy loss by 
thermal radiation during the simulation time (up to melting) is 
negligibly small as compared to the energy absorbed by the film 
and dissipated in the film-substrate system. For longer times, the 
emissivity can play more important role and can be added as a 
part of source term. 

Some material properties were not considered as dependent on 
temperature (e.g., the electron-phonon coupling factor 𝑔 and 
refractive index). Their temperature dependences can be taken 
into account in future to possibly improve the model. Regarding 
the electron-phonon coupling factor, some questions have 
emerged recently on the use of the temperature-dependent 
coupling factor when addressing even stronger regimes of 
irradiation of thin metallic films [Mo 2018, Sokolowski-Tinten 
2015]. The temperature dependence of optical properties can 
have an effect on the reflection and transmission [Gnilitskyi 
2017]. However, the latter dependence will be more important 
for laser intensities well higher the melting threshold (in the 
regimes of strong ablation). 

Another important point to underline is that all material 
properties involved in the model presented here, except for 
coupling factor 𝑔, are for bulk material. It was shown however 
[Alvarez 2007] that confinement effects could affect the 
transport properties. The influence of the effects of confinement 
on the melting threshold of thin films of different thicknesses will 
be analyzed in our future works. 

Finally, the assumption of the equality of the temperature of 
molybdenum and glass in the interface between them and the 
possible effect [Swartz 1989] of the Kapitza resistance is 
questionable. The boundary condition between the lattice 
subsystem and glass described in this paper can be considered 
as condition with the Kapitza resistance equal to zero whereas 
the simulations of the free standing films correspond to the case 
of the infinite resistance at the interface. Since no visible effect 
can be seen on the results presented on Fig. 8, the modeled 
configuration seems to be unaffected by such phenomenon. 
Other systems, however, e.g. with substrates of higher thermal 
conductivity like silicon or metals, would require further 
implementation of this resistance.  

Also there is a possibility of another energy channel between 
molybdenum and glass substrate mentioned in several recent 
studies (for example in [Guo 2012]). Its principle lies in the direct 
coupling of the electronic subsystem with glass. This could lead 
to increase of the heat flux through the molybdenum-glass 
interface. 

5 CONCLUSIONS 

A thermodynamic model of laser energy absorption by 
molybdenum films was developed. The cases of free-standing 
films and of films deposited on a fused silica substrate irradiated 
with ultrashort laser pulses were investigated. The model‘s 
equations were discretized and a numerical code was prepared 
based on C programming language. It was verified that the 
energy was conserved during the simulations with high accuracy. 
The calculated melting threshold fluences of molybdenum films 
of different thicknesses on glass substrates are in good 
agreement with the available experimental data of femtosecond 
laser-induced melting threshold. 
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