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The numerical model presented in this article describes the 
heating of a thin strip of amorphous silicon on glass substrate by 
a continuous-wave Ar+ laser. The heat flow equation is solved 
using a finite difference method based on the implicit scheme 
with splitting by coordinates. A short overview of the methods 
of numerical analysis is given and the finite difference method is 
described in details including the numerical scheme, the 
algorithms with discussion of their validity, the quality of 
approximation and stability. The results of the simulations with 
a high spatio-temporal resolution help to determine the 
exposure time necessary to melt the entire cross-section of 
silicon strip and to get insight into the final temperature 
distribution in silicon as well as in the glass substrate.  
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1 INTRODUCTION  

The theoretical analysis presented in this paper is related to 
processing of a material by continuous laser. This technique is 
well-established in industry as well as in laboratory practices 
[Nickel 2003]. In our case, the absorbing material is a thin strip 
of amorphous silicon (a-Si) on a SiO2 substrate (fused silica glass). 
Continuous laser is focused on the a-Si and a part of its energy is 
absorbed, causing heating of the material above its melting 
point. When laser beam moves away from the molten part, 
material will cool down, crystallization will take place and a 
polycrystalline phase is observed in the processed material. Such 
laser micromachining has demonstrated a high quality of the 
processed a-Si strips in terms of crystallinity and optoelectronic 
properties [Franz 2019]. The typical scheme of the experiments 
is shown in Figure 1. 

We present the numerical model of the dynamics of melting of 
a-Si strips for the experimental conditions [Franz 2019]. The 
numerical analysis requires solving the heat flow equation in the 
Cartesian coordinate system using a numerical grid with fine 
nanometric steps to reliably reproduce the laser-energy 
absorption depth and also a high temporal resolution to 
reproduce fast heating of top layers, which are subjected to 

significant absorption of energy. To provide a general overview, 
the three main methods of numerical modeling are discussed, 
which are typically implemented when a numerical code tailored 
to a particular case is being developed, or which are at the heart 
of many commercial solvers. Further, we are describing in detail 
the implementation of one of them, the Finite Difference 
Method, and the features of solutions obtained by this method, 
in particular, its consistency, stability and accuracy are discussed.  

Figure 1. The typical scheme of experiments on laser processing of a-Si 

strips for waveguide applications. This scheme is considered in the 
present simulations, which were performed for the two-dimensional 
(x,z) case. The computational domain represents the cross section of a Si 

strip deposited on a fused silica substrate. X axis is parallel to the surface 
of the substrate and perpendicular to the strip orientation. Cw laser 
beam propagates along z-direction from the top, being focused on the 

surface of the Si strip. In the simulations presented in this paper, the Si 
strip is 0.4 µm thick (z dimension) and 2.1 µm wide (x dimension). The 
SiO2 substrate is considered infinitely thick and infinitely wide. Its size in 

the simulations is sufficiently large to secure that the temperature at the 
remote boundaries remains undisturbed. 

2 NUMERICAL SOLUTION OF THE HEAT FLOW EQUATION  

Numerical mathematics and computation have been a subfield 
of mathematics throughout the history. In the past it was used 
as a tool only for the problems with a low computational cost as 
all the computations were done by hands. Now it is a well-
established discipline that has spread into many fields so that its 
applications are often unified under the term computational 
science. As for the numerical analysis of partial differential 
equations (PDEs), the most important steps were taken in the 
beginning of 20th century and later they provided a basis for a 
significant development after the invention of the digital 
computers in mid of 1940s. Such problems were mainly dealing 
with technological problems arising from civil engineering and 
aerospace.  

The heat flow equation is one of the canonical equations in 
physics, which expresses the conservation of energy within a 
medium with thermal conductivity 𝑘 

  𝜌𝑐𝑝
∂𝑇

∂𝑡
= ∇ ∙ 𝑘(∇𝑇)  + 𝑞 .                                                             (1) 

Here T is the temperature, ρ is the density, cp is the heat capacity 
of the considered system. If a system under investigation is 
supplied by an energy, the term q is nonzero. Construction of an 
analytical solution is possible in some cases and typically 
considerable simplifications are done even for a steady-state 
situation or when the conductivity of the material is isotropic 
and independent on temperature. In many practical problems, 
however, the simplifications required to make the system 
solvable analytically may lead to an incomplete picture of the 
process. In these cases, a numerical approach can give a 
description that produces reliable and useful results. Brief 
description of the most important numerical methods for solving 
PDEs is given in the next paragraphs. 
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2.1 Methods for solving PDEs  

The main methods that are the key structural elements in the 
concept of numerical analysis of PDEs are the Finite Difference 
Method (FDM), the Finite Volume Method (FVM) and the Finite 
Element Method (FEM) (see, e.g., [Hoffman 1992, Mazumder 
2015]). All the methods discretize the space to be computed 
(computational domain) and, in a specific way, they search for a 
solution that satisfies the initial equation(s). For the FDM, the 
computational domain is covered by a grid with a given spatial 
step in all directions. Using a particular difference scheme, the 
differentials in the equation are substituted by differences. Thus, 
a set of difference equations is obtained and an algorithm is used 
to look for an adequate solution that satisfies the initial 
equation(s). For obtaining the solution, the proper boundary 
conditions have to be applied at the boundaries of the 
computational domain. The FDM is a relatively straightforward 
method for obtaining a strong form solution, which means that 
we are solving a given equation in its original form.  

In the FVM, the computational domain is discretized into the 
finite-sized volumes, which are connected to each other by 
vertices and edges or faces. The numerical values of a studied 
quantity belong to the center of each control volume. The FVM 
does not deal with the original equation, but uses the Gauss-
Ostrogradski theorem (or divergence theorem) to integrate the 
equation over the volume of each element. The finite volume 
equation is then a balance condition for fluxes passing through 
the faces of these finite volumes and therefore the conservation 
property is at the heart of this method. As the equation is not in 
its original form, this form of solution is called the weak form. 

Finally, the FEM discretizes the space in the convex elements. 
Similarly as in FVM, a weak (integral) form of the governing 
equation is found and the solution for each element is described 
as a linear combination of basic functions plus a test function (or 
error function), which is given by boundary conditions. Using a 
variational principle, the test function is minimized and a weak 
form of solution is found. This method was particularly 
successful for the problems in structural mechanics and the 
problems with complex geometries. Although it integrates the 
original PDE similarly to the case of the FVM, there is no 
guarantee that the conservation of a given quantity is insured. 
To address the problem of non-conservative nature, 
modifications of this method were developed. 

 

2.2 The Finite Difference Method 

For solving our problem of laser-induced melting of Si strips 
located on a SiO2 substrate, we have chosen the FDM. 
Foundations of this method were first published in [Courant 
1928]. Our problem does not possess any complex geometry and 
its governing PDE corresponds to a pure conservation of the 
thermal energy in a heat conductive media. Although the FVM 
may be a better candidate, we will clarify this choice by giving a 
more detailed description of the FDM applied to the time-
marching calculation. Below it will be shown that the possible 
weak points of the FDM in comparison to the FVM can be 
compensated by using the backward-Euler method and a direct 
solver, which together mitigate some of possible sources of error 
and insure a good energy conservation. 

The difference equation was derived using the central difference 
scheme for spatial derivative [Godunov 1987]. In this case, we 
have the second order accuracy scheme in space. Thus, the 
numerical error is reduced to one fourth when the grid spacing 
is halved and approaches zero when the Δ𝑥 is further decreased. 
This is the mandatory condition of consistency of the difference 

scheme. Error bound with approximation of time step is of first 
order. The final difference equation reads as  

𝜌𝑐𝑝
𝑇𝑖
∗ − 𝑇𝑖
Δ𝑡

= 𝑘
𝑇𝑖−1 + 𝑇𝑖+1 − 2𝑇𝑖

(Δ𝑥)2
.                                          (2) 

To find a solution 𝑇𝑖
∗ at a time moment 𝑡 = 𝑡0 + Δ𝑡, it is 

necessary to construct and solve a system of 𝑁 linear equations. 
There are two ways of obtaining the unknown parameter at the 
new time moment, the explicit and implicit forms. The 
implementation of implicit method is more demanding as it 
requires to solve the system of all 𝑁 equations together but, on 
the other hand, it offers unconditional stability. The explicit 
method is only stable when the following relation is satisfied. 

𝛼Δ𝑡

(Δ𝑥)2
≤
1

2
 ,                                                                                        (3) 

where 𝛼 = 𝑘/𝜌𝑐𝑝 is the thermal diffusivity and 𝛼Δ𝑡/(Δ𝑥)2 is 

called the grid Fourier number. The implicit form gives the 
relation 

𝜉 =
1

1 +
4𝛼Δ𝑡

(Δ𝑥)2
 sin

𝜃

2

 ,                                                                        (4) 

which is satisfied irrespective from the choice of Δ𝑥 and Δ𝑡. Use 
of explicit method can lead to very small time steps and growth 
of computational cost of the simulation. Therefore, an implicit 
method is preferable for the studied problem, although its 
unconditional stability does not ensure physically meaningful 
result for all values of the time step because the accuracy can be 
significantly lowered by the truncation error [Mazumder 2015]. 

The solution itself can be split by the coordinates so that in one 
time step the directions are treated separately one after another 
[Godunov 1987]. Thus, the column-wise calculations are done 
firstly and row-wise solution is obtained in the second step. This 
has an advantage also in the choice of the solver because, for 
dense matrices of coefficients, iterative solvers typically have to 
be used to save time. Sparse or band matrices are solvable by 
direct methods without increasing drastically the computational 
time. Here, the Thomas algorithm is used to get exact solution of 
the system of equations.  

Above, we have described the tools available for numerical 
solution of the heat flow equation over the computational 
domain space in time-advancing calculation. Below we report on 
application of the mathematical model to the real situation 
illustrated in Fig. 1.  

3 IMPLEMENTATION AND MATHEMATICAL MODEL  

Using the implicit method and taking the advantage of splitting 
by coordinates, we obtain two systems of linear equations given 
by equation (1) (note that we consider the temperature-
dependent material parameters). By rearranging, we can write 
for 𝑥 direction 

−𝑘𝑙𝑇𝑖−1
∗ + (

∆𝑥2

𝑑𝑡
𝜚𝑐𝑝 + 𝑘𝑟 + 𝑘𝑙)𝑇𝑖

∗ − 𝑘𝑟𝑇𝑖+1
∗

=
∆𝑥2

𝑑𝑡
𝜚𝑐𝑝 𝑇𝑖 +  𝑞 ,                                       (5) 

where 𝑘𝑙 and 𝑘𝑟  are defined as 
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𝑘𝑙 =
𝑘𝑖−1 + 𝑘𝑖 

2
,   𝑘𝑟 =

𝑘𝑖+1 + 𝑘𝑖 
2

 .                                             (6) 

Here 𝑘𝑖−1 , 𝑘𝑖 and 𝑘𝑖+1  are the thermal conductivities in the 
neighbouring cells 𝑖 − 1, 𝑖 and 𝑖 + 1 along 𝑥 direction. The 
source term 𝑞 is the energy supply to each cell given by the laser 
power P, laser beam radius r0, the reflection and absorption 
coefficients of the material, R and α respectively. Here, we 
assume the Gaussian profile of the laser beam which has the 
form 

𝑞(𝑥, 𝑦, 𝑧) = (1 − 𝑅)
2𝛼 𝑃

𝜋𝑟0
2 exp(−

𝑥2

𝑟0
2 −

𝑦2

𝑟0
2) exp(−𝛼𝑧),      (7)  

For the 𝑧 direction the identical equations are used but the 
source term of the laser energy is omitted as its contribution is 
already added at the considered time step: 

  −𝑘𝑢𝑇𝑖−𝑛
∗ + (

∆𝑧2

𝑑𝑡
𝜚𝑐𝑝 + 𝑘𝑢 + 𝑘𝑑)𝑇𝑖

∗ − 𝑘𝑑𝑇𝑖+𝑛
∗  

=
∆𝑧2

𝑑𝑡
𝜚𝑐𝑝 𝑇𝑖  ,                                                                                 (8) 

where 𝑛 is the number of cells in the direction 𝑥 and 𝑘𝑢 and 𝑘𝑑  
are defined as 

𝑘𝑢 =
𝑘𝑖−𝑛 + 𝑘𝑖 

2
,   𝑘𝑑 =

𝑘𝑖+𝑛 + 𝑘𝑖
2

 .                                          (9) 

These equations are written for each interior cell of the 
computational domain. For the cells on the boundaries, these 
equations are substituted by the boundary conditions. For the 
top, left and right boundary of the Si structure (Fig. 1), the 
condition of zero heat flux is applied as 

 𝑘
𝑑𝑇

𝑑𝑥
|
𝑥𝑙 
= 0, 𝑘

𝑑𝑇

𝑑𝑥
|
𝑥𝑟 
= 0, 𝑘

𝑑𝑇

𝑑𝑧
|
𝑧𝑡 
= 0.                (10) 

Here 𝑥𝑙, 𝑥𝑟 and 𝑧𝑡 denote the derivatives of 𝑥 at the positions of 
the left boundary, the right boundary and z-derivative at the 
position of the top boundary respectively. The same condition 
holds for the part of the top boundary of SiO2 substrate that is 
not contacting with the Si strip  

𝑘
𝑑𝑇

𝑑𝑧
|
𝑧𝑡 
= 0,                                                                                    (11) 

where zt denotes the derivative at the top boundary of SiO2. 
Physically, this boundary condition states that no energy is 
leaving the Si and SiO2 through these boundaries. The interface 
between Si and SiO2 is the only one through which the heat can 
be transferred. The boundary condition at this interface is based 
on the conservation of energy, stating that 

  𝑘
𝑑𝑇

𝑑𝑧
|
𝑧𝑡 
= 𝑘

𝑑𝑇

𝑑𝑧
|
𝑧𝑏 
.                                                                     (12) 

Here 𝑧𝑡 and 𝑧𝑏 denotes the z-coordinate adjacent to the 
interface from the top (from Si strip) and the bottom (from glass 
side). The heat flux through the interface in both materials must 
be equal at the interface where both materials are in contact. 
Other boundaries of the substrate are considered to be 
sufficiently distant and do not influence the solution. Therefore 
these boundaries are shifting during the calculation in such a 
way that the computational domain of the substrate always 
contains the cells with the room temperature of 300 K. 

To describe the melting process, we rewrite Eq. (1) to the 
following form [Zhvavyi 2006, Bulgakova 2010]  

 

  (𝜌𝑐𝑝 + 𝐿𝑚𝛿(𝑇 − 𝑇𝑚))
∂𝑇

∂𝑡
= ∇ ∙ 𝑘(∇𝑇) + 𝑞.                        (13) 

 

Here the term Lmδ(T − Tm) allows to follow the propagation of 
the liquid–solid interface during melting. Tm and Lm are the 
melting point and the latent heat of fusion respectively and the 
δ-function accounts for absorption of the fusion heat at the 
melting front.  

 

3.1 Properties of the numerical solution 

Each direction of calculations will give us one system of the linear 
algebraic equations given by the equations (5) and (8). The 
system of linear equations can be written in a matrix form as 

  𝑴𝑇𝑖
∗ = 𝑇𝑖 ,                                                                                      (14) 

where 𝑴 is the square matrix with 𝑁 rows and 𝑁 columns and 
with all elements to be zeros except the three central diagonals. 
An example matrix for a simplified case where 𝑁 = 6 looks as 

       

(

 
 
  

𝑓1 𝑔1  0 
𝑒2 𝑓2 𝑔2
0 𝑒3 𝑓3
0 0  𝑒4
0
0

 
0
0

  
0
0

 0  0  0
 0  0  0
 𝑔3  0  0

 

  𝑓4 𝑔4  0 
 𝑒5
0

 𝑓5
 𝑒6

𝑔5
 𝑓6)

 
 
 

(

 
 
 
 

𝑇1
∗

𝑇2
∗

𝑇3
∗

𝑇4
∗

𝑇5
∗

𝑇6
∗)

 
 
 
 

= 𝐶

(

 
 
 

𝑇1
𝑇2
𝑇3
𝑇4
𝑇5
𝑇6)

 
 
 
,      (15) 

where 𝑓𝑖 are the coefficients of the central elements; 𝑒𝑖 and 𝑔𝑖 
are the coefficients of the elements to its left and right 
respectively. The values of the tridiagonal matrix relate the 
outputs to the inputs and therefore have direct implications on 
the behavior of the mathematical model. This behavior is 
quantified by the condition number of matrix 𝑴, 

𝑐𝑜𝑛𝑑(𝑀) = ‖𝑀‖‖𝑀−1‖.                                                              (16) 

The condition number for the well-conditioned matrix should be 
close to 1. The logarithm of the condition number tells how many 
decimal places are lost in one iteration. For our matrix, when the 
values of the coefficients are evaluated at the initial conditions 
using parameters shown in Table 1-3, we get 𝑐𝑜𝑛𝑑(𝑀) < 1.2. 
Thus, our matrix can be considered as well-conditioned.  

If the problem stated by our model has a solution, the solution 
is unique and changes continuously with the change of input 
parameters, then we call this problem well-posed. Our problem, 
the heat transfer with the given initial conditions, is a typical 
example of a well-posed problem. An example of the opposite 
situation, the ill-posed problem, is the inverse problem, when 
starting from the final state, the algorithm tries to find the initial 
temperature distribution. 

The direct solution using the Thomas algorithm is a two-step 
process of forward elimination and backward substitution. The 
forward elimination removes the coefficients of the lower 
diagonal (Eq. (15)) 

 𝑓𝑖 = 𝑓𝑖 −
𝑒𝑖
𝑓𝑖−1

𝑔𝑖−1 ,                                                                       (17) 

 

 𝑟𝑖 = 𝑟𝑖 −
𝑒𝑖
𝑓𝑖−1

𝑟𝑖−1 ,                                                                         (18) 
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 𝑒𝑖 = 0,                                                                                               (19) 

where i = 2,3,4, … The last equation for 𝑁𝑡ℎ   cell has only one 
unknown value. The value for the coordinate 𝑥𝑁  is evaluated and 
substituted into the equation for 𝑥𝑁−1 and the process is 
repeated until the needed values in all 𝑥𝑖 are determined. The 
relation for backward substitution is 

 𝑥𝑁 =
𝑟𝑁
𝑓𝑁
 ,                                                                                         (20) 

 

 𝑥𝑁−1 =
𝑟𝑁−1 − 𝑔𝑁−1𝑥𝑁

𝑓𝑁−1
 .                                                            (21) 

This mathematical model using the central difference scheme, 
splitting by coordinates and time-marching approach with the 
implicit treatment of unknowns has been implemented into the 
numerical code. In the following section, the calculations carried 
out based the presented mathematical model will be described 
and discussed. 

4 CALCULATION OF TEMPERATURE DISTRIBUTION 

4.1 Parameters used in the model 

Numerical analysis is carried out for a 2D cross-section of 
amorphous Si (a-Si) strips located on a SiO2 substrate (Fig. 1). The 
upper part of the computational domain is occupied by a-Si of 
the width 2.1 µm and thickness 0.4 µm. The substrate below the 
a-Si strip is considered to be infinitely wide and infinitely thick. 
The physical and optical parameters which are used in the model 
are summarized by Tables 1–3. Discretization of the 
computational domain is realized by a uniform grid with steps 
𝛥𝑥=10 nm and 𝛥𝑧=1 nm. The reason for the finer mesh in z 
direction is in the light attenuation by Si, which follows the 
exponential Beer-Lambert law, giving the absorption depth of 
the order of only 30 nm.  

The simulations were performed for cw laser with the 
wavelength of 488 nm, power 0.2 W and beam diameter 4.7 µm 
in the focus. In our simulations, laser is not moving along the 
strip and, thus, its intensity does not change. Figures 3 and 4 
show the examples of the temperature and phase maps 
obtained by the model for these conditions. They correspond to 
the beginning stage of melting of a-Si strip (Fig. 3) and its 
complete melting (Fig. 4).  

 

4.2 Effect of the size of time step 

As discussed in section 2.2, the size of the time step is not critical 
for stability but it influences accuracy due to linear dependence 
of truncation error on 𝛥𝑡. To study this effect in our case, several 
values of 𝛥𝑡 were used to model the temperature distribution 
during the time interval of 𝑡 = 100 ns while keeping other 
parameters the same. Figure 2 presents the temperature 
evolution at three points on the axis of symmetry of the system 
cross-section.  
It is seen that increasing the step 100 times does not affect the 
solution significantly in the most points of a-Si volume but leads 
to a noticeable difference in the temperature at the interface 
with substrate. This indicates that mainly the cells in the vicinity 
of an abrupt change of conductivity are sensitive to the value of 
𝛥𝑡 and this can be a potential source of error. At the time 
moment 𝑡=100 ns, the temperature value obtained with 
𝛥𝑡=1×10-12 s is by 48 K smaller than when using 𝛥𝑡=1×10-10 s. 
 
 

 

 
Table 1. Properties of a-Si and liquid silicon (l-Si) [Bovatsek 2010]. 

 

Property Value Source 

Density (kg/m3) 2200 [Bovatsek 

2010] 

Annealing temperature (K) 1413 [Wikipedia 
contributo
rs 2019] 

Melting temperature (K) 1873 [Bovatsek 

2010] 

Thermal conductivity (W/m 

K) 

T ≤ 1170 K: 

1.0056+0.0013×T 

T ≤ 1170 K:  

 2.514      

[Bovatsek 

2010] 

Specific heat (J/kg K) 708.11+0.29917×

T 

[Bovatsek 

2010] 

Table 2. Properties of SiO2. 

Property Value Source 

Reflection coefficient in a-Si 0.43 [Palik 

1998] 

Reflection coefficient in liquid 

state (l-Si) 

0.68 [Fuchs 

2000] 

Absorption coefficient of a-Si 

(1/m) 

3.2461×107 [Palik 

1998] 

Absorption coefficient of l-Si 

(1/m) 

11.75031×107 [Fuchs 

2000] 

Table 3. Optical properties of Si at laser wavelength 488 nm. 

On the other hand, the values of 𝛥𝑡 between 1×10-12 s and 5×10-

11 s give the difference in temperature at the time moment of 
𝑡=100 ns of only several Kelvins, leaving some space for 
optimization of the computational time and, at the same time, 
maintaining a good accuracy. 

 

Property Value 

Density of a-Si (kg/m3) 2200 

Density of l-Si (kg/m3) 2520 

Melting point of a-Si (K) 1420 

Latent heat of fusion (J/kg) 1.32×106 

Thermal conductivity in a-Si 

(W/m K) 

1.8 

Thermal conductivity in l-Si 

(W/m K) 

50.28 + 0.02933  (T-Tm) 

Specific heat (J/kg K) 695.54 exp(2.37×10-4T) – 

8.0029+0.1017×T 
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Figure 2. Evolution of the temperature at three different points in the a-

Si strip cross-section calculated with the different time steps.  

Based on the truncation error analysis, for further simulations 
we have chosen the value of time step 𝛥𝑡=5×10-12 s. In section 
2.2, we mentioned that the particular implementation is energy 
conservative. This is illustrated in Fig. 3 where the energy 
balance is shown. We see that after the time 𝑡=50 ns, the 
difference between energy 𝑈𝐿 delivered by the laser and internal 
energy of the material 𝑈𝑆𝑖 starts to grow with the rate of ~0.1 % 
per 50 ns. This is the point where all upper surface cells of the 
strip reach the melting point. This rate does not increase further 
with time, therefore we assume that this error is probably 
related to the size of the melting front. By the complete melting 
at 600 nm, the error is still below 1%.  

 

 

Figure 3. Balance between energy supplied by the laser 𝑼L and rise of the 
internal energy 𝑼Si stored in the Si computational domain. The difference 
between the total energies is shown in percent to quantify the energy 

conservation of the model.  

 

4.3 Results of simulation of complete melting and discussion 

The goal of material processing of a-Si structure is to change its 
phase from amorphous to polycrystalline. Large microcrystals 
are desirable as the boundaries of individual crystallites 
introduce losses and reduce the overall quality of a potential 
optoelectronic structure [Nickel 2003]. Numerical simulations of 
the temperature distribution and the dynamics of melting may 
be a useful study that can help to get insight into conditions prior 
crystallization, which starts when the laser beam moves away. 
As the initial step of such study, our model can be used to 
describe melting of the Si structure and to give information of 
the total time necessary to melt it through. An advantage of laser 
processing of such combination of materials is in the fact that a 
non-absorbing material (fused silica glass, SiO2, in our case) 
should be much less affected by the heat and therefore its 
original properties are kept except for some heat-affected area. 
The size of this affected can also be determined by this model.  

When irradiation is started (𝑡 = 0 ns), the surface layer undergoes 
rapid heating so that melting starts already at ~30 ns. As 
consumption of the latent heat of fusion takes time, a nano-sized 
region exists where the temperature has reached the melting 
point but the material in this region is not still completely 
molten. From Fig. 4, bottom, it is seen that the thickness of this 
layer (highlighted by green) is only few nanometers.  

The time required for complete melting was found to be almost 
exactly 600 ns (Fig. 5). To this time moment, overheating of the 
SiO2 substrate above the annealing temperature (~1413K 
[Wikipedia contributors 2019]) is reached at a depth of only few 
nanometers. Thus, the substrate does not experience noticeable 
softening and corresponding damage due compaction of fused 
silica matrix [Sakakura 2011] that can be important for optical 
applications. At longer laser-exposure times, glass compaction 

under the Si strip may influence the waveguiding quality as 
mentioned above. 

 

 

 
Figure 4. Temperature map of complete cross-section of a-Si/SiO2 
system (top) and the phase map showing the position of the melting 

front in a-Si (bottom). The time moment is 100 ns from the beginning of 
irradiation. 

 

 
Figure 5. The same as in Fig. 3 for the time moment 600 ns. 

Simulations also reveal the correlation between the phase 
change undergone in the a-Si strip and heating of the substrate. 
The rate of heating is always accelerated with melting within a-
Si strip but is lowered for the substrate when the time of 
complete melting of Si is reached. This can be attributed to the 
increased conductivity in the liquid phase of silicon that leads to 
faster smoothening of temperature gradients in the molten 
region.  

Total time of melting of a-Si strip is in a good agreement with the 
previous work for the fibre geometry, where the a-Si cross-
section was circular and surrounded by the SiO2 cladding [Healy 
2014]. 

5 CONCLUSIONS 

The 2D numerical model solving the heat flow equation for the 
case of absorbing material on a transparent substrate irradiated 
by a continuous laser has been presented. It is proven that the 
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implementation is consistent, stable and represents a well-
posed problem.  

Our simulations predict the total time necessary for complete 
melting. For the experimental conditions when cw Ar+ laser with 
the power of 0.2 W is used for the beam diameter 4.7 µm, the 
melting time is ~600 ns. Depth of softening of SiO2 substrate, 
where the temperature reaches annealing point, was found to 
be negligibly small to this time. 

A weak point of these simulations is an overestimation of the 
temperature for the cells close to high temperature gradients. 
To avoid overestimation, the time steps has to be decreased to 
1×10-10 s or even smaller. There is also a limit in respect of 
simulations of long exposure times, when material evaporation 
can start as well as cooling/solidification must proceed with 
formation of nano-/microcrystallites, that calls for further 
improvement of the model. 
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