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The main objective of this paper is to establish  models of 
measured real-time data that are obtained in a frontal 
impact of a vehicle into the rigid barrier.  When it tcomes 
to modeling the vehicle crash we can distinguish two 
approaches. The first one utilizes CAE (Computer Aided 
Engineering) software including FEA (Finite Element 
Analysis) while the second one is based on the System 
Identification Toolbox , which provides MATLAB® 
functions, Simulink® blocks, and an app for constructing  
the models of dynamic systems from measured input-
output data. The toolbox also provides algorithms for 
embedded online parameter estimation. 
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1 INTRODUCTION   

The vehicle crash test is usually done in order to ensure 
safe design standards .  Due to advanced research in  
simulation software, simulated crash tests can be 
performed and evaluated  by the full-scale crash test. 
Therefore, cost associated with real crash test can be 
reduced.  System identification concerns construction and 
validation of mathematical models from dynamic input / 
output data. In experiments the system reveals 
information about itself in terms of input and output 
measurements. System identification and tools for  
modeling are routinely used in industry [Munyazikwiye 
2014]. There are several solutions available for the 
identification of mathematical models based on 
experimental test procedures. One of the most 
convenient and accessible solution is to use the system 
identification  toolbox [Mathworks R2013b]. The system 
identification toolbox is largely based on the work of 
[Ljung 1999] and implements common techniques used in 
system identification. There is a substantial literature on 
the system identification [Ljung 1994]. The toolbox aids 
the user to fit both linear and nonlinear models to 

measured data sets known as black box modeling 
[Marzbanrad 2011b]. 

2 GETTING DATA FROM FRONTAL IMPACT TEST 

Data for the System identification  Toolbox  were 
obtained from a frontal impact test into the  rigid barrier 
with full coverage at a speed of 56.17 kmh-1 (15.88 ms-1) 
according to NCAP (New Car Assessment Program)  [NCAP 
2017].  The tested vehicle  was  Honda Civic XL 2 door 
Coupe. The record was processed from an accelerometer 
that was firmly connected to the vehicle floor at the rear 
of the bodywork  [Vlk 2003]. Accelerometer is a sensor of 
non-electric quantities, which converts the detected 
quantity into an electrical signal and is subsequently 
processed and evaluated. This electrical signal is 
characterized as a continuous analogue signal and then 

the DA /  converter is sampled to discrete values. 

Recording from accelerometer at impact tests due to 
significant signal oscillation must be filtered by the CFC 60 
filter (Channel Frequency Class) [Cichos 2006].  Tab. 1 
records the most common type of filter used in this 
article. 

Filter type Filter parameters Use the filter 

CFC 60 

3 dB limit 

frequency 
100 Hz 

Structure 

acceleration 

Stop 

damping 
–30 dB 

Sampling 

frequency 

At least 

600 Hz 

Table 1. Type of filter 

In order to be able to measure impact tests, the signal 

processing must be performed under predetermined 

conditions. These regulations are laid down in SAE J211-1: 

Instrumentation for Impact Test, Part 1, Electronic 

Instrumentation. All  quantities occurring in the impact 

test are specified in this standard. 

3 SYSTEM IDENTIFICATION TOOLBOX  

It lets you create and use models of dynamic systems not 
easily modeled from first principles or specifications. You 
can use time-domain and frequency-domain input-output 
data to identify continuous-time and discrete-time 
transfer functions, process models, and state-space 
models. In a dynamic system, the values of the output 
signals depend on both the instantaneous values of its 
input signals and also on the past behavior of the system. 
A model is a mathematical relationship between the 
system’s input and output variables. Models of dynamic 
systems are typically described by differential or 
difference equations, transfer functions, state-space 
equations, and pole-zero-gain models.  System 
Identification requires a model structure. A model 
structure is a mathematical relationship between input 
and output variables that contain unknown parameters. 
Examples of model structures are transfer functions with 
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adjustable poles and zeros, state space equations with 
unknown system matrices, and nonlinear parameterized 
functions. The system identification process requires that 
you choose a model structure and apply the estimation 
methods to determine the numerical values of the model 
parameters. 

4 ACHIEVED RESULTS  AND THEIR DISCUSSION 

In the Simulink, which is a graphical programming 
environment for modeling, simulating and analyzing 
multidomain dynamical systems, our model was created 
Fig.1. The main objective of this model is to process the 
measured data (unfiltered deceleration signal) so that at 
the output of the Scope 5 block we observe the course of 
deformation for the vehicle ( Honda civic XL).  The model 
consists of blocks that are in the library and can be moved 
to the model window. In addition to moving from the 
library, blocks in the model window can be copied in a 
standard manner. The name of the new block is 
automatically set so that it is unambiguous within the 
model window. To create our own model in Fig. 1, the 
following blocks were used: Signal From Workspace, 
Lowpass Filter, Scope, Workspace, Gain, Integrator, Add, 
Constant, and some of their copies. The simulation result, 
which is the deformation course and the velocity course 
of the vehicle, can be seen in the Scope 5 block, which is 
essentially Fig. 2 and  the simulation itself is performed by 
the model shown in Fig. 1.  

 

Figure 1. Own model in Simulink 

In Fig. 2 (left down) is depicted the original data signal 
with noise (Deceleration in (g) vs. Time (s)) obtained from 
the accelerometer and the filtered data signal by the 
relevant filter CFC 60, see Fig. 2 (right down) 
(Deceleration (m/s2) vs. Time (s)). By integrating 
deceleration by time, it is possible to obtain a time-
dependent velocity, see Fig. 2 (top right) (Velocity (m/s) 
vs. Time (s)). By double integration of deceleration by 
time, it is possible to calculate a time-dependent 
deformation , see Fig. 2 (top left) (deformation (m) vs 

Time (s)). From the measured data (record from 

accelerometer)  and the processed data Fig. 1, it is 
possible to determine some parameters respecting the 
deceleration, velocity and deformation in a closed time 

interval (in our case it is 3 ms). For the vehicle Honda Civic 
XL, it is possible to determine maximum dynamic crush 
(max. deformation)  C = 0.751 m at time t = 0.08s – from 
real dat, see Tab.2 and Fig. 2 [Vlk 2003, Evin 2016]. 
Real  crash tests  are difficult to realize – there is need for 
appropriate facilities, measuring devices, data acquisition 
process, qualified staff and of course – a car. Those 
factors make the test complicated, time – consuming and 
expensive enterprise. Therefore, instead of a real 
experiment it is justified to propose a mathematical 
model of a collision and analyze it  to approximate its 
results. This allows us to predict the behavior of the real 
car without performing complicated crash tests. 
Time of dynamic crush obtained from the models is 
exactly the same as in experiment: t = 0.08s.  The 
maximum dynamic crush obtained from measured data 
(for Hondu Civic XL) is C = 0.751 m. Maximum dynamic 
crush C = 0.7646 m, which is obtained from the arx441 
model is about 1.81% grather than that of the measured 
data. The greatest differences show arx441, arxqs 
models, which is in absolute numbers of 1.36 cm, see 
Tab.2. 

 

Time of 

dynamic 

crush t 

in (s) 

Max. dynamic 

crush C (max. 

deformation) 

in (m) 

Pole-Zero maps, 

distance from the 

zero (s-1) 

Best fits 

Measured 

data  
0.08 0.751 - - 

tf1-model 0.08 0.751 
|i0,009|,               | 

-i0,009| 
99.78% 

ss1-model 0.08 0.7517 |0| 99.22% 

P2U-model 0.08 0.7518 |-12|,|-95| 99.12% 

n4s2-model 0.08 0.7503 |1| 98.97% 

arx441-

model 
0.08 0.7645 

|0.4+i0.4|,|0.4-

i0.4|,|1| 
94.71% 

arxqs-model 0.08 0.7646 
|0.4+i0.4|,|0.4-

i0.4|,|1| 
94.70% 

Table 2. Gained data (both measured  and calculated) 
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Figure 2. Oscilloscope outputs (Sccpe 5 block) 

The processed data from Simulink´s own model , were 
further imported into the system identification toolbox as 
seen in Fig. 3 (input-deceleration output-deformation 
signals). 

 

Figure 3. Input and output signals  

4.1 Linear models using quick start    

You can use the Quick Start feature in the System 
Identification app to estimate linear models. One of these 
is also the n4s2 - state-space model calculated using 
n4sid. The matlab algorithm automatically selects the 
model order (in this case, 2). n4sid - estimate state-space 
model using a subspace method and measured input-
output data. This model is parametric and has the 
following structure: 

)()()()(

)()()(/

tetDutCxty

tKetButAxdtdx



    ,                          (1) 

where y(t) represents the output at time t, u(t) represents 
the input at time t, x is the state vector, and e(t) is the 
white-noise disturbance. The System Identification 
Toolbox product estimates the state-space matrices A, B, 
C, D, and K.  
A =                                                                          

              x1                       x2                        
   x1      0.9995    0.0004479                         
   x2  -0.0004537            1                                                                                                   
  B =                                                                          
         Deceleration                                                 
   x1  4.975e-07                                                 
   x2  2.179e-06                 
  C =                                                                          
                          x1        x2                       
   Deformation  16.96   -3.94                                                                                            
  D =                                                                          
                Deceleration                                                   
   Deformation             0                                                                                                                       
  K =                                                                          
          Deformation                                                   
   x1  0.05999                                                    
   x2   0.1539                                                  
n4s2 - state-space model (pink line) is created from 
measured input-output data, see Fig. 4.  Sample time: 
0.0001 seconds. Deployment of poles and zeros, see Fig. 
5. 
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n4s2 98,97%

arxqs 94,7%

arx441 94,71%

P2U 99,12 %

ss1 99,22%

tf1 99,78%

Mesuread data

 

Figure 4. Measured and model outputs 
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Figure 5.  (Pole (cross)-Zero (circlet) map) 

4.2 Transfer function model 

The general transfer function model structure is: 

)()())(/)(()( sEsUsdensnumsY     ,                          (2)                                        

where Y(s), U(s) and E(s) represent the Laplace transforms 
of the output, input and error, respectively. num(s) and 
den(s) represent the numerator and denominator 
polynomials that define the relationship between the 
input and the output. The roots of the denominator 
polynomial are referred to as the model poles. The roots 
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of the numerator polynomial are referred to as the model 
zeros. You must specify the number of poles and zeros to 
estimate a transfer function model. The System 
Identification Toolbox product estimates the numerator 
and denominator polynomials, and input/output delays 
from the data. tf1 -  model  (blue line) is created from  
measured input-output data (From input "Deceleration" 
to output "Deformation"), see Fig. 4: 

0001249.001362.0

9984.00007561.0
2 



ss

s                                            (3)                                       

Parameterization: Number of poles: 2,  Number of zeros: 
1  , see Fig. 6 
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Figure 6. (Pole-Zero map) 

4.3 State-space model  

ss1- state-space model: (green line) created from   

measured input-output data, see Fig.4 [Munyazikwiye 

2013].  Deployment of poles and zeros, see Fig. 7. 

)()()()(

)()()(/

tetDutCxty

tKetButAxdtdx




  ,                            (4) 

  
 where A =                                                                          
                x1           x2                     x3               x4 
   x1        1225        1624                -434            -1619  
   x2  -2.903e+w4   -1.063e+04        2444           6331 
   x3      -291.1        -60.77               15.06         12.81   
   x4   2.952e+04    1.084e+04        -2503          -6474                                                                                                                                                      
  B =                                                                          
          Deceleration                                                  
   x1  -8.178e+06                                                  
   x2   2.198e+07                                                  
   x3  -5.649e+04                                                 
   x4  -2.253e+07                                                                                                                        
  C =                                                                          
                              x1         x2        x3              x4 
   Deformation   0.474    -18.81  -0.1272     -18.52                                                                                   
  D =                                                                          
                Deceleration                                                   
   Deformation             0                                                                                                                                 
  K =                                                                          
         Deformation                                                      
   x1  689.2                                                       

   x2  -1361                                                       
   x3   1729                                                      
   x4  921.8                          
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Figure 7. (Pole-Zero map) 

4.4 About polynomial ARX and ARMAX models 

For a single-input/single-output system (SISO), the arx 
model structure is: 

)()1(...)(

)(...)1()(

1

1

tenntubntub

ntyatyaty

bknbk

an




         

(5)                                              

y(t) represents the output at time t, u(t) represents the 
input at time t, na is the number of poles, nb is the 
number of zeros plus 1, nk is the input delay—the number 
of samples before the input affects the system output 
(called delay or dead time of the model), and e(t) is the 
white-noise disturbance. You specify the model orders na, 
nb, and nk to estimate arx models. The System 
Identification Toolbox product estimates the parameters 
a1... an … and b1... bn … from the data. 
Name: arx441 - model  (turquoise line) is  created from   
measured input-output data. Sample time: 0.0001 
seconds , see Fig. 4. Deployment of poles and zeros, see 
Fig. 8 .    
                                                                                                                                 
Discrete-time arx441 model:   

)()()()()( tetuzBtyzA   ,                                  (6)                                                                                                                    

where A(z) = 1 - 2.77  z^-1 + 2.86 z^-2 - 1.39 z^-3 + 0.31 
z^-4                                                                                                                                                          
B(z) = 3.864e-07 z^-1 - 1.006e-06 z^-2 + 8.404e-07 z^-3 - 
2.14e-07 z^-4 
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Figure 8. (Pole-Zero map) 

arxqs - model (yelow line) is created from  measured 
input-output data. Sample time: 0.0001 seconds. See 
Fig.4.  Deployment of poles and zeros, see Fig. 9.                                                                                                                                     
Discrete-time arxqs model: 

)()()()()( tetuzBtyzA      ,                        (7)                                                                                                                    

where A(z) = 1 - 2.776 z^-1 + 2.861 z^-2 - 1.394 z^-3 + 
0.30 z^-4                                                                        
B(z) = 3.1e-07  - 7.523e-07 z^-1 + 5.562e-07 z^-2 - 1.075e-
07z^3                                          
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Figure 9. (Pole-Zero map) 

4.5 Process model with transfer function 

P2U - model (red line) is created from   measured input-
output data. Process model with transfer function  is 
found in the formula:      

2)*(***21
)(

sTwsTwZeta

K
sG

p


    ,     (8)                                                                      

where Kp = 8347.9 
Tw = 90.677                                      
Zeta = 0                                                                                                 
Parameterization:  'P2U' , See Fig.4 . Deployment of poles 
and zeros, see Fig. 10 and  Fig. 11  
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Figure 10.  (Pole-Zero map) 
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 Figure 11.  (Bode diagram) 

5 CONCLUSION 

Our own model Fig. 1 was created in Matlab-Simulink, 
which is capable of filtering off  (Lowpass CFC 60 filter) 
the signal obtained from the accelerometer to improve 
modeling results. 

Simulink's own model Fig. 1 allows  to track the speed and 
deformation path  over time (within 0.3 s), thus allowing 
to determine max. deformation from experimental data, 
max. deceleration of vehicle, max. deceleration at the 
head of the manikin, when the car's speed gets zero, at 
which time point the deceleration passes through a zero 
value and begins to acquire the positive values 
(separation of the vehicle from the barrier) and so on.  

Fig. 4 shows measured and estimated model outputs that 
reconstruct the vehicle crash with small inaccuracies in 
terms of dynamic crush. The time of dynamic crush that is 
obtained from measurements withs models is 
approximately the same as the time of  dynamic crush in 
the real-time experimental data (0,08 s). It is noticeable 
that when the poles of the model are close to zero, 
dynamic crush of the model is far from the dynamic crush 
of the real-time experimental data [Munyazikwiye 2014].   

The fit between the two curves (reference measured 
output - first curve and model output - second curve)  is 
computed in a way that 100% means a perfect fit, and 0% 
indicates a poor fit . This means that in our case the 
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measured output best fits the model output in the 
following order: model tf1 = 99.78, model ss1 = 99.22, 
model P2U = 99.12, model n4s2 = 98.97, model arx441 = 
94.71 and finally model arxqs = 94.70. The biggest 
difference in dynamic crush is observed between the 
measured output and the arxqs model output, the 
smallest between the measured output and the model 
output tf1, see Tab. 2.  
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