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Silicon nanostructures can be prepared by different methods 
that considerably change their optical properties depending on 
experimental conditions. They are also very sensitive to 
molecular environment and external influences that can be 
used for multiple applications in different areas. Silicon 
nanostructures prepared by laser ablation show large 
perspectives for molecular sensing and biomedical applications. 
In this paper, an overview of optical properties of silicon 
nanostructures with focus on nanoparticles prepared by 
ultrafast laser ablation in liquids is provided. It is shown that 
they reveal wide prospects for applications in nanobiomedicine 
and their unique characteristics can be significantly enhanced 
due to laser-induced metal incorporation. Metal inclusions lead 
to appearance of plasmonic properties in semiconductor 
nanomaterials that can be applied for molecule detection using 
surface enhancing of optical response. 
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1 INTRODUCTION 

Silicon is one of the most widespread elements on the Earth 
that is widely used in microelectronics and photovoltaics [Priolo 
2014; Yue 2014; Govoni 2012; Vetterl 2000; Yates 1998; 
Clemens 1997]. Nevertheless, it cannot be applied for 
optoelectronic purposes due to its poor emission properties. 
However, they are found to be considerably changed due to 
silicon nanostructuring in consequence of significant 
confinement of mobility of charge carriers. Indeed, 
electrochemical etching of silicon wafers leads to formation of 
a highly porous structure containing nanocrystals with sizes less 
than 5 nm. Such a small size accompanied with strong quantum 
confinement effect provokes effective emission from the 
nanoscrystals in orange-red spectral range under UV-visible 
excitation [Cullis 1997; Brus 1994; Quin1993; Pavesi 1993; 
Heinrich 1992; Tischler 1992; Xie 1992]. Subsequent mechanical 
milling of prepared porous silicon layers allows significant 
reduction of their size forming porous silicon-based 
nanoparticles (PS-Si NPs). 
At the same time, pulsed laser ablation of silicon wafers 
immersed in liquids yields silicon nanoparticles (LA-Si NPs) of 
several tens nm [Ryabchikov 2019a; Intartaglia 2011; Kuzmin 
2010; Semaltianos 2010; Rioux 2009] beyond quantum 
confinement effect that leads to absence of linear-excited 
emission properties in silicon nanostructures. So, the choice of 
a synthesis method significantly influences properties of 
formed nanostructures. 
In this paper, silicon nanostructures are prepared by two 
different methods of treatment of silicon wafers in liquid 
environment using either electrochemical etching or pulsed 
laser irradiation. A comparative analysis of their optical 
properties is carried out. Influence of adsorption of different 

gases on photoluminescence (PL) properties of 
electrochemically prepared silicon nanostructures and 
sensitisation of singlet oxygen generation are investigated. 
Linear and nonlinear optical properties of laser synthesized 
silicon nanoparticles are studied. Their size change due to 
dissolution in the physiological medium as well as due to 
structural modification in the presence of gold is detected. 
Capability of molecule detection using Rhodamine B dye 
molecules by Si-based NPs is proofed. 

2 EXPERIMENTAL METHODS 

Silicon nanoparticles are prepared by two methods: (i) 
electrochemical etching and (ii) laser ablation of a silicon wafer 
(Fig. 1) in a liquid environment. In the first case, chemical 
processes of silicon etching occur in the HF:C2H5OH solution 
(1:1 volume ratio) at 50 mA/cm2 current density. In the second 
case, formation of nanoparticles takes places in deionized 
water induced by action of a femtosecond laser (800 nm, 130 
fs, 100 µJ/pulse, 1000 Hz). In order to form composite silicon-
gold nanoparticles (Si@Au NPs), previously formed laser-
ablated Si NPs are structurally modified due to laser ablation of 

a gold target immersed in the Si NP colloidal solution. In all 
cases, similar silicon wafers are used (p-type, (100), 10 Ω∙cm) 
and treatment time (30 minutes) is also the same. 
Size distribution of Si-based NPs is studied using transmission 
electron microscope (TEM) coupled with energy-dispersive X-
ray (EDX) spectrometer in order to estimate chemical 
composition of Si@Au NPs. Experiments on dissolution of Si 
NPs in the physiological solution (0.9 % NaCl, volume ratio 1:1) 
are performed in the dark at room temperature using a dialysis 
vessel introduced into 5 L of deionized water. Change of size of 
NPs is studied by TEM. Optical properties of Si-based NPs are 
studied using a Shimadzu UV-2700 spectrophotometer 
(extinction spectra) and a spectrometer based on Solar TII 
monochromator coupled with nitrogen-cooled CCD camera 
S7031-1007 Hamamatsu (luminescent properties). Excitation of 
linear luminescence of Si-based NPs is performed using a 
nitrogen laser (3.68 eV, 10 ns, 0.2 mJ/cm2). In order to induce 
nonlinear optical processes (SHG – second harmonic 
generation, TPEL – two-photon excited luminescence), a 
Nd:YAG laser (1.17 eV, 10 ns, 0.2 mJ/cm2) is used. Surface-
enhanced Raman scattering (SERS) signal of Rhodamine B 
molecules is detected by a Raman spectrometer using Si@Au 
NPs. This spectrometer is based on an Olympus microscope and 
a cw laser. The used excitation wavelength was 785 nm at 10.5 
mW power at a sample and the integration time was set to 
2 seconds. 

siliconmetal plate

HF(48%):C2H5OH=1:1

Electrochemical etching Laser ablation

Laser irradiation

Figure 1. Methods of preparation of silicon nanostructures. 
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3 RESULTS AND DISCUSSION 

Formed porous silicon reveals a strong broad luminescent 
spectrum under 3.68 eV laser excitation (Fig. 2). Subsequent 
adsorption of various gases (NO2; C5H5N; NH3; O2) at different 
molecule pressures (0.1 – 760 Torr) provokes strong decrease 
of PL intensity (Figs. 2a and 2b). Moreover, it often leads to 
either blue or red shift of maximum of a spectral position that 
differs for various gases. Additionally, changes of full width at 

half maximum (FWHM) can also occur. 
It is known that electrochemical etching of a silicon wafer leads 
to formation of the porous structure due to material removal 
[Foll 2000; Smith 1992; Lehman 1991]. Structure and properties 
of formed nanocrystals and surrounding pores strongly depend 
on wafer properties as well as on etching parameters 
(electrolyte, current density and etching time). Under the 
conditions mentioned in the previous section, size of formed 
nanostructures varies within 5 nm. Such a small size leads to a 
strong localisation of photo-excited charge carriers provoking 
formation of excitons with size-dependent electronic properties 
[Buuren 1998; Hill 1995]. Indeed, the smaller nanocrystals with 
a stronger localisation of excitons provide a photoluminescent 
response at higher photon energies [Ledoux 2000; Soni 1999; 
Hill 1995]. Hence, nanocrystals of different sizes exhibit light at 
different photon energies resulting in a wide PL spectrum. Its 
intensity is a result of competition between radiative and 
nonradiative recombination processes occurring in 
nanocrystals. It worth noting that such a competition strongly 
manifests itself in temperature-dependent PL transients that 
can be fitted by the stretched exponential decay [Dovrat 2004; 
Kanemitsu 1996; Pavesi 1993]. 
It is known that porous silicon has a wide specific surface area 
(~800 m2/g) as compared to monocrystalline wafers 
[Wongmanerod 2001; Herino 2000; Halimaoui 1994]. This leads 

to a considerable sensitivity of its photoluminescence to 
molecular environment. Indeed, adsorption of all gases leads to 
decrease of PL intensity. In the case of NO2, C5H5N, NH3, 
adsorption on the surface of silicon nanocrystals leads to 
formation of positively or negatively charged complexes and 
subsequent change of concentration of defect states that can 
be detected by electron paramagnetic resonance (EPR) 
spectroscopy [Osminkina 2015; Kashkarov 2007; Konstantinova 
2005; Pavlikov 2005; Sharov 2005; Skryshevsky 2000]. Strong 
local electric field provided by these complexes considerably 
influences exciton behaviour leading to destruction of excitons 
and subsequent nonradiative recombination of photoexcited 
charge carriers. Evidently, PL quenching is more pronounced in 
larger Si nanocrystals with lower binding energy of excitons. 
Hence, it leads to experimentally observed blue shift of PL 
spectra (nitrogen dioxide, pyridine, ammonia) and change of PL 
intensity that can be used for sensing of dangerous gases 
[Sharov 2005; Konstantinova 2004; Baratto 2001; Harper 1996]. 
An additional mechanism of PL changes is related to oxidation 
of surface of silicon nanocrystals in oxygen-containing 
atmosphere. 
In the case of oxygen molecules, an additional mechanism 
related to Förster resonant energy transfer (FRET) can also play 
an important role remarkably influencing PL behaviour of 
silicon nanostructures. It has been shown that effective 
generation of singlet oxygen can be provoked by external 
sensitizers like dye molecules [Awuah 2011, Adarsh 2010; Shi 
2006; DeRosa 2002]. Moreover, silicon nanostructures can also 
play role of effective photosensitizers of singlet oxygen 
generation. Indeed, being adsorbed on the surface of silicon 
nanostructures, they ensure effective energy transfer from 
photoexcited charge carriers in silicon nanocrystals to oxygen 
molecules, transforming them to the excited singlet state 
[Osminkina 2011; Xiao 2011; Fuji 2006; Timoshenko 2006; 
Kovalev 2005; Fuji 2004; Kovalev 2004]. As a result, this leads to 
a significant reduction of a PL signal of porous silicon 
nanostructures. It is worth noting that the most effective 
generation of singlet oxygen (the most pronounced PL 
quenching) is detected at 760 nm that corresponds to the 
energy transfer between triplet and singlet states of oxygen 
molecules. 
Interestingly, silicon nanoparticles prepared by laser ablation of 
a silicon wafer show a completely different luminescent 
behaviour. Indeed, one can see that excitation of LA-Si NPs at 
3.68 eV doesn’t lead to any detectable emission response (Fig. 
3a). However, their excitation using an IR laser (1.17 eV) allows 
detection of a remarkable optical signal (Fig. 3a). Its efficiency 
considerably depends on the excitation level as well as on laser 
wavelength. Moreover, size of LA-Si NPs also influences 
efficiency of their non-linear properties [Kharin 2019]. It worth 
noting that emission range (~1.5–1.8 eV) is similar to that of PS-
Si NPs. 
Absence of any linear-excited photoluminescence can be 
caused by different reasons. Firstly, laser-synthesized Si NPs 
possess large mean size of formed nanocrystals (~ 45 nm) as it 
can be seen in Fig. 3b [Ryabchikov 2019a]. In this case, binding 
energy of excitons is too low and they cannot be stable at room 
temperature. Secondly, laser ablation provokes large amount of 
defects states as it can be stated from EPR measurements 
[Ryabchikov 2019a]. Performed analysis reveals that this type 
of paramagnetic defects corresponds to silicon dangling bonds 
in disordered silicon [Baran 2004; Bardeleben 1993; Shimasaki 
1996]. Hence, it can be an additional mechanism of 
nonradiative recombination of photoexcited charge carriers 
leading to the absence of linear luminescent response. The 
nonlinear optical properties of Si NPs can be explained taking 
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Figure 2. a) Gas detection and b) singlet oxygen generation using 
electrochemically-prepared silicon nanoparticles. 
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into account 2-photon excitation of charge carriers in the core 
of NPs followed by their trapping and radiative recombination 
at Si/SiO2 interface as well as direct excitation of electronic 
defect states in SiO2 shell due to 2-photon absorption [Kharin 
2019]. It worth noting that besides TPEL, laser-synthesized Si 
NPs also reveal quite strong SHG signal that is shown to be very 
promising for bioimaging applications [Kharin 2019]. 
As shown above (Fig. 2a, 2b), properties of silicon nanoparticles 
may also be strongly affected by surrounding media. Indeed, 
study of the behaviour of LA-Si NPs in a biological medium 
shows their fast dissolution due to size degradation (Fig. 3c). 

One can see that, during first 2-3 days, their size is decreased 
by a factor of 4 [Ryabchikov 2019b; Al-Kattan 2016]. It worth 
noting that PS-Si NPs show a fast dissolution dynamics offering 
their perspectives for in-vivo applications [Park 2009]. The 
dissolution is determined by interaction of laser-formed Si NPs 
with oxygen dissolved in water that provokes further oxidation 
of Si core. It leads to transformation of Si NPs into orthosilic 
acid Si(OH)4 that can be naturally excreted from an organic with 
urine [Ksenofontova 2014]. Hence, this important property 
makes LA-Si NPs very promising for biological applications due 
to the possibility of their fast and easy extraction from an 
organism after their diagnostic or therapeutic actions. 
As any semiconductor nanomaterials, LA-Si NPs manifest such a 
limitation as the absence of plasmonic properties (Fig. 4a), 
which are associated with metal-based nanostructures used for 
any plasmonic-related applications [Bansal 2015; Ding 2016; Li 
2016; Nugroho 2016; Singh 2017; Yang 2016; Ye 2017]. In order 
to overcome this lack, Si NPs can be structurally modified using 
recently developed method based on laser ablation 
[Ryabchikov 2019]. It has been found that it leads to a 
remarkable change of optical properties of formed Si@Au NPs 
due to incorporation of some metal species. As a result, 
considerable plasmonic maximum appears at around 515 nm 
corresponding to nanostructured gold (Fig. 4a). It significantly 
enhances functionality of LA-Si NPs toward detection of 
biological systems using surface-enhanced optical response, in 
particular, SERS or SEIRA (surface-enhanced infrared 
absorption) [Ryabchikov 2019b; Kogler 2018; Bibikova 2017]. In 
order to show ability of Si@Au NPs for SERS purpose, highly 
Raman-active dye molecules are used. Their concentration is 
chosen to be undetectable by Raman spectroscopy without any 
external sensitizers. 
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Figure 3. Properties of laser-synthesized Si NPs: a) linear and 

non-linear photoluminescence (Eexc=1.17 eV and 3.68 eV), b) size 
distribution, c) time-dependent dissolution behaviour 
nanoparticles. Laser fluence used for laser ablation is 100 

µJ/pulse. 
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In Fig. 4b, one can see that rhodamine B molecules can be 
easily detected using SERS when combined with Si@Au NPs 
[Ryabchikov 2019b; Kogler 2018]. Such a capability of 
composite Si-based NPs is conditioned by plasmonic properties 
due to laser-induced structural modification. 
As it is mentioned above, laser ablation of a gold target 
immersed in colloidal solution of LA-Si NPs leads to 
considerable structural changes of the latter. It can be seen in 
Fig. 5 in more details. First of all, such a process significantly 
changes the mean size of newly formed composite NPs (Fig. 
5a). Moreover, it can be stated that their distribution is also 
significantly reduced compared to initial pure Si NPs 
[Ryabchikov 2019a]. It should be noted that the initial 
concentration of Si NP colloidal solution significantly affects 
both mean size and chemical composition of Si@Au NPs (Figs. 
5b, 5c). One can see that a larger amount of Si NPs in the initial 
solution remarkably decreases the mean size of the composite 
nanoparticles. After some threshold (~100 mg/L), size of Si@Au 

NPs is independent on the initial concentration of Si NP colloid 
(Fig. 5b). At the same time, large concentration of 
nanostructured silicon also increases its content in the formed 
composite NPs (Fig. 5c). 
Such changes are provoked by a strong interaction between Si 
and Au nanoclusters formed due to laser influence on Si NPs 
and a gold target, respectively. Presence of a second matter in 
the expanding ablation products can significantly restrict the 
growth of NPs as already reported in literature [Besner 2009; 
Sylvestre 2004a; Sylvestre 2004b; Kabashin 2003]. 

4 CONCLUSIONS 

Optical properties of silicon nanoparticles differ considerably. It 
is shown that electrochemical etching leads to the efficient 
linear-excited photoluminescence while laser ablation provokes 
strong nonlinear optical response. Porous silicon 
nanostructures show promising perspectives for gas sensing 
applications as well as for biomedical applications due to 
formation of singlet oxygen. Laser ablated silicon 
nanostructures reveal perspectives for bioimaging application 
due to strong nonlinear optical properties. Their structural 
modification in the presence of gold leads to significant 
reduction of their size distribution accompanied with 
appearance of remarkable plasmonic properties depending on 
concentration of the initial Si NP colloidal solution. Strong 
plasmon properties of Si@Au NPs open up new perspectives of 
Si-based nanomaterials for molecule detection using ability 
surface enhancement of optical signals. 
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