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A depth camera outputs an image in which each pixel depicts the 
distance between the camera plane and the corresponding point 
on the image plane. Low-cost depth cameras are becoming 
commonplace and given their applications in the field of 
machine vision, one must carefully select the right device 
according to the environment in which the camera will be used 
given the accuracy these cameras can be associated with factors 
such as distance from the target, luminosity of the environment, 
etc. This paper aims to compare three depth cameras currently 
available in the market, Intel RealSense D435, which uses stereo 
vision to compute depth at pixels, ASUS Xtion and Microsoft 
Kinect 2 represent Time of flight-based depth cameras. The 
comparison will be based on how the cameras perform at 
different distances from a flat surface and we will check if the 
colour of the surface affects the depth image quality. 
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1 INTRODUCTION  

Depth cameras are becoming widely available from multiple 
vendors such as Intel, Asus, Microsoft, Photoneo, etc. Such wide 
availability at reasonable prices is opening up scope for new 
applications in different use cases as discussed in [Francis 2015], 
[He 2018] and [Nock 2013], which makes it necessary to make 
more information about the cameras’ performance in real-world 
applications [Chuang-Yuan Chiu 2019] than the manufacturers 
publish available to the general public. Several techniques have 
been employed in the past to measure the quality of the depth 
images produced by these cameras. In [Langmann 2012] paper, 
techniques pertaining to the usage of Bohler star [Böhler 2003] 
which is a tool used to determine the angular or lateral 
resolution of depth measurement devices, he also uses surfaces 
with different shapes to measure the depth resolutions of 
cameras at different distances. His work is the closest to this 
work. Another work done in this field is [Lottner 2008] in which 
they discuss the impact of lightning on the resulting frames. We 
derived some information from [Swoboda 2014] article on 
characterisation of the Asus Xtion Pro depth sensor. The real 
benefit of these measurements is their use in predicting depth 
frame error models for the cameras [Bobovský 2018], one such 
work is [Sweeney 2019]. 

2 DESIRED OUTCOME 

In this article, Microsoft Kinect 2, Asus Xtion 2 and Intel 
RealSense D435 [Tadic 2019] cameras are compared, the 
specifications of interest are mentioned in Table 1. 

Our experiments are designed to measure the error in each 
frame while varying the distance between the imaged surface 
and the camera in an indoor environment [Kazmi 2014], keeping 
the camera plane parallel to the imaged surface. The colour of 
the imaged surface was varied to check for its effects on the 
resulting frame. We used coloured paper with a non-reflective 
texture to test for the camera’s performance while imaging 
different colours. The experiment process involved interfacing 
the cameras to the computer running the data collection 
program for which we developed a C++ library called libUniCam 
which encapsulates different libraries needed to access the 
individual cameras and allows the developers to utilise a 
common interface to access any camera. We also implemented 
a special mechanical structure to accurately position the camera 
at any distance from the plane it images and a stabiliser for the 
camera to ensure that the image plane (Figure 1) is parallel with 
the imaged plane. 

 
Figure 1. XY plane is the image plane. 

Table 1. Information about the tested Cameras 

 

Camera RealSense D435 
ASUS 

Xtion 2 
Kinect 2 

Resolution 640*480 640*480 512*424 

Imaging 
Range [m] 

10 0.8-3.5 0.5-4.5 

Expected 
Error [%] 

<=2% <=2% 0.56% 

Library 
Used 

LibRealSense 2 
Asus 

OpenNI 2 
Libfreenect 

2 

Type of 
Sensor 

Structured Light 

Time of 
Flight 
[Rapp 
2008] 

Time of 
Flight 

3 TESTING APPARATUS 

To ensure that the measurements stayed consistent, we made a 
rigid frame fixed to one axis of motion towards and away from 
the wall (Z axis of camera) (Figure 3). To get the best results, a 
hardware stabiliser made using 2 servo motors, controlled with 
the help of an Arduino board communicating with the computer 
was implemented (Figure 2). The stabiliser communicates with 
the PC which processes the depth frame coming from the 
camera to computer if the wall is normal to the camera or not 
and sends instructions to the Arduino to reorient the camera if 

mailto:vyomkesh.kumar.jha@vsb.cz


MM SCIENCE JOURNAL I 2020 I DECEMBER  

4195 

 

needed. Since we had to communicate with multiple cameras for 
the experiment, we wrote a wrapper around the camera libraries 
that allowed us to access any of cameras used, using a unique 
interface allowing us to use one software to for all the 
measurements. 

 

Figure 2. Block diagram of the experimental setup. 

 

 
Figure 3. The testing apparatus. 

4 EXPERIMENTS 

To get meaningful results about the accuracy of the depth 
frames, the cameras were placed facing towards the wall, 50 
frames were collected for every distance between 600 mm to 
2300mm every 100 mm and we performed the measurement 
process 10 times to reduce experiment induced errors, 
effectively yielding us with 500 frames for every distance from 
the wall, for every camera, and for 5 chosen colours (Red, Blue, 
Green, Black, White). 

4.1 Aligning the camera to the wall 

To ensure the camera’s Z axis is perpendicular to the wall, we 
take a depth frame and then select two rectangular regions 
(Figure 4) equidistant from the centre axis (for both vertical and 
horizontal axes), average the distance of the depth pixels inside 
the region and calculate the difference (disparity) between the 
averages (Figure 5), this difference should be close to 0 if the 
camera is aligned the correct way as both the rectangular 
regions would be equidistant from the camera. Depending on 
the axis corresponding to which this disparity was calculated and 
if it’s positive or negative, we rotate the camera around the 
corresponding axis in the direction that changes the disparity in 
a way that it moves towards 0. 

 
Figure 4. The depth frame, the smaller 𝑎 × 𝑏 rectangles are equidistant 
from the centre axis. 

 

 
Figure 5. General description: d1 and d2 are the mean distance for each 
of the rectangles. 

4.2 Collecting data from the sensors 

After moving the camera to the appropriate distance from the 
wall, we wait for 2 seconds for the exposure to stabilise and then 
collect 50 frames, these frames are then written to files in .yaml 
format along with the timestamp of the measurement, the 
central distance of the measurement, and the computed 
disparity for the frame. 

5 COMPARISON METHODOLOGIES 

The techniques we use to perform the qualitative analysis on the 
frames are: 

A. In order to characterise the cameras according to their depth 
frame quality and to co-relate the data with the external 
configurations tested, we compute the per-pixel deviation of the 
depth frame by first computing the gradient of the frame and 
filtering out the pixels where the gradient is higher than a 
threshold, marking these pixels as outliers and removing them.  

B. We then fit a plane to the depth image of the flat surface (an 
approximation for wall) and measure the deviations (Figure 7) of 
the depth values from this plane (Algorithm 1). For each sample, 
we observe the deviation as the distance from the surface varies. 
The fitted plane acts (Figure 6) as the ground truth as the 
distance from the wall is a known value. 
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Algorithm 1: Computing the error in each depth frame 

Input: Dmxn, a depth frame of dimensions 𝑚 × 𝑛, actual distance 

(dist) at which the frame was taken  

1: Dpxq = crop(Dmxn, p, q) 

2: Dpxq = remove_outliers(Dpxq) 

3:  Define P as a 𝑛 × 3 matrix to store points 

4: foreach i, j in 0: p-1, 0: q-1  

5:         [i, j, D(i,j)] 
𝒂𝒑𝒑𝒆𝒏𝒅 𝒓𝒐𝒘
→         𝑷 

6: end foreach  

7: 
𝐏𝑚𝑒𝑎𝑛
→     = mean_along_each_column(P) 

8: foreach row in P 

9:   P[index, :] = P[index, :] - 𝑃𝑚𝑒𝑎𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  

10: end foreach 

11: Peigen = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟(𝑷′ ∗ 𝑷), Peigen is a vector 

normal to the imaging plane. 

12: Define �⃗�  = (p/2, q/2, dist) as the center point of the actual 

plane 

13: compute the per pixel deviation matrix R as  

   Ri = dot(Pi - 𝑃𝑚𝑒𝑎𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, Peigen) 

14: mean_error = mean(Ri) 

 

 
Figure 6. Plane fitted to the cropped flat region, ground truth assumption 
for the wall. 

 

 
Figure 7. Plane and depth deviations, the dotted line represents the 

wall while the yellow dots represent the depth measurements. 

6 RESULTS AND OBSERVATIONS 

The plots of the colour that showed maximum error (deviation) 
in a particular pixel region of the depth images across all 
measured distances are shown in Figure 8 (RealSense), Figure 9 
(Xtion 2) and Figure 10 (Kinect 2). We observe for the RealSense 
frame that the colours are equally spread while for the Xtion 
camera, there is a majority of black pixels which informs us about 

Xtion’s poor performance with black objects. The same 
performance hit is also observed with Microsoft Kinect 2 with a 
black surface. 

 
Figure 8. RealSense colour deviation. 

 

 
Figure 9. Xtion colour deviation. 

 

 
Figure 10. Kinect colour deviation. 

Percent outlier pixels for Xtion and Kinect 2 camera for every 
distance and colour are shown in Table 2. and Table 4. The 
number of outliers is computed by filtering the pixels with 0 as 
its depth value in the frame and by computing the gradient of 
the depth image then filtering the pixels with a high gradient 
(corresponds to an out of place pixel) 

Percent outliers for RealSense camera are shown in Table 3. 
Notice the high error rates observed for Xtion 2 and Kinect 2 with 
the black surface. 
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Table 2. Error pixels per distance, Asus Xtion 2 

Dist./Clr. RED BLUE GREEN BLACK WHITE 

600 0.65% 0.40% 0.23% 14.92% 0.54% 

700 3.01% 1.91% 1.93% 20.34% 1.05% 

800 0.24% 0.60% 2.98% 24.92% 3.02% 

900 3.02% 2.97% 2.63% 30.00% 1.90% 

1000 1.89% 1.35% 0.75% 37.73% 0.79% 

1100 2.98% 2.90% 2.83% 37.21% 2.88% 

1200 2.76% 2.75% 2.73% 40.20% 2.74% 

1300 2.70% 2.65% 2.69% 46.14% 2.76% 

1400 2.70% 2.64% 2.63% 52.34% 2.69% 

1500 2.62% 2.61% 2.67% 56.68% 2.66% 

 

Table 3. Percentage error pixels per distance, RealSense 
D435 

Dist./Clr. RED BLUE GREEN BLACK WHITE 

600 0.29% 0.40% 0.28% 0.31% 0.28% 

700 0.33% 0.39% 0.26% 0.37% 0.26% 

800 0.29% 0.22% 0.27% 0.29% 0.20% 

900 0.13% 0.17% 0.18% 0.21% 0.22% 

1000 0.36% 0.53% 0.40% 0.39% 0.32% 

1100 0.37% 0.57% 0.49% 0.29% 0.39% 

1200 0.12% 0.15% 0.12% 0.23% 0.09% 

1300 0.28% 0.55% 0.35% 0.24% 0.21% 

1400 0.35% 0.62% 0.47% 0.26% 0.29% 

1500 0.32% 0.52% 0.51% 0.12% 0.24% 

 

Table 4. Percentage error pixels per distance, Microsoft 
Kinect 2 

Dist./Clr. RED BLUE GREEN BLACK WHITE 

600 26.20% 13.26% 20.28% 10.07% 26.13% 

700 26.28% 14.56% 20.22% 8.53% 26.19% 

800 2.87% 0.55% 0.59% 8.41% 0.55% 

900 0.55% 0.55% 0.55% 7.90% 0.55% 

1000 0.55% 0.57% 0.55% 10.74% 0.55% 

1100 0.56% 0.63% 0.58% 10.83% 0.60% 

1200 0.62% 0.76% 0.71% 12.69% 0.85% 

1300 0.85% 0.86% 0.93% 15.63% 0.85% 

1400 1.34% 0.79% 1.12% 18.98% 1.30% 

1500 1.53% 1.19% 1.07% 21.91% 1.22% 

The effect of the colour of surface on the error at every distance 
between the imaged object and the camera is shown in  Figure 
11,   Figure 12 and Figure 13 for Xtion2, Realsense and Kinect 2 
respectively. We observe the error increase as the distance from 
the sensor increases, although the error is high in the beginning 
as the imaged surface is too close to the camera. Xtion 2 and 
Kinect 2 fail to image the black surface properly, and thus the 
error is very high for most distances. We observe that colour has 
no effect on the performance of depth cameras as the deviation 
in Xtion’s plots are within experimental error bounds. 

 

 
  Figure 11. Deviation in mm by error per colour, Xtion2. 

 

 
  Figure 12. Deviation in mm by error per colour, RealSense. 

 

 
Figure 13. Deviation in mm by error per colour for Kinect. 

(X axis: mean depth deviation from actual in mm, Y axis: distance from 
imaged surface in decimetres). 

The histogram of depth pixel values for the distances of 
1600mm, 1100mm, 600mm for the depth images are shown in 
figure 14-22. Figure 14, Figure 15, Figure 16 are for Asus Xtion 2. 
Figure 17, Figure 18, Figure 19 are for Intel RealSense D435 
camera, whereas  Figure 20, Figure 21, Figure 22 shows the same 
for Kinect V2. Xtion’s histograms have a higher number of pixels 
in the distance region different from the actual measurement 
which signifies more noise. These histograms were generated 
from frames while imaging a black surface. 
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Figure 14. Histogram of the pixel distances for depth images from Asus 
Xtion, Black screen at 1600 mm away from the wall. 

 X axis: distance in mm, Y axis: number of pixels at that distance in the 
depth image 

 
Figure 15. Histogram of the pixel distances for depth images from Asus 
Xtion, Black screen at 1100 mm away from the wall.  

X axis: distance in mm, Y axis: number of pixels at that distance in the 
depth image 

 

 

 
Figure 16. Histogram of the pixel distances for depth images from Asus 
Xtion, Black screen at 600 mm away from the wall. 

 X axis: distance in mm, Y axis: number of pixels at that distance in the 
depth image 

 
Figure 17. Pixel count histograms for depth images from Intel RealSense, 
Black screen at 1600 mm away from the wall.  

X axis: distance in mm, Y axis: number of pixels at that distance in the 
depth image 

 

 
Figure 18. Pixel count histograms for depth images from Intel RealSense, 
Black screen at 1100 mm away from the wall.  

X axis: distance in mm, Y axis: number of pixels at that distance in the 
depth image 

 

 
Figure 19. Pixel count histograms for depth images from Intel RealSense, 
Black screen at 600 mm away from the wall. 

 X axis: distance in mm, Y axis: number of pixels at that distance in the 
depth image 
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 Figure 20. Histogram of the pixel distances for depth images from Kinect 
2, Black screen at 1600 mm away from the wall.  

X axis: distance in mm, Y axis: number of pixels at that distance in the 
depth image 

 

 

 
Figure 21. Histogram of the pixel distances for depth images from Kinect 
2, Black screen at 1100 mm away from the wall.  

X axis: distance in mm, Y axis: number of pixels at that distance in the 
depth image 

 

 

 
Figure 22. Histogram of the pixel distances for depth images from Kinect 
2, Black screen at 600 mm away from the wall.  

X axis: distance in mm, Y axis: number of pixels at that distance in the 
depth image 

 

Xtion 2 fails to image black objects correctly, as is shown in 
Figure 23. Asus Xtion 2 performance with a black surface, ideally 
this frame should have been a flat surface at 1465mm. 

 
Figure 23. Example depth frame for Xtion with a black imaging target. 

7 CONCLUSION 

In this paper three popular consumer depth cameras were 
compared, and the effect of distance from the object being 
imaged and its colour were measured. We observed that the 
colour of the surface has a minimum impact with the depth 
image quality which is in line with the fact that the CMOS sensor 
in the camera used for the depth images is monochrome in 
nature; however, we observed that the depth quality decreases 
as the surface colour tends to black/dark and is better for lighter 
surfaces which is because the darker color absorbs the incident 
light from the camera, which in the case of time-of-flight sensors 
is the laser pulse and for structured light sensor is the output 
from the projector. We also observed that the depth quality 
decreases as we go away from the imaged surface which is 
because the density of points for which the depth data is 
acquired by the sensor decreases as the distance increases. In 
future work, we would like to extend our experiment with more 
sensors, and by varying the texture and reflectance of the 
imaged surface. We would also like to try different imaging 
angles and measure its effects on the depth frames. 
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