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This paper examines the effect of experiments used to identify 
material parameters of a more complex material model  
(12 material parameters). The set of experiments includes 
tensile tests and indentation tests with different loading 
conditions at 4 different temperatures (a total of  
14 experiments) for the ABS-M30 material. The behaviour of the 
material was simulated using Anand's material model, and the 
Finite Element Model Updating approach was used to identify 
the material parameters. The parameters are solved for  
3 variants: identification from indentation tests, identification 
from tensile tests, identification from all experiments. For the 
first two variants, the remaining experiments are used to verify. 
Finally, all results are compared. 
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1 INTRODUCTION  
The historical approach to material parameters identification is 
hardly attached to the material model.  For a given material 
model, there were usually defined experiments, which are used 
in the identification process. Thus, determination of material 
parameters was part of the design of the material model  
[Brown 1989]. This procedure was based on the analytical 
solution of the experiments, often tensile tests at different 
temperatures, speeds, etc. 
An inverse identification is a reversed approach based on an 
iterative process.  In this method the material parameters input 
into a Finite Element (FE) model of an experiment are iteratively 
updated.  The objective is a minimisation of differences between 
corresponding experimental data and data obtained from their 
simulations (FEM).  The FEM Updating (FEMU) methods use for 
minimalisation two basic aproaches, gradient methods and 
evolutionary or genetic algorithms (EA or GA)  [Anrade 2007], 
[Moslemi 2020]. The advantage of FEMU is easy simulation of 
even more complex stress states (eg indentation [Inoue 2015]), 
use of more experiments, noproportionate loading [Rojicek 
2021], etc. 
Determination of material parameters for Anand's model is 
described for example in: [Brown 1989] by compression tests, 
[Grama 2015] by a Virtual Fields Method and shear tests, 
[Rodgers 2005] by tensile tests, etc. Indentation is also used to 
determine material parameters [Inoue 2015]. Different 
experiments can also be used to verify the results, for example 
Four-point bending test [Yap 2019]. FEMU allows the use of 
groups of experiments to determine material parameters, see 
[Neggers 2019] or [Rojicek 2021]. 

FEMU approach is used for identification of material parameters 
from one or more experiments for a lot of different material 
models [He 2018], [Moslemi 2020], [Touzeau 2016], etc. These 
experiments can be divided into three different sets : 

1. The experiments are determined by the material 
model [Brown 1989]. 

2. The experiments are not determined by the material 
model, for example: use of an indentation test [Inoue 
2015], a punch stretch test [Li 2013], etc. 

3. The experiments are determined by available data and 
may include the experiments referred to in points 1 
and 2 [Rojicek 2021]. Some experiments may be 
redundant for the selected material model, others 
important for the material model may be missing. 

The first and second points concern the solution of one selected 
material model. The third point concerns the solution of the 
selected material, which, depending on its application, can be 
described by different material models (linear elastic, elastic-
plastic, fracture, fatigue, creep, etc.).  
The main goal of the article is to test the influence of the 
selection of experiments on the result of the identification and 
whether the results obtained from the identification are 
comparable for different experiments. Two types of experiments 
are used for identification - tensile tests and indentation tests. 
The tensile test is one of the most commonly used and 
indentation tests are often used in combination with FEMU. 

2 EXPERIMENTS  
The experiments were published at first in [Fusek 2021], 
therefore they are described only briefly. Tensile tests graded 
tensile tests and indentation tests were performed. The 
experiments were performed on a Testometric M500-50CT 
(LABOR machine, s.r.o., Otice, Czech Republic). The sample 
shown in Figure 1 was used for all experiments, the indentation 
test was performed in the area shown by the dashed rectangle. 

 
Figure 1. Specimen shape for simple and graded tensile tests. 

2.1 Tensile Tests  
All tensile tests were deformation-controlled and they  were 
performed at four different temperatures (23 ℃, 44 ℃, 60 ℃, 
and 80 ℃) and at three different rates of deformation  
(0.017 mm/s, 0.167 mm/s, and 1.667 mm/s) until specimen 
failure. The data are shown in Figure 2. – Figure 4. 

 
Figure 2.  Tensile tests at 23 ℃ and 60 ℃ at a constant rate of 
deformation of 1.667 mm/s.  
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Figure 3.  Tensile tests at 44 ℃ and 60 ℃ at a constant rate of 
deformation of 0.167 mm/s.  
 

 
Figure 4.  Tensile tests at temperatures of 44 ℃, 60 ◦C, and 80 ℃, with 
constant rates of deformation at 0.017 mm/s. 
 
2.2 Graded Tensile Tests  
Graded tensile tests were carried out at three different 
temperatures (44 ℃, 60 ℃, and 80 ℃), with the same 
deformation step size of 0.25 mm. The specimen was elongated 
by 0.25 mm at each step, at a deformation rate of 0.017 mm/s. 
The time delay at the given strain value was always 60 s. This was 
done until the specimen failed. The data are shown in Figure 5. 

 
Figure 5.  Graduated tensile tests under three different temperatures of 
44 ℃, 60 ℃, and 80 ℃. 
2.3 Indentation Tests   
Indentation tests were carried out at 23 ℃, 44 ℃, 60 ℃ and  
80 ℃ on the samples depicted in Figure 2. The indenter was  
a steel sphere with a diameter of 5 mm. The indentation test 
consisted of three phases. First, the indenter was pressed into 
the material at a speed of 0.017 mm/s to a depth of 0.5 mm, then 
the time delay of 300 s followed, and finally the indenter 
returned to the starting position (relief) at the same speed. The 
data are shown in Figure 6. 

 
Figure 6.  Indentation tests with time delay at temperatures of 23 ℃,  
44 ℃, 60 ℃, and 80 ℃, with a constant indenter rate of 0.017 mm/s. 

3 MATERIAL MODEL 
Anand viscoplastic model was originally developed for material 
forming applications [Anand 1985]. It is also applicable to 
general viscosity problems that include the influence of strain 
rate and the influence of temperature. Materials at elevated 
temperatures are highly dependent on the influence of 
temperature magnitude and history, strain rate and strain 
hardening. The material model is given by 11 material 
parameters: Poisson ratio (µ), Young’s modulus (E), Initial value 
of deformation resistance (s0), Activation energy/Universal gas 
constant (Q/R), Pre-exponential factor (A), Stress multiplier (𝑥𝑥𝑖𝑖), 
Strain rate sensitivity of stress (m), Hardening/softening 
constant (h0), Coefficient for deformation resistance saturation 
value (S), Strain rate sensitivity of saturation (deformation 
resistance) value (n) and Strain rate sensitivity of hardening or 
softening (a). Regarding the temperatures used, the total 
number of parameters is extended to Np = 12 as follows: 

X = �E20, E80, μ, s0, Q
R

, A, xi, m, h0, S�, n, a�.   (1) 
Where X is a vector of material parameters, and E20, E80 are 
Young’s modulus for temperatures 20 ℃ and 80 ℃, respectively.  
The model of Anand is a complex material model that has 
introduced an internal variable S (deformation resistance), 
a variable that represents the resistance against the plastic 
behaviour of the material. The rate of plastic deformation is 
described by the following relationship: 

�̇�𝛆pl = ε̇apl �
3
2

 𝐒𝐒
q
� ,     (2) 

where �̇�𝛆pl is the tensor of the inelastic strain rate and ε̇apl is the 
rate of accumulated equivalent plastic strain. ε̇apl is given by the 
equation: 

ε̇apl = �2
3

 �̇�𝛆pl: �̇�𝛆pl�
1
2,                    (3) 

where the operator ":" stands for inner product of tensors. 𝐒𝐒 is 
the deviator of Cauchy stress tensor, which can be expressed by 
the following relation: 
𝐒𝐒 = 𝛔𝛔 − p𝐈𝐈,      (4) 
where 𝛔𝛔 is the Cauchy stress tensor, p is defined as one third of 
the trace of the tensor matrix 𝛔𝛔, see the following relation: 
p = 1

3
tr(𝛔𝛔).      (5) 

𝐈𝐈 represents a second order unit tensor. The quantity q is the 
equivalent stress according to the following relation: 

q = �3
2
𝐒𝐒:𝐒𝐒�

1
2.      (6) 
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The rate of accumulated plastic deformation depends on q and 
on the internal state variables s. This dependence can be 
expressed by the following relation: 

ε̇apl = Ae�−
Q
Rθ� �sinh ξ q

s
�
1
m.    (7) 

In the expression (6) A, ξ and m are the model constants, Q the 
activation energy, R the universal gas constant, θ the absolute 
temperature and s the internal state variable. The development 
of the internal state parameter s is described as follows: 

ṡ = ⨁ ho �1 −
s
s∗
�
a
ε̇apl,     (8) 

where a and ho are constants, s∗ represents the saturated value 
of the internal parameter. The ⨁ operator is defined to return 
+1 if s ≤ s∗, otherwise return −1. The saturation values of s∗ 
depend on the rate of equivalent plastic deformation ε̇apl and 
can be expressed as follows: 

s∗ = s� �
ε̇apl
A

e�
Q
Rθ��

n
,     (9) 

where s� and n represent constants. 
The initial parameters for identification are taken from in  
[Fusek 2021] and shown in Table 1. In the paper, the Young's 
modulus was determined only for two temperatures 𝐄𝐄𝟐𝟐𝟐𝟐, 𝐄𝐄𝟖𝟖𝟐𝟐, 
with the same initial value 1750 MPa. 

Parameter 
𝐩𝐩𝐤𝐤 

𝐄𝐄𝟐𝟐𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝐄𝐄𝟖𝟖𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝝁𝝁 
[−] 

𝐬𝐬𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

k 1 2 3 4 

Value 1780 1780 0.33 19.54 
Parameter 

𝐩𝐩𝐤𝐤 
𝐐𝐐/𝐑𝐑 
[𝐊𝐊] 

𝐀𝐀 
[𝟏𝟏/𝐬𝐬] 

𝐱𝐱𝐢𝐢 𝐦𝐦 
[−] 

k 5 6 7 8 
Value 8350 3134 5.18 0.2466 

Parameter 
𝐩𝐩𝐤𝐤 

𝐡𝐡𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝐒𝐒� 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝐧𝐧 
[−] 

𝐌𝐌 
[−] 

k 9 10 11 12 
Value 183245 31.0 0.0098 1.524 

Table 1. Marking and initial values of parameter. 

In general, we will call the material parameters as follows: 

X = �pk, k = �1,2, … , Np ��,     (10) 

where, for the material model are p1 = 𝐄𝐄𝟐𝟐𝟐𝟐 , p2 = 𝐄𝐄𝟖𝟖𝟐𝟐, etc., as 
is shown in Table 1. This notation is used in Chapter 4 to describe 
the theory. 

4 MATERIAL PAREMETERS IDENTIFICATION 

Determination of material parameters can be described as 
follows: 
FIND  X, 
MINIMIZE            f(X),    (11) 
SUBJECT TO pk ∈ 〈pk,min, pk,max〉,∀ pk ∈ X, 
where pk,min, pk,max are constraints of parameters and f(X) is 
an objective function.  
4.1 Objective function 

The objective function for all experiments f(X) was calculated 
as: 

f(X) = �∑ fi(X)2N
i=1

N
,    (12) 

where N is several experiments, fi(X) is a partial objective 
function for i-th experiment. The objective function will be 

simply denoted as f = f(X). The partial objective function 
describes a difference between experimental data and data from 
simulation model and it is calculated as follows: 

fi(X) =
∑ �Fi,j

EXP−Fi,j
FEM(X)�Ni

j=1

∑ �Fi,j
EXP�Ni

j=1
, i = {1,2,3, … , N}   (13) 

Ni is a number of measurement points for i-th experiment, 
Fi,jEXP is an experimental force, Fi,jFEM(X) is a force obtained from 
the simulation. 
4.2 Sensitivity analysis 
Sensitivity analysis is used to determine the influence of 
individual parameters on the value of the objective function. For 
the set of experiments, we can also determine the influence of 
individual parameters on the value of the partial objective 
function, or whether the set of experiments is suitable for 
identification of parameters for the selected material model. 
At first, we define a change of the material parameter ∆pk from 
pk using a sensitivity coefficient kSen as follows: 
∆pk =  kSen pk, ∀ pk ∈ X,    (14) 
The value of the sensitivity coefficient is the same for all 
parameters. To simplify, the following notation will be used: 
p+∆k = pk(1 + kSen), p−∆k = pk(1 − kSen),   

 f+∆k = f��p1, … , p+∆k, … , pNp��,   (15) 

f−∆k = f��p1, … , p−∆k, … , pNp��. 

The value of senitivity is zero if the parameter (or the experiment 
etc.) has no effect on the value of the objective function. 
Conversely, the higher the sensitivity value, the greater the 
influence of the investigated parameter.  
The basic approach to sensitivity was taken from [Saltelli 2008]: 

Si = f+∆k− f
∆pk

 , k = �1,2,3, … , Np�,    (16) 

where Sk is the sensitivity of k-th material parameter pk and only 
k-th parameter is changed. We assume that f > 0, kSen > 0 and 
pk ≠ 0, then: 

Sk = f+∆k− f
∆pk

= f+∆k− f
pk kSen

= 1
kSen

�f+∆k− f
pk 

� = 1
kSen

�f+∆k− f
 f

� f
pk

 , 

Sk = 1
kSen

�f+∆k
f
− 1�  f

pk
= Sk  f

pk
 ,    (17) 

Sk = 1
kSen

 �f+∆k
f
− 1� , k = �1,2,3, … , Np�. 

Where the sensitivity value Sk is a modified sensitivity. It was 
used in [Rojicek 2021]. The difference between Sk  and Sk  is 
demonstrated in Table 2. An effect of parameter change shows 
the column denoted as |f+∆k −  f| and an absolute value is added 
to the sensitivity calculations. The values in Table 2 were 
calculated for the initial parameter values (see Table 1) and all 
experiments. 

𝐩𝐩𝒌𝒌 𝐤𝐤𝐒𝐒𝐒𝐒𝐧𝐧 = 𝟐𝟐.𝟐𝟐𝟏𝟏 

k Parameter �𝐒𝐒𝐤𝐤� |𝐒𝐒𝐤𝐤| |𝐟𝐟+∆𝐤𝐤 −  𝐟𝐟| 

1 𝐄𝐄𝟐𝟐𝟐𝟐[𝐌𝐌𝐌𝐌𝐌𝐌] 3.9 10-5  0.26 0.00036 
2 𝐄𝐄𝟖𝟖𝟐𝟐[𝐌𝐌𝐌𝐌𝐌𝐌] 1.7 10-5 0.11 0.00031 
3 𝛍𝛍 [– ] 0.17 0.22 0.00026 
4 𝐬𝐬𝟐𝟐 [𝐌𝐌𝐌𝐌𝐌𝐌] 1.9 10-4 0.014 3.6 10-5 
5 𝐐𝐐/𝐑𝐑 [𝐊𝐊] 2.0 10-4 6.34 0.0163 
6 𝐀𝐀 [𝟏𝟏/𝐬𝐬] 2.1 10-5 0.25 0.00073 
7 𝐱𝐱𝐢𝐢 0.11 2.2 0.0066 
8 𝐦𝐦 [– ] 1.9 1.78 0.0044 
9 𝐡𝐡𝟐𝟐 [𝐌𝐌𝐌𝐌𝐌𝐌] 0 5.7 10-5 2.0 10-7 
10 𝐒𝐒� [𝐌𝐌𝐌𝐌𝐌𝐌] 2.1 10-2 2.43 0.0059 
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11 𝐧𝐧 [– ] 6.3 0.23 0.00029 
12 𝐌𝐌 [−] 5.9 10-3 0.034 9.0 10-5 

Table 2. Comparison of sensitivity estimates. 

Values in the column |f+∆k −  f| are dependent on the value of 
kSen, see parameter 1 for kSen = 0.01. The values in the column 
�𝐒𝐒𝐤𝐤� differ significantly for parameters 2 and 11, although for  
a given value of kSen the values of the target function 
|f+∆k −  f| changes almost the same. The value of |Sk| better 
corresponds to the change in the value of objective function. 
Conversely, the value of 𝐒𝐒𝐤𝐤 can be used in gradient algorithms. 
However, both values can be easily recalculated with respect to 
eqv (17).  
By selecting the parameters with the highest and almost the 
same sensitivity values, their identification can be simplified. The 
simplification is due to the reduction of the number of 
parameters for identification. The second criterion, very similar 
sensitivity values for selected parameters, is based on the 
experience that parameters with very different sensitivity values 
are more difficult to identify (update algorithm, numerical noise, 
etc.). On the other hand, the number of cycles needed to identify 
the parameters increases and the calculation of the sensitivity 
values need to be repeated, because their values depend on the 
current value of the parameters. It can also be seen from Table 
2 that parameter 9 has an order of magnitude lower effect on 
the result than the other parameters. This may be due to an 
inappropriate choice of parameters value or set of experiments. 
The given parameter should therefore be removed from the 
current identification process.  
Some parameters can be identified separately, they are not 
searched for. In the paper, the Poisson number 𝛍𝛍  was taken 
from [Paska 2020], it was identified by Digital Image Correlation 
method. 
For identification were select parameters with the haighese 
value of sensitivity |Sk|.  For example, from Table 2, kSen = 0.01 
we select parameters, 5, 7, 8 and 10 as follows: 
  ∀ pk ∈  X, IF 100 |Sk| > 150 THEN pk ∈  ζ ,   (18) 
                      OTHERWISE pk ∉  ζ, 
where ζ is a set of parameters for identification.  
It is also possible to check whether the value of the parameter is 
not at the local minimum of the objective function:  
f+∆k > f < f−∆k, k = �1,2,3, … , Np�.    (19) 
It is better to exclude from identification the parameter k that 
satisfies condition (19). But the total number of calculations for 
the selection of parameters increases to (2 Np + 1).  
4.3 Update method 
The Nelder-Mead Simplex method was used to determine the 
parameters, we used version given in [Lagarias 1998]. The 
method is appropriate for small dimensional problems  
[Han 2006]. The material model used has a total of Np = 12  
parameters, but the number of detected parameters can be 
reduced, as described in the previous chapter. Then, for the 
method the number of parameters for identification 𝑁𝑁𝑆𝑆 was 
limited to  𝑁𝑁𝑆𝑆 ≤ 4. 𝑁𝑁𝑆𝑆 also represents several dimensions for 
simplex, and 𝑁𝑁𝑆𝑆 + 1 is a number of simplex vertices. We denote 
simplex vertices as X1, X2, … X𝑁𝑁𝑆𝑆+1, where the vertices are 
ordered according to the objective function values: 
f(X1) ≤ f(X2) ≤ ⋯ ≤ f(X𝑁𝑁𝑆𝑆+1).    (20) 

The algorithm uses operations : reflection, expansion, 
contraction and shrink. The algorithm used the centroid of the 
𝑁𝑁𝑆𝑆 best vertices: 

X� = 1
𝑁𝑁𝑆𝑆
∑ X𝑙𝑙
𝑁𝑁𝑆𝑆
𝑙𝑙=1 .     (21) 

A one iteration of the algrithm is defined by following steps : 
Step 1. Sort. Evaluate f(X1), f(X2), … , f(X𝑁𝑁𝑆𝑆+1), and sort it. 

Step 2. Reflection.  𝛼𝛼 = 1,   

 X𝑟𝑟 =  X� +  𝛼𝛼 �X� − X𝑁𝑁𝑆𝑆+1 �, 

 IF f(X1) ≤ f(X𝑟𝑟) < f�X𝑁𝑁𝑆𝑆� THEN X𝑁𝑁𝑆𝑆+1 ←  X𝑟𝑟, go to Step 1. 

 IF f(X𝑟𝑟) < f(X1) THEN go to Step 3 

 IF f�X𝑁𝑁𝑆𝑆� ≤ f(X𝑟𝑟) < f�X𝑁𝑁𝑆𝑆+1� THEN go to Step 4. 

 IF f�X𝑁𝑁𝑆𝑆+1� ≤ f(X𝑟𝑟) THEN go to Step 5 

Step 3. Expansion 𝛽𝛽 = 2 
  X𝑒𝑒 =  X� +  𝛽𝛽 ( X𝑟𝑟 − X� ) 
IF f(X𝑒𝑒) < f(X𝑟𝑟) THEN X𝑁𝑁𝑆𝑆+1 ←  X𝑒𝑒, go to Step 1. 

ELSE X𝑁𝑁𝑆𝑆+1 ←  X𝑟𝑟, go to Step 1 

Step 4. Outside Contraction. 𝛾𝛾 = 0.5 
  X𝑜𝑜𝑜𝑜 =  X� +  𝛾𝛾 ( X𝑟𝑟 − X� ) 
 IF f( X𝑜𝑜𝑜𝑜) ≤ f(X𝑟𝑟) THEN X𝑁𝑁𝑆𝑆+1 ←  X𝑜𝑜𝑜𝑜, go to Step 1. 

 ELSE  go to Step 6 
Step 5. Inside Contraction.  
  X𝑖𝑖𝑜𝑜 =  X� −  𝛾𝛾 ( X𝑟𝑟 − X� ) 
 IF f( X𝑖𝑖𝑜𝑜) ≤ f(X𝑟𝑟) THEN X𝑁𝑁𝑆𝑆+1 ←  X𝑖𝑖𝑜𝑜 , go to Step 1. 

 ELSE  go to Step 6 
Step 6. Shrink. 𝛿𝛿 = 0.5, For 2 ≤ 𝑙𝑙 ≤ 𝑁𝑁𝑆𝑆 + 1 
  X𝑙𝑙 =   X1 +  𝛿𝛿 ( X𝑙𝑙 −  X1 ), go to Step 1. 
The effect of several initialization procedures is studied in  
[Wessing 2019]. We used some of the common initialization 
procedures. The first simplex vertex is given by the initial values 
of the parameters  pk, see Table 1. The others are updated from 
pk by : 
 X𝑙𝑙 =  {∀pk ∈  ζ:       (22) 
    IF k = 𝑙𝑙 THEN pk ←  p−∆k  
   OTHERWISE pk ←  p+∆k 
             ∀pk ∈ X/ζ:   
   pk ←  pk}, 𝑙𝑙 = {1,2, … ,𝑁𝑁𝑆𝑆}. 
The update algorithm was stoped by the following condition : 

 f�X𝑁𝑁𝑆𝑆+1� − f(X1) < 0.001 f(X1)     (23) 
Before starting the FEM simulation, the constraints of the 
material parameters were checked as follows : 
IF p𝑘𝑘 < pk,min THEN p𝑘𝑘 = pk,min ,   (24) 
IF p𝑘𝑘 > pk,max THEN p𝑘𝑘 = pk,max ,∀pk ∈  ζ.  

4.4 FEMU algorithm 
In the paper is for determination of material parameters X used 
the FEMU algorithm, which is shown in Figure 2.   
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Figure 7. Schema of the FEMU algorithm 
The algorithm includes the following steps: 
Step 1. Simulation models of experiments are created, and 
initial values of parameters are specified. 
Step 2. Simulations of all experiments are performed, the 
partial objective function and the objective function is 
calculated. 
Step 3. Cycle A start,  f+∆k, f−∆k, and f  are calculated, Sk is 
calculated, Cycle A finish.  
Step 4. Parameters for identification are selected  
(4 parameters). 
Step 5. Cycle B start, the parameters are updated.  
Step 2. Simulations of all experiments are performed, the 
partial objective function and the objective function is 
calculated. 
Step 6. Termination condition 1 is applied. If the condition is 
met, Step 8 follows, otherwise Step 7. 
Step 7.  Termination condition 2 is applied, it is given by  
eqv (24). If the condition is met, Cycle B (Update algorithm) is 
finished, and Step 3 (Sensitivity analysis) follows. Otherwise, 
Step 5 follows, and Cycle B continues.  
Step 8. Final values of parameters are determined. 
The termination condition 1 has two parts, a convergence, and  
a sensitivity termination. The convergence criterion compares 
two values of the objective function - before the start of Cycle B 
and after the end of Cycle B. If the difference is small, less than 
0.001 f(X1), the algorithm is finished. The sensitivity criterion is 

apparent from condition eqv (23), if it is satisfied for ∀pk ∈ X  , 
then the solution is terminated.  

5 SIMULATION MODELS 
FE model for simulation of indentation tests is shown in  
Figure 8. A/. The specimen for indentation was modeled as  
a block (10x10x7.5[mm]) with two symmetry planes. Because 
the fact that the simulation of indentation tests is significantly 
more time consuming than the simulation of tensile tests, a very 
coarse mesh was used. The specimen model was meshed with 
1506, quadratic – 10-nodes, tetrahedral elements. The indenter 
was simulated as rigid. The bottom side of specimen’s model was 
fixed, the rigid indenter’s model was loaded. The loading states 
are given by the experiments and they are described in chapter 
2.3. 

 
Figure 8.  A/ FE model of specimen geometry with boundary conditions 
for simulation of indentation tests. B/ FE model of specimen geometry 
with boundary conditions for simulation of tension tests. 
FE model for simulation of tension tests is shown in Figure 8. B/. 
The specimen dimensions are shown in Figure 1. The specimen 
model was meshed with 1880, quadratic – 20-nodes, hexahedral 
elements. The upper and lower nodes of the edge part of the 
sample's model were fixed and on the opposite side of the 
sample’s model were loaded. The loading states are given by the 
experiments and they are described in chapter 2.1 and chapter 
2.2. 

6 IDENTIFICATON PROCESS 
Identification of parameters is not the main goal of the paper, 
therefore the identification process is described only briefly and 
in general. The experiments will be denoted as follows: 

1. Tension, 23 ℃, 1.667 mm/s. 
2. Indentation,  23 ℃. 
3. Tension, 44 ℃, 0.017 mm/s. 
4. Indentation,  44 ℃. 
5. Tension, 44 ℃, 0. 167 mm/s. 
6. Graded Tensile, 44 ℃. 
7. Tension, 60 ℃, 0.017 mm/s. 
8. Indentation,  60 ℃. 
9. Tension, 60 ℃, 0. 167 mm/s. 
10. Tension, 60 ℃, 1.667 mm/s. 
11. Graded Tensile, 60 ℃. 
12. Tension, 80 ℃, 0.017 mm/s. 
13. Indentation,  80 ℃. 
14. Graded Tensile, 80 ℃. 

The first identification is made from experiments 2, 4, 8 and 13. 
The constraints are shown in Table 3, These values were not 
found in the literature and are therefore estimated based on the 
authors' experience.  
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k 𝟏𝟏 𝟐𝟐 𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟕𝟕 

pk,min 400 400 5 200 500 1 
pk,max 3000 3000 50 2 104 5000 20 

k 𝟖𝟖 𝟗𝟗 𝟏𝟏𝟐𝟐 𝟏𝟏𝟏𝟏 𝟏𝟏𝟐𝟐  

pk,min 0.15 5 104 5 1 10-5 0.5  

pk,max 0.5 5 105 100 1 10-2 5  

Table 3. Material parameters constraints. 

The value of the objective function is calculated only from these 
experiments. The identification process is described by Table 4.  

Cycle A Cycle B 𝑁𝑁𝑆𝑆 𝐟𝐟(𝐗𝐗) 
Initial -  - 0.2912 
1 71 4 0.0633 
2 61 3 0.0375 
3 54 3 0.0327 
4 7 3 0.0327 

Table 4. Identification process - four indentation tests. 

The second identification is made from experiments 1, 3, 5, 7, 9, 
10 and, 12. The identification process is described by Table 5.  

Cycle A Cycle B 𝑁𝑁𝑆𝑆 𝐟𝐟(𝐗𝐗) 
Initial -  - 0.235 
1 120 3 0.04231 
2 41 3 0.04077 
3 10 2 0.04077 

Table 5. Identification process - seven tension tests. 

The last identification is made from all experiments 1-14. The 
identification process is described by Table 6.  
 

Cycle A Cycle B 𝑁𝑁𝑆𝑆 𝐟𝐟(𝐗𝐗) 
Initial -  - 0.245 
1 47 3 0.229 
2 80 3 0.145 
3 37 4 0.096 
4 28 3 0.079 
5 140 4 0.0541 
6 68 3 0.0459 
7 20 3 0.0457 
8 51 3 0.0444 

Table 6. Identification process from all tests. 

7 RESULTS 
Results are presented in figures and tables. Experimental data 
(EX) are displayed by solid lines, data from simulation models 
(FE) are displayed by dotted lines, fi(X) represents the partial 
objective function values, and 𝑖𝑖 denoted the experiment, which 
was defined in previous section.   
7.1 Identification from indentation tests 
Values of material parameters determined form four 
indentation tests (2, 4, 8, 13) are shown in Table 7. 
 
 

𝐄𝐄𝟐𝟐𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝐄𝐄𝟖𝟖𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝝁𝝁 
[−] 

𝐬𝐬𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝐐𝐐/𝐑𝐑 
[𝐊𝐊] 

𝐀𝐀 
[𝟏𝟏/𝐬𝐬] 

2282 1212 0.33 19.5 9392 1648 
𝐱𝐱𝐢𝐢 𝐦𝐦 

[−] 
𝐡𝐡𝟐𝟐 

[𝐌𝐌𝐌𝐌𝐌𝐌] 
𝐒𝐒� 

[𝐌𝐌𝐌𝐌𝐌𝐌] 
𝐧𝐧 

[−] 
𝐌𝐌 

[−] 
4.74 0.2449 183245 30.9 0.0067 2.425 

Table 7. Material parameters determined from four indentation tests. 

Comparison of the indentation experiments with their FEM 
solutions is shown in Figure 9. 

 
Figure 9.  Comparison the data from indentation experiments (2,4,8,13) 
and from FE simulation with the values of their partial objective function. 

The remaining experiments were used to validate the material 
parameters. The following Figure 10 shows tension experiments 
with the rate of deformation 0.017 mm/s and their FEM 
solutions.  

 
Figure 10.  Validation of the parameters (Table 6), comparison the data 
from the tension tests 3,7,12 and from FE simulation (rate of 
deformation 0.017 mm/s) with the values of their partial objective 
function. 

The values of the partial objective function from remaining 
experiments are described in Table 8. 

𝐟𝐟𝟏𝟏(𝐗𝐗) 
[−] 

𝐟𝐟𝟓𝟓(𝐗𝐗) 
[−] 

𝐟𝐟𝟔𝟔(𝐗𝐗) 
[−] 

𝐟𝐟𝟗𝟗(𝐗𝐗) 
[−] 

𝐟𝐟𝟏𝟏𝟐𝟐(𝐗𝐗) 
[−] 

𝐟𝐟𝟏𝟏𝟏𝟏(𝐗𝐗) 
[−] 

𝐟𝐟𝟏𝟏𝟒𝟒(𝐗𝐗) 
[−] 

0.54 0.35 0.36 0.26 0.34 0.28 0.21 

Table 8. The values of partial objective function for remaining validation 
experiments (1, 5, 6, 9, 10, 11, 14). 
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7.2 Identification from tension tests 
Values of material parameters determined form seven tension 
tests (1,3,5,7,9,10,12) are shown in Table 9. 

𝐄𝐄𝟐𝟐𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝐄𝐄𝟖𝟖𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝝁𝝁 
[−] 

𝐬𝐬𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝐐𝐐/𝐑𝐑 
[𝐊𝐊] 

𝐀𝐀 
[𝟏𝟏/𝐬𝐬] 

1198 1093 0.33 19.5 9034 3134 
𝐱𝐱𝐢𝐢 𝐦𝐦 

[−] 
𝐡𝐡𝟐𝟐 

[𝐌𝐌𝐌𝐌𝐌𝐌] 
𝐒𝐒� 

[𝐌𝐌𝐌𝐌𝐌𝐌] 
𝐧𝐧 

[−] 
𝐌𝐌 

[−] 
6.846 0.3335 183245 31.0 0.0098 0.7863 

Table 9. Material parameters determined from seven tension tests. 

Comparison of the tension experiments with their FEM solutions 
is shown in Figure 11 – Figure 13. 

 
Figure 11.  Comparison the data from tension experiments with the rate 
of deformation 1.667 mm/s (1, 10) and from FE simulation with the 
values of their partial objective function. 

 
Figure 12.  Comparison the data from tension experiments with the rate 
of deformation 0.167 mm/s (5, 9) and from FE simulation with the values 
of their partial objective function. 

 
Figure 13.  Comparison the data from tension experiments with the rate 
of deformation 0.017 mm/s (3, 7, 12) and from FE simulation with the 
values of their partial objective function. 

The remaining experiments were used to validate the material 
parameters. The following Figure 14 shows the graded tension 
experiments (6, 11, 14) and Figure 15 shows the indentation 
experiments (2, 4, 8, 13). 

 
Figure 14.  Validation of the parameters (Table 8), comparison the data 
from the graded tensile tests 6, 11, 14 and from FE simulation with the 
values of their partial objective function. 

 
Figure 15.  Validation of the parameters (Table 8), comparison the data 
from the indentation tests 2, 4, 8, 13 and from FE simulation with the 
values of their partial objective function. 

7.3 Identification from all tests 
Values of material parameters determined form all experiments 
(1-14) are shown in Table 10. 

𝐄𝐄𝟐𝟐𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝐄𝐄𝟖𝟖𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝝁𝝁 
[−] 

𝐬𝐬𝟐𝟐 
[𝐌𝐌𝐌𝐌𝐌𝐌] 

𝐐𝐐/𝐑𝐑 
[𝐊𝐊] 

𝐀𝐀 
[𝟏𝟏/𝐬𝐬] 

1225 1093 0.33 19.5 8373 2612 
𝐱𝐱𝐢𝐢 𝐦𝐦 

[−] 
𝐡𝐡𝟐𝟐 

[𝐌𝐌𝐌𝐌𝐌𝐌] 
𝐒𝐒� 

[𝐌𝐌𝐌𝐌𝐌𝐌] 
𝐧𝐧 

[−] 
𝐌𝐌 

[−] 
11.1 0.373 183245 88.3 0.009782 3.38 

Table 10. Material parameters determined from all experiments. 

Comparison of selected experiments with their FEM solutions is 
shown in Figrue 16 – Figure 19. 

 
Figure 16.  Comparison the data from indentation experiments (2,4,8,13) 
and from FE simulation with the values of their partial objective function. 
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Figure 17.  Comparison the data from tension experiments (3, 7, 12) and 
from FE simulation with the values of their partial objective function. 

 
Figure 18.  Comparison the data from graded tensile tests (6, 11, 14) and 
from FE simulation with the values of their partial objective function. 

The values of the partial objective function from remaining 
experiments are described in Table 11. 

𝐟𝐟𝟏𝟏(𝐗𝐗) 
[−] 

𝐟𝐟𝟓𝟓(𝐗𝐗) 
[−] 

𝐟𝐟𝟗𝟗(𝐗𝐗) 
[−] 

𝐟𝐟𝟏𝟏𝟐𝟐(𝐗𝐗) 
[−] 

0.044 0.033 0.035 0.073 

Table 11. The values of partial objective function for remaining 
experiments (1, 5, 9, 10). 

8 DISCUSSION 
The value of the objective function for the initial estimation of 
the parameters was above 0.2, these values will be considered  
a bad result. The values of the objective function for the resulting 
parameters were below 0.055, on the contrary, we will consider 
these values as good results. With respect to eqv (11), the same 
values will be used to assess the partial objective functions. 
The most interesting results are summarized in the following 
points: 

• The resulting values of parameters obtained from the 
three identification processes are different (compare 
Table 7, Table 9, and Table 10). Some parameters are 
even twice as high (E20, A, a ). 

• The parameters identified from indentation tests gives 
good results for these tests but wrong results for 
tensile tests and graded tensile tests.  

• The parameters identified from tensile tests gives 
good results for these tests, acceptable results graded 
tensile tests and wrong results for indentation tests.  

• The parameters identified from all tests gives good 
results for these tests, except for one (see Table 11, 
f10). 

• It can be expected that with the increasing number of 
analysed experiments, the number of cycles needed to 
identify the parameters will also increase (see Table 4, 
Table 5 and Table 6). 

• As the number of cycles increases, so does the value of 
the objective function for the best parameters (see 
Table 4, Table 5, and Table 6). 

The following recommendations can be drawn from this:  
IF the parameters are intended for simulations of various stress 
states, such as tension, pressure, multi-axis stress, contact, etc. 
THEN it is appropriate to include the required stress states in the 
identification or validation phase of these parameters. 
By comparing the initial values of the parameters Table 1., and 
the resulting values of the parameters Table 7., Table 9. and 
Table 10., it can be seen, that some parameters do not change. 
This may be due to a very good initial estimate of the 
parameters, or the experiments used have too little effect on the 
parameters. 
For a more detailed analysis of the above behaviour, we consider 
performing other experiments used in the identification process, 
such as pressure tests [Brown 1989], shear tests [Grama 2015], 
or combined torsion and tension tests [Rojicek 2010]. 

9 CONCLUSIONS 
The influence of the selection of experiments on the 
identification results was analyzed. Two basic types of 
experiments were used, indentation tests and tensile tests. 
Three identification processes were performed: from 
indentation tests, from tensile tests and from all tests. The 
performed numerical experiments showed the influence of the 
selection of experiments on the result of the identification 
process, because the resulting parameters identified by the 
three independent processes are different. Validation 
performed on the remaining experiments confirmed the 
previous conclusion. On the other hand, the analysis was 
performed on only two types of experiments (tensile tests, 
indentation tests) and for one material model. Therefore, the 
next step will be to use a wider range of experiments to analyze 
the above behavior in more detail and to test other material 
models. 
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