
MM SCIENCE JOURNAL I 2021 I DECEMBER

5381

RESEARCH AND
DEVELOPMENT OF A

KNOWLEDGE-BASED DESIGN
SYSTEM FOR DESIGNING
SELECTED ELEMENTS OF
MECHATRONIC DEVICES
MILAN MIHOLA 1, ZDENEK ZEMAN 1, DAVID FOJTIK 2

1 VSB - Technical University of Ostrava, Department of Robotics,
Ostrava, Czech Republic

2 VSB - Technical University of Ostrava, Department of Control
Systems and Instrumentation, Ostrava, Czech Republic

DOI: 10.17973/MMSJ.2021_12_2021105

e-mail to corresponding author: milan.mihola@vsb.cz

The design of mechatronic devices is a demanding process not
only in terms of the time required but also of the demands
placed on the knowledge and experience of development
workers. The aim of this research and development was to
create suitable procedures, algorithms, and databases of 3D
models, with the help of which could this process be
significantly shortened and simplified. The results of the
development are a software tool for the design of electric drive
units, procedures for creating 3D models with the possibility of
using the SolidWorks software API, methods for automating the
creation of assemblies of 3D models and a description of the
knowledge database in which various data and algorithms are
stored. The benefits of the proposed procedures, the Drive
Picker software tool, and the knowledge database, are
demonstrated on the design of a robotic arm with 5 degrees of
freedom. Despite the complexity of the preparation of
documents needed, it turns out that the chosen approach can
significantly speed up and simplify the design of mechatronic
devices.

KEYWORDS
Knowledge-based, Parametric modelling, API, SolidWorks,
Macro, Mechatronic

1 INTRODUCTION

Mechatronic devices, by definition, consists of four main parts:
mechanics, electronics, control, and informatics [Isermann
2002]. The developers strive to integrate these four parts in
such a way as to achieve a synergistic effect. Thus, the state
where the final effect of the components acting together is
greater than would be the case of a simple sum of the effects of
the individual components [Kyura 1996]. Despite the
availability of methodological procedures for the development
of mechatronic devices (VDI 2206, Munich Procedural Model,
etc.) [VDI 2004, Lindemann 2009], with which it is possible to
achieve better results than would be the case with an intuitive
development procedure, it is not possible to call it a trivial
matter.
One of the ways to significantly accelerate and often simplify
the process of developing mechatronic devices is to use
available or develop new software tools, which can be used to
design individual elements or subsystems of the device, or
complete devices. Currently, there are several software tools
developed for the design of standardized machine parts, such

as screws, bearings, gears, etc. Whether in the form of stand-
alone applications (e.g. MitCalc or MESYS) or as part of one of
the CAD systems (e.g. KISSsoft [KISSsoft 2021]). The calculations
based on which machine parts are designed and inspected
using these software tools are in most cases based on generally
known standards and procedures related to the given types of
machine parts (e.g. ANSI, DIN, ISO, etc.). Reddy et al. [Reddy
2016] presented a tool for bearing design. Reddy and Rangadu
[Reddy 2018a] developed a gears design tool. Both tools were
developed for SolidWorks CAD software and use its Application
Programming Interface (API). The data needed to design these
elements are stored in a knowledge database. From the point
of view of development workers, these are handy tools, with
the help of which it is possible to shorten the design and
inspection time of individual machine parts up to tens of
minutes.
In the case of non-standard elements, which are usually part of
mechatronic devices, the situation is somewhat more
complicated. Some manufacturers (e.g. Maxon Motor AG,
Festo, Bosch Rexroth, etc.) provide online software tools, with
which it is possible to select suitable elements of the proposed
equipment. However, the applicability of these tools is usually
limited to the products of the supplier. Subsequent comparison
of products of individual suppliers then remains with the
developer of the mechatronic system. This can be quite a time-
consuming process. There are also software tools whose
database contains products from various manufacturers (e.g.
VisualSizer). However, there is still room for further
improvement and innovation in this area.
Another way to speed up the development process of the
proposed devices is to use pre-prepared 3D models. Most CAD
systems include databases of models of standardized
components or other frequently used structural elements
[Chen 2013, Sun 2011]. In the case of non-standardized
elements, it is possible to use databases of 3D models of the
given manufacturers, or databases specially created for the
availability of 3D models from various fields of technics. Even
though the availability of these databases significantly speeds
up and simplifies the creation of 3D models of the proposed
devices, there is still room for further improvement and
innovation in this area. A possible way to do so is to use the API
of available CAD software. By using this interface, it is possible
to create or modify individual 3D models and their
subassemblies and total assemblies by using appropriately
designed sequences of commands. Farhan et al. [Farhan 2012]
introduced an automated approach to assembling modular
accessory elements used in manufacturing processes. Lad and
Rao [Lad 2014] developed an application for product design
and 3D model updating, whose function they presented on the
example of a winding device. Reddy et al. [Reddy 2018b]
presented the possibility of using a knowledge database and
CAD software to design the layout of an industrial battery tray.
By a suitable connection of software tools for the design of
individual elements of mechatronic devices, knowledge
database, and CAD system, it is possible to achieve significant
acceleration of the development process and thus shorten the
design time of the device. Another benefit can be smaller
demands on the knowledge and experience of development
workers.

2 KNOWLEDGE-BASED CONSTRUCTION SYSTEM TOOLS

The knowledge-based construction system is developed for the
design of selected elements of mechatronic devices. From the
previous chapter, it is clear that developers have a relatively
wide range of tools for designing basic machine elements

MM SCIENCE JOURNAL I 2021 I DECEMBER

5382

(screws, bearings, gears, etc.). Also, there are tools to assist in
the selection of electric, pneumatic, or hydraulic drive units.
From this point of view, the currently neglected area is compact
electric drive units, which integrate an electric motor, a
gearbox, a speed sensor and optionally a brake. The output
flange of these drive units is usually mounted in the drive unit's
body by bearings capable of absorbing the action of not only
radial and axial forces, but also tilting moments. This
construction brings advantages in terms of the overall
dimensions and weight of the drive units. However, the process
of their design entails the need to inspect the individual
integrated parts in a similar way as in the case of a drive unit
consisting of a separate electric motor, gearbox, and other
necessary elements. This not only brings increased
requirements on the knowledge of the developer, but it is also
a time-consuming process.

2.1 Knowledge database structure

One of the development goals is to shorten the design time of
compact electric power units while reducing the demands
placed on developers in terms of the necessary knowledge and
experience. When designing this type of units, several technical
data and algorithms are used. The basis of the software tool
that is to be used for the selection of suitable compact drive
units must, therefore, be a database in which everything
needed is to be stored. Fig. 1 shows a diagram of a knowledge
database, which was created not only to store the data needed
for the design of the drive units, but also to contain suitably
prepared 3D models of not only drive units, but also other
elements used in the construction of mechatronic devices.

Figure 1. Knowledge database schema

Currently, the knowledge database is built on the MySQL
platform and consists of three main parts. The first part
contains technical parameters and data related to drive units

and algorithms needed for their design. The source of
information for this part of the database is mainly data from
suppliers of compact drive units.

The second part of the knowledge database contains 3D
models and is divided into two main parts. In the first part,
already finished 3D models are saved. In some cases, these are
models taken over from the manufacturers of the given
elements, which are modified into a form so that they can be
used in the simplest possible way in the design of the required
equipment. However, these are not so-called living models.
Therefore, it is not possible to change their dimensions in a
parametric way or to add or remove individual parts of the
model in a simple way. However, they are assigned parameters
in terms of weight, or moments of inertia and centre of gravity,
to best match the real elements. The second main part stores
parameterized 3D models in the form of codes written in the C
programming language. The actual generation of 3D models is
realized using the CAD interface of the SolidWorks CAD
software. The 3D models created in this way not only contain
dimensions, with the help of which it is possible to change
proportions of a given 3D model, but it is also possible to add or
remove individual geometry elements in a simple way. From
the developer's point of view, there is no difference between a
3D model created in this way and a model created manually in
the graphical environment of the SolidWorks software.

The third part of the knowledge database contains sequences
of codes in the C # programming language, based on which it is
possible to create assemblies or subassemblies of proposed
devices or partial structural nodes from generated or selected
3D models. The actual generation of 3D models is again realized
using the API interface of the SolidWorks software. Based on
the input data, it is, therefore, possible to use this knowledge
database not only for the design of drive units and the
preparation of 3D models but also for complete 3D models
assemblies, if the knowledge database contains sequences of
codes suitable for their creation.

2.2 Design of compact electric drive units

The design of compact electric drive units should be carried out
according to the instructions provided by their manufacturers.
These instructions are prepared in various forms. Here
[Harmonic Drive 2021], the design procedure of the drive unit
Harmonic Drive AG CanisDrive series, is outlined. The drive is
designed from the course of the load by the output torque, the
moment of inertia and output speed. The unit designed in this
way must then be inspected from the load of the outlet flange
by radial and axial forces and tilting moment, resp—their
courses. To be able to automate the design process of this type
of power unit, it is necessary to create computational
algorithms that include all the necessary calculations. Fig. 2 is
an example of an algorithm developed just for the CanisDrive
series drive units.

To automate the design process, it is necessary to convert parts
of the data in the form of graphs related to the individual drive
units into a form with which the proposed algorithm could
work.

The Drive Picker software tool was created to work with the
documents prepared in this way (Fig. 3). Its task, based on the
input data of the load of the proposed power unit, is to find in
the database the most suitable drive units of various
manufacturers. In this process, it is always taken into account
that the most suitable drive unit is the weakest in performance
from the given series of the given manufacturer. The output is,

MM SCIENCE JOURNAL I 2021 I DECEMBER

5383

therefore, a list of drive units from which the developer can
select based on other criteria, such as weight, overall
dimensions, or price.

Figure 2. Algorithm for designing the CanisDrive series drive unit [13]

Figure 3. Drive Picker software tool

The course of the load on the proposed drive unit is defined
using an input file in which the data are stored in a column
format in a precisely defined order (time, output torque, output
speed, radial force, axial force). The Drive Picker software tool
then converts this data into a graph, allowing for easier visual
inspection. In the middle part of the New project window it is
possible to enter input values in the form of an external
moment of inertia load, minimum bearing life of the drive unit
output flange (and thus also mechanical life of the drive unit
itself) and distance of radial and axial force from the flange.
Instead of these distances, it is also possible to enter the
amount of tilting torque acting on the output flange of the
drive unit.

Then it is possible to proceed to your design of a suitable drive
unit. The software tool gradually reads algorithms and data
from the knowledge database, with the help of which the least
powerful drive units from the type series of individual
manufacturers, which with their parameters meet the
requirements imposed on them, are searched for. A possible
result of the search for a suitable drive unit is shown in Fig. 4.

Figure 4. Result of a search for a suitable unit

The amount and type of information about the proposed drive
unit given by this software tool depend on the information
provided by its manufacturer. At present, the design time of a
single drive unit is in the range of 21 to 31 seconds, if we limit
the search to only drive units from Harmonic Drive AG, the
CanisDrive series. The design time, according to the
manufacturer's catalogue, lasts approximately 50 minutes in
the case of a development worker who already has experience
with this issue. The design of drive units using the created Drive
Picker software tool is, therefore, approximately 96 to 142
times faster. It is, therefore, a very effective tool.

2.3 Preparation of taken 3D models

The knowledge database used by the Drive Picker software tool
also contains 3D models of available drive units. In most cases,
these are models taken over from the manufacturers. The main
disadvantage of the models thus obtained is that they are
available in the form of a single element. This can be quite
limiting in the case of creating assembly models, which are
subsequently to be subjected to, for example, kinematic or
dynamic analyses. In such cases, the drive unit model must be
divided into at least two parts, the stator, and the rotor. It is
then necessary to assign weights and moments of inertia to
these parts, which are corresponding to the actual drive units.
Sometimes it is necessary to modify some 3D models more
fundamentally, to achieve the required parameters, especially
in terms of moments of inertia. Preparing models in this way is
often a time-consuming process. But in the case of repeated
use of such prepared models, the initially invested time and
effort are returned in the form of reducing the time needed to
design additional equipment. The addition of reference
elements in the form of coordinate systems, axes and planes,
with the help of which it would be possible, in this case, stator
and rotor, to be connected to an assembly corresponding to a
real drive unit, also proved to be very suitable. It is also
appropriate to add reference elements, with the help of which
it would be possible to insert the own drive units into the
models of the proposed devices. Fig. 5a shows a modified 3D
model of a CanisDrive 14A drive unit, Harmonic Drive AG,
consisting of a stator and a rotor.

MM SCIENCE JOURNAL I 2021 I DECEMBER

5384

Figure 5. Modified model of Harmonic Drive CanisDrive 14A (a)
assembly model of a drive unit, b) stator and rotor supplemented by
coordinate systems, c) stator and rotor supplemented by axes and
planes)

Fig. 5b, the stator and rotor are supplemented by the
coordinate systems cs_stator_cd_14a and cs_rotor_cd_14a,
which serve to form a strong bond between the two elements.
The coordinate systems cs_drive_unit_stator_cd_14a and
cs_drive_unit_rotor_cd_14a are designed to create a link
between the drive unit and other elements of the proposed
device. In FIG. 5c, the stator and rotor are supplemented by the
axis axis_stator_1_cd_14a and axis_rotor_1_cd_14a and the
planes plane_stator_1_cd_14a and plane_rotor_1_cd_14a,
with the help of which it is possible to create a movable
rotational connection between these two elements. When
needed, the model can be supplemented with other suitable
reference elements.

It is possible to proceed similarly when preparing other 3D
models and elements, which can then be stored in a database
and subsequently used in the creation of models of other
devices. Models prepared in this way can also be used to
automate the creation of assembly 3D models, as described
below.

2.4 Preparation of parametric 3D models in the form of code
in C# language

The knowledge database also contains its 3D models in two
forms. The first are models created in SolidWorks software. It is
possible to change individual dimensions, add or remove
individual elements of geometry, change materials, etc. These
are, therefore parameterized. They can be used both in the
form in which they are stored in the knowledge database and
as a basis for new models. By using such prepared models, it is
possible not only to reduce the design time of the device but
also to make better use of the time of developers working in
CAD software [Reddy 2016].

The second form is 3D models prepared in the form of codes.
These codes can be prepared manually or using the tools
included with SolidWorks software. However, the first case is a
process that is demanding in terms of knowledge and skills of
the employee, who would create the codes, as well as in terms
of time needed to write them. As the complexity of the models
increases, so does the complexity and volume of the code.
From the point of view of time-intensity, this is not a suitable
way of preparing documents for the knowledge database. A
more convenient way is to use the tools available in the
SolidWorks CAD software, more precisely the possibility of
recording the process of creating 3D models using the "Record

/ Pause Macro" function. This function records the individual
actions that are performed when creating a 3D model.

As part of the preparation of the database of own 3D models,
the VSTA C # format was chosen for storage. The choice of this
format resulted from the effort to maintain a uniform
programming language throughout the development, i.e. C #.
Fig. 6 shows a modelling procedure for generating the required
code.

Figure 6. Modeling procedure when recording code in C # format

After the SolidWorks software is started, the "Record / Pause
Macro" function is used to record the individual actions leading
to the creation of the desired 3D model. To be able to modify
the code in the required way at a later stage, it is necessary to
create dimensions of the individual dimensions of the model. In
the next step, the individual dimensions of the model are
modified accordingly to the tree structure of the model from
the first element to the last. This way, information on the
dimensions of individual parts of the created model is arranged
relatively clearly in one part of the code. Then the material or
other properties are assigned to the model. The model created
in this way is then saved. The last step is to end the function for
recording the macro and then save it.

However, the code obtained in this way contains many lines
that have no significance for the actual creation of the 3D
model, for example, lines created by rotating the model or
enlarging/reducing the view. One rotation of the model can be
recorded in the form of tens of lines of code. Their execution
can then significantly affect the time needed to generate the
3D model. Therefore, it is advisable to remove as many
unnecessary lines as possible from thus obtained code.

However, in the case of more advanced functions, not all
actions performed are recorded (e.g. for the "Circular Pattern"
function, the code does not record information that the 3D
model creator marked some elements of the array in such a
way that they are not created). In these cases, it is necessary to
approach the creation of a 3D model in such a way that it is
possible to avoid problematic functions or to modify the
generated code as necessary. However, these alternative ways
are usually from the point of view of professionals less
advantageous and also time-consuming.

To be able to use the code created from macros to create a
parameterized 3D model, it is necessary to replace the values
for individual dimensions with variables into which the required
dimensions of the model are inserted before the actual
generation. In Fig. 7 is an example of a portion of modified code
for a parameterized model of a block.

MM SCIENCE JOURNAL I 2021 I DECEMBER

5385

Figure 7. Part of the modified code for creating a block

The block's dimensions a, b and c are defined as data variables
of type double. By assigning numerical values to these
variables, it is possible to create a model of a block of the
required dimensions. In the second part of the code, the
generated model is assigned material from the SolidWorks
software database.

The code generated in this way can be used both to generate
one type of 3D model and as a basis for creating multiple
derived model types. The only difference is in the parts of the
code that would be used to generate the 3D model. An
example of the basis model (middle) and its derived types are
shown in Fig. 8.

Figure 8. Basis model and its derived types

This way, it is possible not only to expand the usability of the
generated code significantly but also to reduce the amount of
code stored in the database and thus achieve its better clarity.

When preparing models in the form of codes, it is again
appropriate to take into account how they are inserted into
subsequently created assemblies and subassemblies, as was
the case with models taken over from the manufacturers of the

given elements and equipment. In Fig. 9a is an example of a
console model with a pair of coordinate systems. By a suitable
location of these coordinate systems and orientations of their
axes, it is possible to achieve a state where to create the
desired connection with other elements of the proposed device
it is enough to create only one connection with the help of
these reference elements. Fig. 9b shows a possible result in the
form of a connection of a console model with a pair of drive
units. The models prepared in this way again open the way to
automate the creation of assembly 3D models. However, the
correct set of rules for the creation of reference elements in
the form of coordinate systems, axes, planes, etc. plays an
important role.

Figure 9. a) a console model with a pair of coordinate systems, b) an
assembly model of a console with a pair of drive units

At first, glance, preparing 3D models in the form of codes can
seem complicated and time-consuming. However, their creator,
familiar with the appropriate procedures and limitations, can
create the necessary materials in a relatively short time. In
Table 1 is a comparison of the times required to manually
create selected 3D models and the times required to create and
edit codes into such a form that they can be stored in a
database. The times it took to generate selected 3D models by
using the codes created are also included. The difference
between them is whether these models were generated with or
without the use of the graphical environment (GUI) of
SolidWorks software. Individual times were obtained as
average values from five measurements. The creation of 3D
models took place on a computer set equipped with an AMD
Ryzen 5 2600X processor, 16GB of RAM, a graphics card
equipped with NVidia GeForce GTX 1650 chip and a 500GB SSD
hard drive.

In the case of the spacer ring, the preparation of the 3D model
alone took approximately 1 minute. The remaining time was
devoted to the preparation of reference elements in the form
of coordinate systems, axes and planes. It is similar to the time-
consuming preparation of reference elements for other
models. From previous experience, it is possible to conclude
that the preparation time of a 3D model in the form of a code is
on average approximately two to three times more demanding
than the manual creation of a given model. When modifying
the code to achieve the result indicated in Fig. 8, or in the case
of the need for additional modifications of the code to a form
that cannot be achieved by recording the manual process of
creating models, it is necessary to take into account the
extension of the time required to achieve the desired result.

Models created based on codes can be further worked in the
same way as models created manually. It is, therefore, possible
to change dimensions (models contain dimensions), add,

MM SCIENCE JOURNAL I 2021 I DECEMBER

5386

remove, or modify their parts, etc. In this respect, there is no
restriction.

Model name Spacer ring Flange Console

3D model

Manual

creation
7.42 minutes 10.50 minutes 14.82 minutes

Code

preparation
14.18 minutes 24.68 minutes 37.75 minutes

Model

generation

(GUI on)

10.5 seconds 13.7 seconds 19.8 seconds

Model

generation

(GUI off)

5.5 seconds 7.0 seconds 10.9 seconds

Table 1. Comparison of times needed to create selected 3D models and
prepare 3D models in the form of codes

2.5 Automation of the process of creating assembly 3D
models

Creating assemblies or subassemblies can also be a relatively
time-consuming process. In the case of models with a repeating
structure, but with different dimensions of individual elements,
there is room for automation of this process. One of the
possibilities is the use of parameterized models of elements of
given assembly and their connection to a Microsoft Excel file,
which stores a design table containing the dimensions of
individual elements [Yong 2011], or references, which are used
to interconnect selected dimensions of individual elements. A
subsequent change of values in the design table can achieve
the desired change in the dimensions of selected parts of the
assembly. For work productivity, this can be a very attractive
way of automating the design process of various devices or
their components. In many cases, however, simply resizing
individual elements of an assembly is not enough, but you need
to replace some of the elements with others. One option is to
use the SolidWorks software API again. Suitable code
sequences can replace manual insertion of elements into the
assembly and creation of links between them. In Fig. 10 there is
a code sample in the C # programming language for loading and
inserting a selected element (rotor of a CanisDrive drive unit
40A-100-AU-H-MGS-B) into an assembly.

The first piece of code opens the featured model that is to be
inserted into the assembly in a new SolidWorks software
window. The second part of the code is used to insert this
model into the assembly. The third ensures that the window
with the model is closed. When inserting a model of another
element, all you need to do is change its name and path to its
location. The process of inserting individual elements into an
assembly can, therefore, be automated with the help of several
lines of code and a list of elements with links to their location.

In Fig. 11 there is an example of code with which it is possible
to create links between models of individual elements of an
assembly. It is a creation of a strong connection, using
coordinate systems, between the rotor and the stator of the
CanisDrive 40A-100-AU-H-MGS-B drive unit.

Figure 10. Code sample for loading of a model into an assembly

Figure 11. Code sample for creating a strong link between two models
using coordinate systems

The first and second part of the code is used to select the
coordinate systems of the stator and rotor models with which a
strong bond is to be created. The third piece of code is used for
the creation of that bond. Similarly, it is possible to create
relationships using planes, axes, or other predefined reference
elements of selected models. In this way, it is possible to create
not only fixed but also movable bonds.

Again, the code structured in this way can be relatively easily
modified to form different types of links between any elements
of the assembly, as long as the elements of the assembly
contain suitably spaced reference elements. In the case of the
first part of the code, it is sufficient to change the existing data
concerning the coordinate system, i.e. its name
(cs_rotor_cd_40a) and the name of the first of the models
(canisdrive_40a_100_au_h_mgs_b_rotor), after the name of
another reference element and the name of the model of
which this reference element is a part. Then you need to
change the type of reference element. The location of the
coordinate system and its corresponding designation within the
"COORDSYS" code can be specified, for example, "AXIS" in the
case of an axis or "PLANE" in the case of a plane. It is possible
to proceed similarly when editing the second part of the code.
However, keep in mind that it is not possible to create links
from all available combinations of auxiliary elements. The last
part of the code is based on the type of reference elements
used to create the link. By changing the first two values in
parentheses, it is possible to create links between different
reference elements. In the case of coordinate systems it is a
pair of values (20, -1), in the case of axes a pair of values (0, 0)
and in the case of planes a pair of values (0, 1). In the case of
other types of reference elements, or when creating links
between different types of reference links, there are other
combinations of these two values.

MM SCIENCE JOURNAL I 2021 I DECEMBER

5387

3 EXAMPLE OF USING A KNOWLEDGE DATABASE AND THE
DRIVE PICKER SOFTWARE TOOL

Demonstration of the use of a knowledge database and a
software tool for the design of compact drive units Drive Picker
is performed on the design of a robotic arm with 5 degrees of
freedom. The design of the robotic arm depends on the
application, resp. the type of technology for which it is
proposed. The choice of individual parts of the proposed device
is derived from this. The design procedure is indicated in Fig.
12.

Figure 12. Robotic arm design procedure

In the initial phase of the design, the end effector is solved. Its
type and properties depend on the activity for which the
robotic arm is designed. In the case of manipulation tasks,
these are often gripping types of effectors (e.g. jaw, vacuum or
magnetic). In the case of technological tasks, the type of
effector depends on the given technology (e.g. welding, paint
application or laser beam cutting) [Mohyla 2014]. However,
there are also combined or special end effectors. In this case, a
double-jawed effector with a pneumatic drive was designed for
handling a cylindrical object with a diameter of 52 mm, a length
of 200 mm and a weight of 10 kg, the taken 3D model was
modified in a similar way as indicated for compact drive units
and added to the knowledge database.

The knowledge database contains sample code sequences for
the design of robotic arms with an angular structure and 4, 5
and 6 degrees of freedom. Based on the sample code
sequence, a 3D model of the robotic arm with 5 degrees of
freedom was created (Fig. 13). Harmonic Drive AG drive units of
the CanisDrive series have been designed for the individual
joints. From size 14, in the case of the joint closest to the end
effector, to size 40, in the case of the base of the robotic arm.
Other elements of the arm model were generated using models

in the form of codes stored in the knowledge base. Modifying
the sample code sequence to create this 3D model of the
robotic arm to the desired shape took approximately 25
minutes. The actual generation of the model took 6.5 minutes.
The total time for the preparation and creation of the robotic
arm model thus slightly exceeded half an hour. The total time
required to create a 3D model of this robotic arm manually was
approximately 190 minutes, more than six times longer. This is
provided that its creator had the necessary documents
prepared in a similar way as in the case of the proposed
knowledge database. Otherwise, the time required to create
this 3D model manually can be many times longer, and the
benefits of using the proposed knowledge database would be
significantly more tangible.

Figure 13. 3D model of a robotic arm

It turned out that if the potential of the proposed knowledge
database is used appropriately, the time required to create the
required 3D assembly model can be significantly reduced.

The 3D model created in this way would then be subjected to
analyses in the SolidWorks software environment. Based on
these analyses, it would be possible to determine the load,
respectively required parameters of drive units in individual
joints of the robotic arm. Based on these values, it would be
possible to design suitable drive units of the individual joints
subsequently. In the case of the design of robotic arms, the
drive closest to the effector is always designed first. Then the
assembly model of the manipulator is modified according to
the newly designed drive unit, and analyses are performed
again in the SolidWorks software environment. Based on their
results, the newly designed drive unit is checked to see if it
meets the requirements placed on it, or whether it is not
possible to select a drive unit with even more suitable
parameters. The same procedure is continued in the case of the
drive units of the other joints of the robotic arm. It is thus an
iterative task, as indicated in Fig. 12. The drive unit of each joint
is therefore to be subjected to at least two design calculations.
If we take into account the time required to manually perform
the design calculation of the drive unit mentioned above, i.e.
approximately 50 minutes, multiply it by two and multiply this
value by the number of drive units of the robotic arm, i.e. 5, we
get to the time value of 500 minutes. If the Drive Picker
software tool is used, one design calculation would take
between 21 and 31 seconds. In the case of performing ten
design calculations, we get to the range of values from 210 to
310 seconds, i.e. 3.5 to 5.17 minutes. Even in the case of a
comparison with the highest value of this time interval, the

MM SCIENCE JOURNAL I 2021 I DECEMBER

5388

time of manual design of power units would take almost 100
times longer, respectively would take approximately 494
minutes longer. It is therefore clear that by using this software
tool, it is possible to reduce the overall design time of the
device significantly.

The functionality of the Drive Picker software tool was tested
using data obtained from the dynamic analysis, in which an
object of manipulation in the form of a cylinder with a diameter
of 52 mm, a length of 200 mm and a weight of 10 kg was
manipulated along the marked trajectory. The trajectory has a
length of 1314.16 mm, and the movement from the starting
position (the manipulation object is green) to the target
position (the manipulation object is blue) took 2 seconds, while
the axis of the manipulation object was in a vertical position
throughout the movement point.

Figure 14. Trajectory of the object of manipulation in dynamic analysis

In Fig. 15 are graphs with course curves of torques, output
speeds, radial and axial forces acting on individual drive units of
the robotic arm. The drive units are numbered in order from
the location in the joint closest to the end effector (Drive unit –
joint 1) to the base of the robotic arm (Drive unit – joint 5).

Table 2 shows the maximum, average and minimum values of
torques, output speeds, radial and axial forces and maximum
values of tilting torques relating to the individual drive units.
The values of the moments of inertia, which were obtained
from the CAD software SolidWorks in the initial position of the
robotic arm, i.e. at the beginning of the given trajectory, is also
given here. The last row of the table contains types,
respectively the size, of the Canis Drive series drives, which
with their parameters would suit the load determined during
the dynamic analysis. The design of the drive units was also
performed manually according to the manufacturer's catalogue
(Harmonic Drive LLC, 2020). The same result was obtained as in
the case of using the Drive Picket software tool, which again
confirmed its functionality.

Currently, the Drive Picker software tool is being developed
with maximum emphasis on the reliability of drive design. In
the next phases of development, it is planned not only to
expand its functionality but also to optimize the speed of the
power unit design process.

Figure 15. Load course curves of drive units

MM SCIENCE JOURNAL I 2021 I DECEMBER

5389

Quantity Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

Torque

(Nm)

Max. 6,49 16,72 126,6 187,5 131,6

Avg. 0,001 13,85 105,7 117,4 44,61

Min. 0,00 0,02 5,25 0,12 0,00

Output

speed

(rpm)

Max. 0,08 7,23 17,32 17,31 13,69

Avg. 0,02 2,15 6,53 6,61 5,51

Min. 0,00 0,00 0,00 0,00 0,00

Radial

force

(N)

Max. 173,7 200,3 307,3 383,5 305,7

Avg. 113,7 127,3 185,6 249,1 107,6

Min. 6,97 15,22 38,64 100,5 0,04

Axial

force

(N)

Max. 140,8 159,1 176,4 175,6 315,5

Avg. 35,43 43,14 101,7 101,1 281,6

Min. 0,00 0,00 0,00 0,00 136,5

Tipping

moment

(Nm)

Max. 33,64 45,65 132,7 145,8 209,8

Moment

of

inertia

(kgm2)

- 0,04 0,10 8,15 14,11 12,23

Drive

unit
Type

HD

Canis

Drive

14A

(ratio

50)

HD

Canis

Drive

14A

(ratio

80)

HD

Canis

Drive

25A

(ratio

100)

HD

Canis

Drive

25A

(ratio

100)

HD

Canis

Drive

25A

(ratio

100)

Table 2. Values obtained from dynamic analysis

4 CONCLUSIONS

The previous chapters described the Drive Picker software tool,
how to prepare 3D models for a knowledge base, the ability to
automate the creation of assembly models using the
SolidWorks software API, and the knowledge base, which stores
the necessary data and algorithms, and serves as a basis.
Knowledge design system for designing selected elements of
mechatronic devices. Verification of the functionality and
benefits of the proposed solutions were demonstrated on a
model of a robotic arm with five degrees of freedom. Although
the preparation of materials for a knowledge database is not a
trivial matter and is also time-consuming, the return on energy
input can be very fast, as shown in the examples. Currently, the
ability to make full use of all knowledge base resources is tied
to the need for at least a basic knowledge of working with the
SolidWorks software API and programming in C #. However,
further, the development includes not only the further
expansion of several software tools for designing standardized
and non-standardized elements used in the construction of
mechatronic devices and data stored in the knowledge
database but also a graphical interface that would not only
simplify data access but also eliminated the need for API and C
programming skills.

ACKNOWLEDGMENTS

This article was developed with the support of the project
Research Centre of Advanced Mechatronic Systems, reg. no.
CZ.02.1.01/0.0/0.0/16_019/0000867 in the frame of the
Operational Program Research, Development and Education.

REFERENCES

[Farhan 2012] Farhan, U. H., Tolouei-Rad, M. and O'Brien, S. An
Automated Approach for Assembling Modular Fixtures Using
SolidWorks. International Scholarly and Scientific Research &
Innovation, 2012, Vol.6, No.12., pp 365-368. ISSN 2682–2685.

[Harmonic Drive 2021] Harmonic Drive SE. 301 [online].
Copyright © 2021 [cit. 5.10.2021]. Available from:
https://harmonicdrive.de/en/home

[Chen 2013] Chen, T., Yan, X. and Zhonghai, Y. The Research
and Development of VB and Solidworks-Based 3D Fixture
Component Library. Applied Mechanics and Materials, February
2013, Vol. 300-301, pp 301-305. ISSN 1662-7482.

[Isermann 2002] Isermann, R., Mechatronic design approach, in
Bishop, R.H. (Ed.): The Mechatronics Handbook. Boca Raton:
CRC Press, 2002.

[Jiang 2011] Jiang, Y. J. The Modeling of Thread-Rolling Die-
Plates Based on the "Design Table" Functions in CAD/CAE/CAM.
Applied Mechanics and Materials, October 2011, Vol. 130-134,
pp 499-503. ISSN 1662-7482.

[KISSsoft 2021] KISSsoftAG. [online]. Copyright ©2021 KISSsoft
AG [cit. 15.05.2021]. Available from:
https://www.kisssoft.com/en

[Kyura 1996] Kyura, N. and Oho, H. Mechatronics – an
industrial perspective. IEEE/ASME Transactions on
Mechatronics, March 1996, Vol. 1, Issue.1, pp 10-15. ISSN 1941-
014X.

[Lad 2014] Lad A.C., Rao A.S. Design and Drawing Automation
Using Solid Works Application Programming Interface.
International Journal of Emerging Engineering Research and
Technology, October 2014, Vol.2, No.7., pp 157-167. ISSN 2349-
4395

[Lindemann 2009] Lindemann U. Methodische Entwicklung
technischer Produkte: Methoden flexibel und situationsgerecht
anwenden. Berlin: Springer-Verlag, 2009. ISBN 978-3-642-
01423-9

[Mohyla 2014] Mohyla P., Kubon Z., Cep R., Samardzic,
I.Evaluation of Creep Properties of Steel P92 and Its Welded
Joint. Metalurgija, Vol. 53, No. 2, pp. 175-178. ISSN 0543-5846.

[Reddy 2016] Reddy E.J., Sridhar C.N.V., Pandurangadu V.
Research and development of knowledge based intelligent
design system for bearings library construction using
SolidWorks API. Advances in Intelligent Systems and
Computing. India: Springer, 2016. ISBN 978-3-319-23257-7

[Reddy 2018a] Reddy E.J., Rangadu V.P. Development of
knowledge based parametric CAD modelling system for spur
gear: An approach. Alexandria Engineering Journal, December
2018, Vol.57, No.4., pp 3139-3149. ISSN 2249–6890

[Reddy 2018b] Reddy E.J., Venkatachalapathi N., Rangadu V.P.
Development of an approach for Knowledge-Based System for
CAD modelling. Materials Today: Proceedings, January 2018,
Vol.5, No.5., pp 13375-13382. ISSN 2214-7853

[Sun 2011] Sun, B., Qin, G. and Fang, Y. Research of standard
parts library construction for SolidWorks by Visual Basic.
International Conference on Electronic & Mechanical
Engineering and Information Technology, August 2011, pp
2651-2654. ISBN 978-1-61284-088-8

MM SCIENCE JOURNAL I 2021 I DECEMBER

5390

[VDI 2004] VDI-Fachbereich Produktentwicklung und
Mechatronik. Entwicklungsmethodik für mechatronische
Systeme. Berlin: Beuth Verlag, 2004.

[Yong 2011] Yong J. J. The Modeling of Thread-Rolling Die-
Plates Based on the “Design Table” Functions in CAD/CAE/CAM.
Applied Mechanics and Materials, October 2011, Vol. 130-134,
pp 499-503. ISSN 1662-7482

[Zhang 2011] Zhang, Z. W., Xin, Y. G., Zhang, W. and Song, J. C.
Three-Dimensional Manifold Checking Based on VB.NET.
Advanced Materials Research, September 2011, Vol. 338, pp
263-266. ISSN 1662-8985

CONTACTS:

doc. Ing. Milan Mihola, Ph.D.
VSB - Technical University of Ostrava, Department of Robotics
17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
+420 596 995 445, milan.mihola@vsb.cz,
https://www.fs.vsb.cz/354/en

Ing. Zdenek Zeman
VSB - Technical University of Ostrava, Department of Robotics
17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
+420 596 991 209, zdenek.zeman@vsb.cz
https://www.fs.vsb.cz/354/en

Ing. David Fojtik, Ph.D.
VSB - Technical University of Ostrava, Department of Control
Systems and Instrumentation
17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
+420 596 994 193, david.fojtik@vsb.cz
https://www.fs.vsb.cz/352/en/

