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The design of mechatronic devices is a demanding process not 
only in terms of the time required but also of the demands 
placed on the knowledge and experience of development 
workers. The aim of this research and development was to 
create suitable procedures, algorithms, and databases of 3D 
models, with the help of which could this process be 
significantly shortened and simplified. The results of the 
development are a software tool for the design of electric drive 
units, procedures for creating 3D models with the possibility of 
using the SolidWorks software API, methods for automating the 
creation of assemblies of 3D models and a description of the 
knowledge database in which various data and algorithms are 
stored. The benefits of the proposed procedures, the Drive 
Picker software tool, and the knowledge database, are 
demonstrated on the design of a robotic arm with 5 degrees of 
freedom. Despite the complexity of the preparation of 
documents needed, it turns out that the chosen approach can 
significantly speed up and simplify the design of mechatronic 
devices. 
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1 INTRODUCTION 

Mechatronic devices, by definition, consists of four main parts: 
mechanics, electronics, control, and informatics [Isermann 
2002]. The developers strive to integrate these four parts in 
such a way as to achieve a synergistic effect. Thus, the state 
where the final effect of the components acting together is 
greater than would be the case of a simple sum of the effects of 
the individual components [Kyura 1996]. Despite the 
availability of methodological procedures for the development 
of mechatronic devices (VDI 2206, Munich Procedural Model, 
etc.) [VDI 2004, Lindemann 2009], with which it is possible to 
achieve better results than would be the case with an intuitive 
development procedure, it is not possible to call it a trivial 
matter. 
One of the ways to significantly accelerate and often simplify 
the process of developing mechatronic devices is to use 
available or develop new software tools, which can be used to 
design individual elements or subsystems of the device, or 
complete devices. Currently, there are several software tools 
developed for the design of standardized machine parts, such 

as screws, bearings, gears, etc. Whether in the form of stand-
alone applications (e.g. MitCalc or MESYS) or as part of one of 
the CAD systems (e.g. KISSsoft [KISSsoft 2021]). The calculations 
based on which machine parts are designed and inspected 
using these software tools are in most cases based on generally 
known standards and procedures related to the given types of 
machine parts (e.g. ANSI, DIN, ISO, etc.). Reddy et al. [Reddy 
2016] presented a tool for bearing design. Reddy and Rangadu 
[Reddy 2018a] developed a gears design tool. Both tools were 
developed for SolidWorks CAD software and use its Application 
Programming Interface (API). The data needed to design these 
elements are stored in a knowledge database. From the point 
of view of development workers, these are handy tools, with 
the help of which it is possible to shorten the design and 
inspection time of individual machine parts up to tens of 
minutes. 
In the case of non-standard elements, which are usually part of 
mechatronic devices, the situation is somewhat more 
complicated. Some manufacturers (e.g. Maxon Motor AG, 
Festo, Bosch Rexroth, etc.) provide online software tools, with 
which it is possible to select suitable elements of the proposed 
equipment. However, the applicability of these tools is usually 
limited to the products of the supplier. Subsequent comparison 
of products of individual suppliers then remains with the 
developer of the mechatronic system. This can be quite a time-
consuming process. There are also software tools whose 
database contains products from various manufacturers (e.g. 
VisualSizer). However, there is still room for further 
improvement and innovation in this area. 
Another way to speed up the development process of the 
proposed devices is to use pre-prepared 3D models. Most CAD 
systems include databases of models of standardized 
components or other frequently used structural elements 
[Chen 2013, Sun 2011]. In the case of non-standardized 
elements, it is possible to use databases of 3D models of the 
given manufacturers, or databases specially created for the 
availability of 3D models from various fields of technics. Even 
though the availability of these databases significantly speeds 
up and simplifies the creation of 3D models of the proposed 
devices, there is still room for further improvement and 
innovation in this area. A possible way to do so is to use the API 
of available CAD software. By using this interface, it is possible 
to create or modify individual 3D models and their 
subassemblies and total assemblies by using appropriately 
designed sequences of commands. Farhan et al. [Farhan 2012] 
introduced an automated approach to assembling modular 
accessory elements used in manufacturing processes. Lad and 
Rao [Lad 2014] developed an application for product design 
and 3D model updating, whose function they presented on the 
example of a winding device. Reddy et al. [Reddy 2018b] 
presented the possibility of using a knowledge database and 
CAD software to design the layout of an industrial battery tray. 
By a suitable connection of software tools for the design of 
individual elements of mechatronic devices, knowledge 
database, and CAD system, it is possible to achieve significant 
acceleration of the development process and thus shorten the 
design time of the device. Another benefit can be smaller 
demands on the knowledge and experience of development 
workers. 

2 KNOWLEDGE-BASED CONSTRUCTION SYSTEM TOOLS  

The knowledge-based construction system is developed for the 
design of selected elements of mechatronic devices. From the 
previous chapter, it is clear that developers have a relatively 
wide range of tools for designing basic machine elements 
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(screws, bearings, gears, etc.). Also, there are tools to assist in 
the selection of electric, pneumatic, or hydraulic drive units. 
From this point of view, the currently neglected area is compact 
electric drive units, which integrate an electric motor, a 
gearbox, a speed sensor and optionally a brake. The output 
flange of these drive units is usually mounted in the drive unit's 
body by bearings capable of absorbing the action of not only 
radial and axial forces, but also tilting moments. This 
construction brings advantages in terms of the overall 
dimensions and weight of the drive units. However, the process 
of their design entails the need to inspect the individual 
integrated parts in a similar way as in the case of a drive unit 
consisting of a separate electric motor, gearbox, and other 
necessary elements. This not only brings increased 
requirements on the knowledge of the developer, but it is also 
a time-consuming process. 
 

2.1 Knowledge database structure 

One of the development goals is to shorten the design time of 
compact electric power units while reducing the demands 
placed on developers in terms of the necessary knowledge and 
experience. When designing this type of units, several technical 
data and algorithms are used. The basis of the software tool 
that is to be used for the selection of suitable compact drive 
units must, therefore, be a database in which everything 
needed is to be stored. Fig. 1 shows a diagram of a knowledge 
database, which was created not only to store the data needed 
for the design of the drive units, but also to contain suitably 
prepared 3D models of not only drive units, but also other 
elements used in the construction of mechatronic devices. 

 

Figure 1. Knowledge database schema 

Currently, the knowledge database is built on the MySQL 
platform and consists of three main parts. The first part 
contains technical parameters and data related to drive units 

and algorithms needed for their design. The source of 
information for this part of the database is mainly data from 
suppliers of compact drive units. 

The second part of the knowledge database contains 3D 
models and is divided into two main parts. In the first part, 
already finished 3D models are saved. In some cases, these are 
models taken over from the manufacturers of the given 
elements, which are modified into a form so that they can be 
used in the simplest possible way in the design of the required 
equipment. However, these are not so-called living models. 
Therefore, it is not possible to change their dimensions in a 
parametric way or to add or remove individual parts of the 
model in a simple way. However, they are assigned parameters 
in terms of weight, or moments of inertia and centre of gravity, 
to best match the real elements. The second main part stores 
parameterized 3D models in the form of codes written in the C 
# programming language. The actual generation of 3D models is 
realized using the CAD interface of the SolidWorks CAD 
software. The 3D models created in this way not only contain 
dimensions, with the help of which it is possible to change 
proportions of a given 3D model, but it is also possible to add or 
remove individual geometry elements in a simple way. From 
the developer's point of view, there is no difference between a 
3D model created in this way and a model created manually in 
the graphical environment of the SolidWorks software. 

The third part of the knowledge database contains sequences 
of codes in the C # programming language, based on which it is 
possible to create assemblies or subassemblies of proposed 
devices or partial structural nodes from generated or selected 
3D models. The actual generation of 3D models is again realized 
using the API interface of the SolidWorks software. Based on 
the input data, it is, therefore, possible to use this knowledge 
database not only for the design of drive units and the 
preparation of 3D models but also for complete 3D models 
assemblies, if the knowledge database contains sequences of 
codes suitable for their creation. 

 

2.2 Design of compact electric drive units 

The design of compact electric drive units should be carried out 
according to the instructions provided by their manufacturers. 
These instructions are prepared in various forms. Here 
[Harmonic Drive 2021], the design procedure of the drive unit 
Harmonic Drive AG CanisDrive series, is outlined. The drive is 
designed from the course of the load by the output torque, the 
moment of inertia and output speed. The unit designed in this 
way must then be inspected from the load of the outlet flange 
by radial and axial forces and tilting moment, resp—their 
courses. To be able to automate the design process of this type 
of power unit, it is necessary to create computational 
algorithms that include all the necessary calculations. Fig. 2 is 
an example of an algorithm developed just for the CanisDrive 
series drive units. 

To automate the design process, it is necessary to convert parts 
of the data in the form of graphs related to the individual drive 
units into a form with which the proposed algorithm could 
work. 

The Drive Picker software tool was created to work with the 
documents prepared in this way (Fig. 3). Its task, based on the 
input data of the load of the proposed power unit, is to find in 
the database the most suitable drive units of various 
manufacturers. In this process, it is always taken into account 
that the most suitable drive unit is the weakest in performance 
from the given series of the given manufacturer. The output is, 
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therefore, a list of drive units from which the developer can 
select based on other criteria, such as weight, overall 
dimensions, or price. 

 

Figure 2. Algorithm for designing the CanisDrive series drive unit [13] 

 

Figure 3. Drive Picker software tool 

The course of the load on the proposed drive unit is defined 
using an input file in which the data are stored in a column 
format in a precisely defined order (time, output torque, output 
speed, radial force, axial force). The Drive Picker software tool 
then converts this data into a graph, allowing for easier visual 
inspection. In the middle part of the New project window it is 
possible to enter input values in the form of an external 
moment of inertia load, minimum bearing life of the drive unit 
output flange (and thus also mechanical life of the drive unit 
itself) and distance of radial and axial force from the flange. 
Instead of these distances, it is also possible to enter the 
amount of tilting torque acting on the output flange of the 
drive unit. 

Then it is possible to proceed to your design of a suitable drive 
unit. The software tool gradually reads algorithms and data 
from the knowledge database, with the help of which the least 
powerful drive units from the type series of individual 
manufacturers, which with their parameters meet the 
requirements imposed on them, are searched for. A possible 
result of the search for a suitable drive unit is shown in Fig. 4. 

 

Figure 4. Result of a search for a suitable unit 

The amount and type of information about the proposed drive 
unit given by this software tool depend on the information 
provided by its manufacturer. At present, the design time of a 
single drive unit is in the range of 21 to 31 seconds, if we limit 
the search to only drive units from Harmonic Drive AG, the 
CanisDrive series. The design time, according to the 
manufacturer's catalogue, lasts approximately 50 minutes in 
the case of a development worker who already has experience 
with this issue. The design of drive units using the created Drive 
Picker software tool is, therefore, approximately 96 to 142 
times faster. It is, therefore, a very effective tool. 

 

2.3 Preparation of taken 3D models 

The knowledge database used by the Drive Picker software tool 
also contains 3D models of available drive units. In most cases, 
these are models taken over from the manufacturers. The main 
disadvantage of the models thus obtained is that they are 
available in the form of a single element. This can be quite 
limiting in the case of creating assembly models, which are 
subsequently to be subjected to, for example, kinematic or 
dynamic analyses. In such cases, the drive unit model must be 
divided into at least two parts, the stator, and the rotor. It is 
then necessary to assign weights and moments of inertia to 
these parts, which are corresponding to the actual drive units. 
Sometimes it is necessary to modify some 3D models more 
fundamentally, to achieve the required parameters, especially 
in terms of moments of inertia. Preparing models in this way is 
often a time-consuming process. But in the case of repeated 
use of such prepared models, the initially invested time and 
effort are returned in the form of reducing the time needed to 
design additional equipment. The addition of reference 
elements in the form of coordinate systems, axes and planes, 
with the help of which it would be possible, in this case, stator 
and rotor, to be connected to an assembly corresponding to a 
real drive unit, also proved to be very suitable. It is also 
appropriate to add reference elements, with the help of which 
it would be possible to insert the own drive units into the 
models of the proposed devices. Fig. 5a shows a modified 3D 
model of a CanisDrive 14A drive unit, Harmonic Drive AG, 
consisting of a stator and a rotor. 
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Figure 5. Modified model of Harmonic Drive CanisDrive 14A (a) 
assembly model of a drive unit, b) stator and rotor supplemented by 
coordinate systems, c) stator and rotor supplemented by axes and 
planes) 

Fig. 5b, the stator and rotor are supplemented by the 
coordinate systems cs_stator_cd_14a and cs_rotor_cd_14a, 
which serve to form a strong bond between the two elements. 
The coordinate systems cs_drive_unit_stator_cd_14a and 
cs_drive_unit_rotor_cd_14a are designed to create a link 
between the drive unit and other elements of the proposed 
device. In FIG. 5c, the stator and rotor are supplemented by the 
axis axis_stator_1_cd_14a and axis_rotor_1_cd_14a and the 
planes plane_stator_1_cd_14a and plane_rotor_1_cd_14a, 
with the help of which it is possible to create a movable 
rotational connection between these two elements. When 
needed, the model can be supplemented with other suitable 
reference elements. 

It is possible to proceed similarly when preparing other 3D 
models and elements, which can then be stored in a database 
and subsequently used in the creation of models of other 
devices. Models prepared in this way can also be used to 
automate the creation of assembly 3D models, as described 
below. 

 

2.4 Preparation of parametric 3D models in the form of code 
in C# language 

The knowledge database also contains its 3D models in two 
forms. The first are models created in SolidWorks software. It is 
possible to change individual dimensions, add or remove 
individual elements of geometry, change materials, etc. These 
are, therefore parameterized. They can be used both in the 
form in which they are stored in the knowledge database and 
as a basis for new models. By using such prepared models, it is 
possible not only to reduce the design time of the device but 
also to make better use of the time of developers working in 
CAD software [Reddy 2016]. 

The second form is 3D models prepared in the form of codes. 
These codes can be prepared manually or using the tools 
included with SolidWorks software. However, the first case is a 
process that is demanding in terms of knowledge and skills of 
the employee, who would create the codes, as well as in terms 
of time needed to write them. As the complexity of the models 
increases, so does the complexity and volume of the code. 
From the point of view of time-intensity, this is not a suitable 
way of preparing documents for the knowledge database. A 
more convenient way is to use the tools available in the 
SolidWorks CAD software, more precisely the possibility of 
recording the process of creating 3D models using the "Record 

/ Pause Macro" function. This function records the individual 
actions that are performed when creating a 3D model. 

As part of the preparation of the database of own 3D models, 
the VSTA C # format was chosen for storage. The choice of this 
format resulted from the effort to maintain a uniform 
programming language throughout the development, i.e. C #. 
Fig. 6 shows a modelling procedure for generating the required 
code. 

 

Figure 6. Modeling procedure when recording code in C # format 

After the SolidWorks software is started, the "Record / Pause 
Macro" function is used to record the individual actions leading 
to the creation of the desired 3D model. To be able to modify 
the code in the required way at a later stage, it is necessary to 
create dimensions of the individual dimensions of the model. In 
the next step, the individual dimensions of the model are 
modified accordingly to the tree structure of the model from 
the first element to the last. This way, information on the 
dimensions of individual parts of the created model is arranged 
relatively clearly in one part of the code. Then the material or 
other properties are assigned to the model. The model created 
in this way is then saved. The last step is to end the function for 
recording the macro and then save it. 

However, the code obtained in this way contains many lines 
that have no significance for the actual creation of the 3D 
model, for example, lines created by rotating the model or 
enlarging/reducing the view. One rotation of the model can be 
recorded in the form of tens of lines of code. Their execution 
can then significantly affect the time needed to generate the 
3D model. Therefore, it is advisable to remove as many 
unnecessary lines as possible from thus obtained code. 

However, in the case of more advanced functions, not all 
actions performed are recorded (e.g. for the "Circular Pattern" 
function, the code does not record information that the 3D 
model creator marked some elements of the array in such a 
way that they are not created). In these cases, it is necessary to 
approach the creation of a 3D model in such a way that it is 
possible to avoid problematic functions or to modify the 
generated code as necessary. However, these alternative ways 
are usually from the point of view of professionals less 
advantageous and also time-consuming. 

To be able to use the code created from macros to create a 
parameterized 3D model, it is necessary to replace the values 
for individual dimensions with variables into which the required 
dimensions of the model are inserted before the actual 
generation. In Fig. 7 is an example of a portion of modified code 
for a parameterized model of a block. 
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Figure 7. Part of the modified code for creating a block 

The block's dimensions a, b and c are defined as data variables 
of type double. By assigning numerical values to these 
variables, it is possible to create a model of a block of the 
required dimensions. In the second part of the code, the 
generated model is assigned material from the SolidWorks 
software database. 

The code generated in this way can be used both to generate 
one type of 3D model and as a basis for creating multiple 
derived model types. The only difference is in the parts of the 
code that would be used to generate the 3D model. An 
example of the basis model (middle) and its derived types are 
shown in Fig. 8. 

 

Figure 8. Basis model and its derived types 

This way, it is possible not only to expand the usability of the 
generated code significantly but also to reduce the amount of 
code stored in the database and thus achieve its better clarity. 

When preparing models in the form of codes, it is again 
appropriate to take into account how they are inserted into 
subsequently created assemblies and subassemblies, as was 
the case with models taken over from the manufacturers of the 

given elements and equipment. In Fig. 9a is an example of a 
console model with a pair of coordinate systems. By a suitable 
location of these coordinate systems and orientations of their 
axes, it is possible to achieve a state where to create the 
desired connection with other elements of the proposed device 
it is enough to create only one connection with the help of 
these reference elements. Fig. 9b shows a possible result in the 
form of a connection of a console model with a pair of drive 
units. The models prepared in this way again open the way to 
automate the creation of assembly 3D models. However, the 
correct set of rules for the creation of reference elements in 
the form of coordinate systems, axes, planes, etc. plays an 
important role. 

 
Figure 9. a) a console model with a pair of coordinate systems, b) an 
assembly model of a console with a pair of drive units 

At first, glance, preparing 3D models in the form of codes can 
seem complicated and time-consuming. However, their creator, 
familiar with the appropriate procedures and limitations, can 
create the necessary materials in a relatively short time. In 
Table 1 is a comparison of the times required to manually 
create selected 3D models and the times required to create and 
edit codes into such a form that they can be stored in a 
database. The times it took to generate selected 3D models by 
using the codes created are also included. The difference 
between them is whether these models were generated with or 
without the use of the graphical environment (GUI) of 
SolidWorks software. Individual times were obtained as 
average values from five measurements. The creation of 3D 
models took place on a computer set equipped with an AMD 
Ryzen 5 2600X processor, 16GB of RAM, a graphics card 
equipped with NVidia GeForce GTX 1650 chip and a 500GB SSD 
hard drive. 

In the case of the spacer ring, the preparation of the 3D model 
alone took approximately 1 minute. The remaining time was 
devoted to the preparation of reference elements in the form 
of coordinate systems, axes and planes. It is similar to the time-
consuming preparation of reference elements for other 
models. From previous experience, it is possible to conclude 
that the preparation time of a 3D model in the form of a code is 
on average approximately two to three times more demanding 
than the manual creation of a given model. When modifying 
the code to achieve the result indicated in Fig. 8, or in the case 
of the need for additional modifications of the code to a form 
that cannot be achieved by recording the manual process of 
creating models, it is necessary to take into account the 
extension of the time required to achieve the desired result. 

Models created based on codes can be further worked in the 
same way as models created manually. It is, therefore, possible 
to change dimensions (models contain dimensions), add, 
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remove, or modify their parts, etc. In this respect, there is no 
restriction. 

Model name Spacer ring Flange Console 

3D model 

 
 

 

Manual 

creation 
7.42 minutes 10.50 minutes 14.82 minutes 

Code 

preparation 
14.18 minutes 24.68 minutes 37.75 minutes 

Model 

generation 

(GUI on) 

10.5 seconds 13.7 seconds 19.8 seconds 

Model 

generation 

(GUI off) 

5.5 seconds 7.0 seconds 10.9 seconds 

Table 1. Comparison of times needed to create selected 3D models and 
prepare 3D models in the form of codes 

 

2.5 Automation of the process of creating assembly 3D 
models 

Creating assemblies or subassemblies can also be a relatively 
time-consuming process. In the case of models with a repeating 
structure, but with different dimensions of individual elements, 
there is room for automation of this process. One of the 
possibilities is the use of parameterized models of elements of 
given assembly and their connection to a Microsoft Excel file, 
which stores a design table containing the dimensions of 
individual elements [Yong 2011], or references, which are used 
to interconnect selected dimensions of individual elements. A 
subsequent change of values in the design table can achieve 
the desired change in the dimensions of selected parts of the 
assembly. For work productivity, this can be a very attractive 
way of automating the design process of various devices or 
their components. In many cases, however, simply resizing 
individual elements of an assembly is not enough, but you need 
to replace some of the elements with others. One option is to 
use the SolidWorks software API again. Suitable code 
sequences can replace manual insertion of elements into the 
assembly and creation of links between them. In Fig. 10 there is 
a code sample in the C # programming language for loading and 
inserting a selected element (rotor of a CanisDrive drive unit 
40A-100-AU-H-MGS-B) into an assembly. 

The first piece of code opens the featured model that is to be 
inserted into the assembly in a new SolidWorks software 
window. The second part of the code is used to insert this 
model into the assembly. The third ensures that the window 
with the model is closed. When inserting a model of another 
element, all you need to do is change its name and path to its 
location. The process of inserting individual elements into an 
assembly can, therefore, be automated with the help of several 
lines of code and a list of elements with links to their location. 

In Fig. 11 there is an example of code with which it is possible 
to create links between models of individual elements of an 
assembly. It is a creation of a strong connection, using 
coordinate systems, between the rotor and the stator of the 
CanisDrive 40A-100-AU-H-MGS-B drive unit. 

 

Figure 10. Code sample for loading of a model into an assembly 

 

Figure 11. Code sample for creating a strong link between two models 
using coordinate systems 

The first and second part of the code is used to select the 
coordinate systems of the stator and rotor models with which a 
strong bond is to be created. The third piece of code is used for 
the creation of that bond. Similarly, it is possible to create 
relationships using planes, axes, or other predefined reference 
elements of selected models. In this way, it is possible to create 
not only fixed but also movable bonds. 

Again, the code structured in this way can be relatively easily 
modified to form different types of links between any elements 
of the assembly, as long as the elements of the assembly 
contain suitably spaced reference elements. In the case of the 
first part of the code, it is sufficient to change the existing data 
concerning the coordinate system, i.e. its name 
(cs_rotor_cd_40a) and the name of the first of the models 
(canisdrive_40a_100_au_h_mgs_b_rotor), after the name of 
another reference element and the name of the model of 
which this reference element is a part. Then you need to 
change the type of reference element. The location of the 
coordinate system and its corresponding designation within the 
"COORDSYS" code can be specified, for example, "AXIS" in the 
case of an axis or "PLANE" in the case of a plane. It is possible 
to proceed similarly when editing the second part of the code. 
However, keep in mind that it is not possible to create links 
from all available combinations of auxiliary elements. The last 
part of the code is based on the type of reference elements 
used to create the link. By changing the first two values in 
parentheses, it is possible to create links between different 
reference elements. In the case of coordinate systems it is a 
pair of values (20, -1), in the case of axes a pair of values (0, 0) 
and in the case of planes a pair of values (0, 1). In the case of 
other types of reference elements, or when creating links 
between different types of reference links, there are other 
combinations of these two values. 
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3 EXAMPLE OF USING A KNOWLEDGE DATABASE AND THE 
DRIVE PICKER SOFTWARE TOOL 

Demonstration of the use of a knowledge database and a 
software tool for the design of compact drive units Drive Picker 
is performed on the design of a robotic arm with 5 degrees of 
freedom. The design of the robotic arm depends on the 
application, resp. the type of technology for which it is 
proposed. The choice of individual parts of the proposed device 
is derived from this. The design procedure is indicated in Fig. 
12. 

 

Figure 12. Robotic arm design procedure 

In the initial phase of the design, the end effector is solved. Its 
type and properties depend on the activity for which the 
robotic arm is designed. In the case of manipulation tasks, 
these are often gripping types of effectors (e.g. jaw, vacuum or 
magnetic). In the case of technological tasks, the type of 
effector depends on the given technology (e.g. welding, paint 
application or laser beam cutting) [Mohyla 2014]. However, 
there are also combined or special end effectors. In this case, a 
double-jawed effector with a pneumatic drive was designed for 
handling a cylindrical object with a diameter of 52 mm, a length 
of 200 mm and a weight of 10 kg, the taken 3D model was 
modified in a similar way as indicated for compact drive units 
and added to the knowledge database. 

The knowledge database contains sample code sequences for 
the design of robotic arms with an angular structure and 4, 5 
and 6 degrees of freedom. Based on the sample code 
sequence, a 3D model of the robotic arm with 5 degrees of 
freedom was created (Fig. 13). Harmonic Drive AG drive units of 
the CanisDrive series have been designed for the individual 
joints. From size 14, in the case of the joint closest to the end 
effector, to size 40, in the case of the base of the robotic arm. 
Other elements of the arm model were generated using models 

in the form of codes stored in the knowledge base. Modifying 
the sample code sequence to create this 3D model of the 
robotic arm to the desired shape took approximately 25 
minutes. The actual generation of the model took 6.5 minutes. 
The total time for the preparation and creation of the robotic 
arm model thus slightly exceeded half an hour. The total time 
required to create a 3D model of this robotic arm manually was 
approximately 190 minutes, more than six times longer. This is 
provided that its creator had the necessary documents 
prepared in a similar way as in the case of the proposed 
knowledge database. Otherwise, the time required to create 
this 3D model manually can be many times longer, and the 
benefits of using the proposed knowledge database would be 
significantly more tangible. 

 

Figure 13. 3D model of a robotic arm 

It turned out that if the potential of the proposed knowledge 
database is used appropriately, the time required to create the 
required 3D assembly model can be significantly reduced. 

The 3D model created in this way would then be subjected to 
analyses in the SolidWorks software environment. Based on 
these analyses, it would be possible to determine the load, 
respectively required parameters of drive units in individual 
joints of the robotic arm. Based on these values, it would be 
possible to design suitable drive units of the individual joints 
subsequently. In the case of the design of robotic arms, the 
drive closest to the effector is always designed first. Then the 
assembly model of the manipulator is modified according to 
the newly designed drive unit, and analyses are performed 
again in the SolidWorks software environment. Based on their 
results, the newly designed drive unit is checked to see if it 
meets the requirements placed on it, or whether it is not 
possible to select a drive unit with even more suitable 
parameters. The same procedure is continued in the case of the 
drive units of the other joints of the robotic arm. It is thus an 
iterative task, as indicated in Fig. 12. The drive unit of each joint 
is therefore to be subjected to at least two design calculations. 
If we take into account the time required to manually perform 
the design calculation of the drive unit mentioned above, i.e. 
approximately 50 minutes, multiply it by two and multiply this 
value by the number of drive units of the robotic arm, i.e. 5, we 
get to the time value of 500 minutes. If the Drive Picker 
software tool is used, one design calculation would take 
between 21 and 31 seconds. In the case of performing ten 
design calculations, we get to the range of values from 210 to 
310 seconds, i.e. 3.5 to 5.17 minutes. Even in the case of a 
comparison with the highest value of this time interval, the 
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time of manual design of power units would take almost 100 
times longer, respectively would take approximately 494 
minutes longer. It is therefore clear that by using this software 
tool, it is possible to reduce the overall design time of the 
device significantly. 

The functionality of the Drive Picker software tool was tested 
using data obtained from the dynamic analysis, in which an 
object of manipulation in the form of a cylinder with a diameter 
of 52 mm, a length of 200 mm and a weight of 10 kg was 
manipulated along the marked trajectory. The trajectory has a 
length of 1314.16 mm, and the movement from the starting 
position (the manipulation object is green) to the target 
position (the manipulation object is blue) took 2 seconds, while 
the axis of the manipulation object was in a vertical position 
throughout the movement point. 

 
Figure 14. Trajectory of the object of manipulation in dynamic analysis 

In Fig. 15 are graphs with course curves of torques, output 
speeds, radial and axial forces acting on individual drive units of 
the robotic arm. The drive units are numbered in order from 
the location in the joint closest to the end effector (Drive unit – 
joint 1) to the base of the robotic arm (Drive unit – joint 5). 

Table 2 shows the maximum, average and minimum values of 
torques, output speeds, radial and axial forces and maximum 
values of tilting torques relating to the individual drive units. 
The values of the moments of inertia, which were obtained 
from the CAD software SolidWorks in the initial position of the 
robotic arm, i.e. at the beginning of the given trajectory, is also 
given here. The last row of the table contains types, 
respectively the size, of the Canis Drive series drives, which 
with their parameters would suit the load determined during 
the dynamic analysis. The design of the drive units was also 
performed manually according to the manufacturer's catalogue 
(Harmonic Drive LLC, 2020). The same result was obtained as in 
the case of using the Drive Picket software tool, which again 
confirmed its functionality. 

Currently, the Drive Picker software tool is being developed 
with maximum emphasis on the reliability of drive design. In 
the next phases of development, it is planned not only to 
expand its functionality but also to optimize the speed of the 
power unit design process. 

 

 

Figure 15. Load course curves of drive units 
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Quantity Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 

Torque 

(Nm) 

Max. 6,49 16,72 126,6 187,5 131,6 

Avg. 0,001 13,85 105,7 117,4 44,61 

Min. 0,00 0,02 5,25 0,12 0,00 

Output 

speed 

(rpm) 

Max. 0,08 7,23 17,32 17,31 13,69 

Avg. 0,02 2,15 6,53 6,61 5,51 

Min. 0,00 0,00 0,00 0,00 0,00 

Radial 

force 

(N) 

Max. 173,7 200,3 307,3 383,5 305,7 

Avg. 113,7 127,3 185,6 249,1 107,6 

Min. 6,97 15,22 38,64 100,5 0,04 

Axial 

force 

(N) 

Max. 140,8 159,1 176,4 175,6 315,5 

Avg. 35,43 43,14 101,7 101,1 281,6 

Min. 0,00 0,00 0,00 0,00 136,5 

Tipping 

moment 

(Nm) 

Max. 33,64 45,65 132,7 145,8 209,8 

Moment 

of 

inertia 

(kgm2) 

- 0,04 0,10 8,15 14,11 12,23 

Drive 

unit 
Type 

HD 

Canis 

Drive 

14A 

(ratio 

50) 

HD 

Canis 

Drive 

14A 

(ratio 

80) 

HD 

Canis 

Drive 

25A 

(ratio 

100) 

HD 

Canis 

Drive 

25A 

(ratio 

100) 

HD 

Canis 

Drive 

25A 

(ratio 

100) 

Table 2. Values obtained from dynamic analysis 

 

4 CONCLUSIONS 

The previous chapters described the Drive Picker software tool, 
how to prepare 3D models for a knowledge base, the ability to 
automate the creation of assembly models using the 
SolidWorks software API, and the knowledge base, which stores 
the necessary data and algorithms, and serves as a basis. 
Knowledge design system for designing selected elements of 
mechatronic devices. Verification of the functionality and 
benefits of the proposed solutions were demonstrated on a 
model of a robotic arm with five degrees of freedom. Although 
the preparation of materials for a knowledge database is not a 
trivial matter and is also time-consuming, the return on energy 
input can be very fast, as shown in the examples. Currently, the 
ability to make full use of all knowledge base resources is tied 
to the need for at least a basic knowledge of working with the 
SolidWorks software API and programming in C #. However, 
further, the development includes not only the further 
expansion of several software tools for designing standardized 
and non-standardized elements used in the construction of 
mechatronic devices and data stored in the knowledge 
database but also a graphical interface that would not only 
simplify data access but also eliminated the need for API and C 
# programming skills. 
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