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The paper deals with the enhancement of the robotic arm 
calibration using corrections based on local linear neuro-fuzzy 
models. After the standard calibration of the geometric 
parameters in the robot's kinematic model, there are still 
residual errors between the measured positions and the 
positions predicted by the model. The source of these errors are 
various non-geometric parameters and nonlinear phenomena 
that traditional kinematic calibration models do not include. The 
neuro-fuzzy model based on a locally linear model tree can 
approximate the residual error as a function of the robot's joint 
angles. Adding this approximation to the output of the calibrated 
robot model significantly increases the accuracy of the end-
effector position. The results of the described method were 
verified and compared with other approaches on a simulation 
model of a flexible planar two-link mechanism. Experimental 
verification was performed on an industrial robot Stäubli TX200 
with data measured by Leica laser tracking device. 
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1 INTRODUCTION  

Positioning accuracy is one of the basic requirements for 
manipulators, robots and production machines. To meet this 
requirement, the actual values of the machine parameters must 
be entered in the control system. These differ from the nominal 
design dimensions due to manufacturing and assembly errors. 
The process of determining the actual machine parameters is 
called calibration [Mooring 1991], [Mao 2019]. The standard for 
the serial kinematic mechanisms (SKM) is kinematic calibration 
based on measuring the position of the machine's end effector 
with an accurate external measuring device and at the same time 
recording the positions of the drives measured by their internal 
sensors. It is then possible to calculate the required parameters 
from the equations of the kinematic loops. In the case of parallel 
kinematic mechanisms (PKM) with non-minimum number of 
sensors it is also possible to perform self-calibration [Sika 2012] 
without an external measuring device.  

However, the kinematic model does not contain non-geometric 
errors such as the stiffness error, thermal error, gear backlashes 
etc. More sophisticated calibration approaches have been 

introduced to address these issues. Elasto-geometrical 
calibration using identification models is used in [Jiang 2021] and 
[Mei 2021]. The selection of poses for robot elasto-static 
calibration is presented in [Kalas 2021]. Another elastic 
calibration approach uses flexible-rigid coupling error in the non-
kinematic calibration with additional optimisation process 
[Xiaoyan 2019]. A projection technique as a special 
transformation of kinematic structure is also a possible approach 
which expresses the nonlinear behaviour and elasticity of the 
mechanism under the different input loadings [Jeon 2010]. 
Another way could be the pseudo-error theory which is 
proposed by considering multiple sources of errors as a single 
hypothetical error source, which only causes the deflection of 
joint variables [Zhang 2012]. In [Kong 2022] machine learning  is 
proposed as novel nonlinear error compensation. Standard 
neural networks are used to reduce non-geometric errors in 
[Aoyagi 2010], [Jang 2001], [Wang 2019], [Song 2022]. However, 
these and similar methods differ from the presented procedure 
described in this paper, which is based on a recursively 
generated local linear model tree (LLMT). The concept of linear 
models with growing complexity has been used for description 
of joint shape imperfection in PKMs in [Skopec 2016]. 

The proper model of kinematic structure has a high influence for 
the calibration process as well as the model description 
[Yang 2014]. Even the proper notation is important, e.g. the 
quaternion used for the model description can be more suitable 
choice due to the singularities than other methods  [Wang 2018], 
[Li 2019], [Fu 2020]. 

The measurement itself has a great influence for the whole 
calibration process [Wang 2017], [Du 2014], [Santolaria 2013]. 
For the SKMs the extern calibration devices were introduced 
[Nubiola 2014], [Yang 2020] to close the open kinematic chain. 
These extra added mechanisms for the calibration purpose could 
be a substitution for laser tracker [Aoyagi 2010] or other 
measuring devices such as specialized redundant calibration 
machine RedCaM [Benes 2008]. Another substitution of the laser 
tracker was introduced by the low-cost wire-sensor system 
places at the end effector platform [Legnani 2014]. Due to the 
vision improvement in connection with a higher computational 
performance a camera plays a great role in position 
determination and machine calibration [Nissler 2017], 
[Abdullah 2019], [Wu 2019], [Gao 2022]. A closer problem is a 
calibration of the sensor itself which is needed for a camera 
sensor type to determine its accurate location on a mechanism 
[Condurache 2016]. In this paper experimental measurements 
were performed using the absolute laser tracking device. 

2 LOCAL LINEAR NEURO-FUZZY MODELS  

The neuro-fuzzy (NF) model is based on the set of local linear 
models (LLM) with associated fuzzy validity functions that 
determine the region of validity of each particular model. The 
output �̂� is defined as a weighted sum of LLMs outputs 
[Nelles 2000] 

�̂� = ∑ (𝑤𝑖0 + 𝑤𝑖1𝑢1 + ⋯ + 𝑤𝑖𝑝𝑢𝑝)𝑀
𝑖=1 Φ𝑖(𝒖),  (1) 

where 𝒖 = [𝑢1, 𝑢2, ⋯ , 𝑢𝑝]
𝑻

is the vector of inputs, M is the 

number of LLMs, 𝑤𝑖𝑗 are linear parameters of i-th LLM. Φ𝑖(𝒖) is 

the input-dependent normalized validity function of i-th LLM. 
The validity function is typically normalized Gaussians and form 
a partition of unity [Nelles 2000] 

∑ Φ𝑖(𝒖)𝑀
𝑖=1 = 1.  (2) 
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The learning task of the neural network can be written as a 
regression problem. The goal of regression analysis is to find an 
approximation function that minimizes the selected cost 
function, e.g. the sum of squares of errors, on the learning data 
set. The approximation function can be expressed using a linear 
model tree. More precisely, a binary decision tree with a linear 
model in each leaf, where each inner node of the tree structure 
contains a splitting rule that divides the data into two subsets 
[Potts 2005]. The batch algorithm for building tree from a 
training data set starts at the root and performs top-down 
induction. The data set is split recursively until the tree is 
sufficiently accurate or other criteria that stop splitting are met. 
The splitting rule was based on the difference in residual sums of 
squares (RD). The selected area is first approximated by one 
linear model. In the case of a sufficient number of samples, the 
area is divided into two sub-areas with their own linear models. 
If the increase in accuracy achieved by splitting is significant, the 
split is stored in a tree structure. The process continues until the 
desired accuracy is achieved throughout the workspace. 

For our task, we used a non-incremental form of the batch-RD 
algorithm called the Incremental model tree induction (IMTI) 
with RD splitting rule based on the RETIS algorithm [Karlic 1992]. 
This algorithm covers the input space by discontinuous (non-
consecutive) linear models. A continuous variant with smoothing 
using validity functions was also tested. However, this 
smoothing results in a noticeable deterioration in the accuracy 
of the model, and it has not been used (similarly to [Potts 2005]). 

3 BASIC ALGORITHM OF CALIBRATION  

The kinematic structure is described in given position using 
kinematic constraints in the form 

𝒇(𝒅, 𝒔, 𝒘) = 𝟎,  (3) 

where d are the parameters to be calibrated, s are the measured 
coordinates in the joints and w are the output coordinates, e.g., 
end-effector coordinates. Parameters include the geometry 
(dimensions) of the links and some parameters of the sensors 
(such as offsets). Considering n measured positions the 
constraints (3) are coupled into the form 

𝑭(𝒅, 𝑺, 𝑾) = 𝟎, (4) 

𝑭 = [𝒇1, … , 𝒇𝑛]𝑇; 𝑺 = [𝒔1, … , 𝒔𝑛]𝑇; 𝑾 = [𝒘1, … , 𝒘𝑛]𝑇 . (5) 

The calibration parameters d are the same for all positions, but 

their real manufactured values �̅� differ from design values. If 𝑛 
is higher than the number of calibrated parameters, the 
equation (4) represents over-constrained system of nonlinear 
algebraic equations. The calibration algorithm [Sika 2012] is 
based on the modified Newton’s method derived using the 
Taylor series of (4) 

𝑭(𝒅, 𝑺, 𝑾) + 𝑱𝒅𝜕𝒅 + ⋯ = 𝟎,  (6) 

where 𝑱𝒅 is the Jacobi matrix of partial derivatives of (4) with 
respect to 𝒅. Using the first term of the Taylor series, equation 
(6) can be rewritten in the form 

𝑱𝒅𝜕𝒅 = −𝑭(𝒅, 𝑺, 𝑾) = 𝜕𝒓  (7) 

and the i-th iteration step of Newton’s method is 

𝜕𝒅𝑖 = (𝑱𝒅𝑖
𝑻𝑱𝒅𝑖)−𝟏𝑱𝒅𝑖

𝑻𝜕𝒓𝑖, (8) 

where 𝑱𝒅𝒊 is the Jacobi matrix,  𝜕𝒓𝒊 = −𝑭(𝒅𝒊, 𝑺, 𝑾) is the vector 
of deviations computed from measured quantities and 
calibrated quantities from the previous iteration step. The new 
values of calibrated parameters are computed 

𝒅𝑖+1 = 𝒅𝑖 + 𝝏𝒅𝑖 . (9) 

The iterations continue as long as the deviations are decreasing. 
Usually about 5 or 6 iteration steps are sufficient. 

4 REFERENCE MODEL  

To compare the accuracy of the considered approaches, it was 
first necessary to create a reference model that represents the 
real behaviour of the manipulator. A flexible planar two-link 
mechanism was chosen, Fig.  1. The links are considered as 
flexible beams in the gravity field. The mass of both links and the 
added mass M at point C are considered. An analytical model 
was created whose outputs are used as equivalent to 
measurements performed on a real manipulator using an 
external measuring device, e.g., laser tracker. 

 
Figure 1. Planar two-link manipulator 

Both links are considered as round bars with diameter                        
𝑑 = 60 𝑚𝑚, made of steel 𝜌 = 7850 𝑘𝑔/𝑚3, 𝐸 = 210 𝐺𝑃𝑎, 
gravitational acceleration 𝑔 = 9,81 𝑚/𝑠 and end point mass 
𝑀 = 10 𝑘𝑔. Both links have the same length                                         
𝐿2 = 𝐿3 = 1000 𝑚𝑚. 

 
Figure 2. Manipulator workspace 
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The origin of the manipulator, point A, was placed on the 
coordinates 𝑋𝐴 = 0 𝑚𝑚, 𝑌𝐴 = 2000 𝑚𝑚. The workspace for the 
considered range of angles 𝜑12 ∈ 〈−𝜋/2; 𝜋/2〉,                             
𝜑23 ∈ 〈−3𝜋/4; 3𝜋/4〉 is shown in Fig. 2. A total of 1536 

positions of the end point 𝐶 = [ �̃�𝐶 , �̃�𝐶] were calculated, evenly 
distributed in the workspace. This data set was used for 
calibrations as well as a training set for the synthesis of neuro-
fuzzy models. 

5 RIGID KINEMATIC MODEL  

The first model created is a rigid kinematic model. The bodies are 
considered rigid and straight. The input of the model is the angle 
𝜑12 between the base frame and body number 2 and the angle 
𝜑23 of rotation of body 3 relative to body 2. The model 
parameters are the coordinates of point 𝐴 [𝑋𝐴, 𝑌𝐴] and the 
length of links 𝐿2, 𝐿3. The outputs are the coordinates of point 
𝐶 [𝑋𝐶 , 𝑌𝐶]. The relation applies to the position of point 𝐶: 

𝑋𝐶 = 𝑋𝐴 + 𝐿2 𝑐𝑜𝑠(𝜑12) + 𝐿3 𝑐𝑜𝑠(𝜑12 + 𝜑23), (10) 

𝑌𝐶 = 𝑌𝐴 + 𝐿2 𝑠𝑖𝑛(𝜑12) + 𝐿3 𝑠𝑖𝑛(𝜑12 + 𝜑23). (11) 

6 CALIBRATED RIGID KINEMATIC MODEL  

The second model has been extended by calibration parameters. 
We assume that both links are rigid, but not perfectly straight. 
Their description has been modified for calibration purposes 
according to the structure in Fig.  3. 

 
Figure 3. Link model with calibration parameters 

The position of the end effector point 𝐶 is described by 
equations (12), (13) that represent a calibrated model with the 

set of calibration parameters 𝒅 = [𝐿2̂, 𝐿3̂, 𝑣2, 𝑣3] and the 
measured values on the internal sensors of the mechanism      
𝒔 = [𝜑12, 𝜑23]. This set of calibration parameters is also able to 
describe the possible offset of the sensors. 

𝑋𝐶 = 𝑋𝐴 + 𝐿2̂ 𝑐𝑜𝑠(𝜑12) + 𝑣2 𝑐𝑜𝑠 (𝜑12 +
3𝜋

2
) +

           + 𝐿3̂ 𝑐𝑜𝑠(𝜑12 + 𝜑23) + 𝑣3 𝑐𝑜𝑠 (𝜑12 + 𝜑23 +
3𝜋

2
), 

(12) 

𝑌𝐶 = 𝑌𝐴 + 𝐿2̂ 𝑠𝑖𝑛(𝜑12) + 𝑣2 𝑠𝑖𝑛 (𝜑12 +
3𝜋

2
) +

           + 𝐿3̂ 𝑠𝑖𝑛(𝜑12 + 𝜑23) + 𝑣3 𝑠𝑖𝑛 (𝜑12 + 𝜑23 +
3𝜋

2
). 

(13) 

The kinematic constraints for calibration referring to equation 
(3) have the form 

𝑓1 = 𝑋𝐴 + 𝐿2̂ 𝑐𝑜𝑠(𝜑12) + 𝑣2 𝑐𝑜𝑠 (𝜑12 +
3𝜋

2
) +

         + 𝐿3̂ 𝑐𝑜𝑠(𝜑12 + 𝜑23) + 𝑣3 𝑐𝑜𝑠 (𝜑12 + 𝜑23 +
3𝜋

2
) −

         − �̃�𝐶 = 0, 

(14) 

𝑓2 = 𝑌𝐴 + 𝐿2̂ 𝑠𝑖𝑛(𝜑12) + 𝑣2 𝑠𝑖𝑛 (𝜑12 +
3𝜋

2
) +

         + 𝐿3̂ 𝑠𝑖𝑛(𝜑12 + 𝜑23) + 𝑣3 𝑠𝑖𝑛 (𝜑12 + 𝜑23 +
3𝜋

2
) −

         − �̃�𝐶 = 0. 

(15) 

The parameters �̃�𝐶  and �̃�𝐶  correspond from the calibration point 
of view to the values measured by the external measuring 
instrument. The calibrability number [Sika 2012] for this task was 
1.78, which indicates a very good conditionality and numerical 
stability of the calculation. This was also proved by the fact that 
the iteration algorithm converged to the solution already in the 
second iteration. The calibrated parameters came out as follows: 

𝐿2̂ = 1000 𝑚𝑚, 𝐿3̂ = 999.998 𝑚𝑚, 𝑣2 = 0.41 𝑚𝑚,                  
𝑣3 = 0.36 𝑚𝑚. 

7 CALIBRATED RIGID KINEMATIC MODEL WITH 
CORRECTIONS USING NEURO-FUZZY MODELS 

The basis of the next model is the calibrated model from the 
previous section, which is supplemented by the position error 
correction against the exact measured values. In simulation 
these are represented by the data from the flexible model. 

First, the error functions in the x and y axis direction are 
expressed: 

𝑒𝑥(𝜑12, 𝜑23) = �̃�𝐶 − 𝑋𝐶, (16) 

𝑒𝑦(𝜑12, 𝜑23) = �̃�𝐶−𝑌𝐶 . (17) 

The error values for the prescribed inputs 𝜑12 and 𝜑23 are 
shown in Fig.  4 and Fig. 5. These values were used to create 
approximation models using the local linear model trees 
method. 

 
Figure 4. Position error 𝑒𝑥 

 
Figure 5. Position error 𝑒𝑦 
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If we denote the output of the error approximation of individual 
axes, calculated from linear model trees, as �̃�𝑥 (𝜑12, 𝜑23) and 
�̃�𝑦 (𝜑12, 𝜑23) the corrected output positions of point C can be 

defined as: 

𝑋𝐶𝑐𝑜𝑟(𝜑12, 𝜑23) = 𝑋𝐶(𝜑12, 𝜑23) + �̃�𝑥(𝜑12, 𝜑23) , (18) 

𝑌𝐶𝑐𝑜𝑟(𝜑12, 𝜑23) = 𝑌𝐶(𝜑12, 𝜑23) + �̃�𝑦(𝜑12, 𝜑23). (19) 

This correction uses 93 linear models to determine �̃�𝑥  and 75 
models for �̃�𝑦, see Fig.  6 and Fig.  7. Further increasing the 

number of models improved the approximation accuracy by less 
than 2 %, which was the chosen threshold. 

 

Figure 6. LLMT models for error approximation �̃�𝑥 

 

Figure 7. LLMT models for error approximation �̃�𝑦 

8 FLEXIBLE MODEL REALIZED ONLY BY FUZZY MODELS  

The last model of the planar mechanism uses a "black box" 
approach. No knowledge of model structure is used. The aim is 
to approximate the whole flexible model from section 5 only by 
using the knowledge of its inputs and outputs. 

A learning dataset with 1536 positions of the end point C, evenly 
distributed in the workspace for the given range of angles 𝜑12 
and 𝜑23, was used. These positions were calculated using the 
flexible model from section 4. Approximations were generated 
from this learning dataset using linear model trees. There were 
211 linear models recursively generated for the 𝑥 axis and 209 
for the 𝑦 axis. In this case, the number of models was mainly 
determined by the number of learning positions. In the areas 
with the largest error, there were not enough points to reduce it 
further. The models are shown in Fig.  8 and Fig. 9. 

 

Figure 8. Fuzzy model - position 𝑋𝐶  

 

Figure 9. Fuzzy model - position 𝑌𝐶  

9 COMPARISON OF MODELS  

A new testing dataset was created to compare all models. If a 
comparison were made on the learning dataset, only 
information on the success of the approximation at the given 
points would be obtained. The testing data set contained 5985 
samples - mechanism positions. An evaluation criterion - total 
error 𝑒𝑡 - was introduced as 

𝑒𝑡 = √(�̃�𝐶 − 𝑋𝐶)
2

+ (�̃�𝐶 − 𝑌𝐶)
2
.  (20) 

The values of total error in individual points of workspace for all 
described models are shown in Fig.  10. 

The rigid kinematic model had the average error over the entire 
workspace 𝑒𝑡_𝑎𝑣𝑔 = 0.643 𝑚𝑚 and the maximum value 

𝑒𝑡_𝑚𝑎𝑥 = 1.427 𝑚𝑚. The added calibration parameters reduced 
these values to workspace 𝑒𝑡_𝑎𝑣𝑔 = 0.447 𝑚𝑚 and            

𝑒𝑡_𝑚𝑎𝑥 = 0.716 𝑚𝑚 in the case of the calibrated rigid kinematic 
model. As expected, the calibrated kinematic model with NF 
correction achieved the best results from all models,           
𝑒𝑡_𝑎𝑣𝑔 = 0.0157 𝑚𝑚, 𝑒𝑡_𝑚𝑎𝑥 = 0.131 𝑚𝑚. 

The result achieved by the pure neuro-fuzzy model is worse by 
an order of magnitude. The average total error has a value 
𝑒𝑡_𝑎𝑣𝑔 = 7.877 𝑚𝑚 and the maximum error                            

𝑒𝑡_𝑚𝑎𝑥 = 42.815 𝑚𝑚. However, the accuracy of the model 
created in this way is greatly affected by the size of the learning 
set and its distribution in the workspace. This result was 
obtained from a learning set containing 1536 samples, which 
was used for all other models. For comparison, a new data set 
with 148 680 learning samples was created in the same  
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Figure 10. Total error 𝑒𝑡 – comparisson of models 

 

workspace. The model created from these data was composed 
of 3283 linear models for x axis approximation and 3331 models 
for y axis approximation. The average total output error of this 
new model was 𝑒𝑡_𝑎𝑣𝑔 = 0.406 𝑚𝑚 and the maximum error was 

𝑒𝑡_𝑚𝑎𝑥 = 3.299 𝑚𝑚. The results are better, but the 
computational complexity is significantly higher for such a large 
model. A summary of all results is given in Table 1. 

 

Model 𝒆𝒕_𝒂𝒗𝒈 

[mm] 

𝒆𝒕_𝒎𝒂𝒙 

[mm] 

Rigid kinematic model 0.643 1.427 

Calibrated rigid kinematic 
model 

0.447 0.716 

Calibrated rigid kinematic 
model with NF correction 

0.016 0.131 

NF model (1536 learning 
points) 

7.877 42.815 

NF model (148 680 learning 
points) 

0.406 3.299 

Table 1. Average and maximum total error values 

10 CALIBRATION OF AN INDUSTRIAL ROBOT  

The industrial robot Stäubli TX200 was used for experimental 
verification of the calibration with neuro-fuzzy corrections. It is 
a fully enclosed six-axis angular robot with a maximum payload 
of 130 kg and a maximum reach of 2194 mm. The declared 
repeatability of the robot is 0.06 mm. 

The kinematic model of the robot was created using Denavit-
Hartenberg (DH) notation. Table 2 shows the parameters taken 
from the robot control system after the standard calibration 
procedure. 

Axis α [deg] a [mm] d [mm] θ [deg] 

1 0 0 642 0 

2 -89.9955 249.2886 450.9658 -90.0587 

3 0.0192 950.007 -450 89.9319 

4 90.0423 0.6907 800.94 0.0045 

5 -90.0598 -0.3995 0 -0.0045 

Table 2. Stäubli TX200 DH parameters 

The coordinates of the robot's end-effector were measured in 45 
different positions using the Leica absolute tracker. The 
experimental setup is shown in Fig.  11. The recorded data in 
each position included the coordinates of the end-effector 
measured by the absolute tracker, the angles of rotation of the 
drive axes from the integrated sensors and the nominal position 
of the end-effector calculated by the robot control system. The 
measured points are shown in Fig.  12. The blue arrows represent 
the differences between the real position measured by the 
absolute tracker and the position calculated by the robot control 
system. The length of the arrow represents the size of the 
position error, values are 1000x scaled for better clarity. 



 

 

MM SCIENCE JOURNAL I 2022 I DECEMBER 

6230 

 

 

Figure 11. Experiment – robot Stäubli TX200 and Leica absolute tracker 

 The distribution of errors in Fig.  12 shows no clear 
dependencies. This is because the error does not depend directly 
on the position of the end-effector. Instead, it depends on the 
positions of the drives. Therefore, we can try to find error 
functions in the 𝑥, 𝑦 and 𝑧 axis direction similarly to (16), (17). 
The inputs are the positions of the robot drives. 

Three NF models �̃�𝑥, �̃�𝑦, �̃�𝑧 were created and used for the 

correction of the position error. Each NF model consisted of five 
linear models. A comparison of the total position errors of the 
calibrated robot without NF correction and with NF correction is 
shown in Fig.  13. 

 

Figure 12. Experiment – measured points and scaled position errors 

The average total error of the robot without correction is 0.057 
mm, the average total error with NF correction is 0.0126 mm. It 
is clear from Figure 13 that the NF correction improved the 
position accuracy in all measured points. 

 

 

Figure 13. Experiment – position error comparison 

11 CONCLUSIONS  

This paper describes research into the use of local linear neuro-
fuzzy models for the purpose of robotic arm calibration. The 
basic idea is to use NF correction to eliminate the positioning 
error of the calibrated robotic arm. The source of this error are 
various non-geometric phenomena that cannot be covered by 
traditional kinematic calibration models, such as the flexibility of 
bodies. The proposed method was compared with traditional 
calibration approaches. A flexible planar two-link mechanism 
was considered as a reference model. An order of magnitude 
better positional accuracy was achieved using NF corrections 
compared to the traditional calibrated rigid kinematic model. 
The possibility of using the black-box NF model to solve the 
entire kinematics of the robot, i.e without any physical basis of 
the model, was also verified. It has been shown that a large 
training set and a very large LLMT are needed to achieve 
comparable results with physically based models. The real 
verification of the procedure was performed on an industrial 
robot Stäubli TX200 with the position measured by an external 
measuring device laser tracker. Using these measured values, a 
model approximating the endpoint error was created using the 
LLMT model. This correction reduced the average positioning 
error five times. The accuracy increased at all measured points. 
The described position error corrections using LLMT and NF 
models thus seems to be a very suitable tool for improving 
traditional kinematic calibration. 
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