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Industrial robots are used in many technical applications from 
simple pick-and-place tasks to complex machining, welding and 
assembly applications. The repeatability of the robots is usually 
high. However, the accuracy is much lower, and it decreases with 
the robot size selected. Robot calibration represents a possible 
way to increase accuracy, and two main approaches have been 
distinguished. Kinematic calibration deals with geometric errors 
only, and the robot is considered as a rigid body. By contrast, 
non-kinematic calibration takes into account further sources of 
errors. This paper deals with kinematic calibration, where an 
artifact is attached to a robot flange and its position is measured 
using a laser tracker. The novelty of the method is based on the 
consecutive rotation of only a single joint, where the artifact 
trajectory is circular. Real robot geometry is calculated based on 
identified circles. Numerical simulations seem promising, as well 
as verification with Stäubli TX2-90, where the accuracy was 
increased by more than 43%. 
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1 INTRODUCTION 

Industrial robots are used in many technical applications. There 
are an estimated 2.7 million industrial robots in use in 2022, with 
approximately 400,000 new robots entering the world market 
every year [Zippia 2022]. They are integrating into different 
applications, from simply picking and placing objects and to 
complex assembling, welding, and machining tasks with the 
highest accuracy requirements. 

Industrial robots are considered to run in automatic mode and 
in processing the selected program. The program may be 
prepared using online programming through manual motion and 
teaching of the robot. However, this process is both time 
consuming and results in robot downtime during the teaching 
time. Since the target positions are set manually, there is only a 
requirement for repeatability. Currently, the usual approach is 
based on the offline programming of robots, where the program 
is prepared in advance using simulation software. This approach 
requires high accuracy in robot positioning. Generally, there are 
more parameters that decrease the resulting accuracy: nominal 
and real dimensions not exactly matching, the load of the robot, 
gravity, backlash, encoder errors, and others. High-accuracy 
application utilization is limited for industrial robots; however, 
accuracy is hard to find in data sheets. Smaller robot arms tend 
to be more precise, because small angular errors are multiplied 

by shorter lengths of the arm. The standard method of industrial 
robot accuracy enhancement represents a calibration process, 
which consists of the following [Roth 1987]: 

1. Modeling 

2. Measurement 

3. Error identification  

4. Compensation 

Modeling can be divided into kinematic and non-kinematic 
(complete) forms, where the kinematic form solves only 
geometric parameters (length of robot links, joint offsets) and 
the robot is considered as a rigid body. By contrast, the non-
kinematic form also incorporates compliance parameters. A 
comparison of the mentioned calibration models was published 
[Joubair 2013], where the non-kinematic model integrated all 
geometric parameters and five compliance parameters related 
to stiffness of the efficiency of the 2nd, 3rd, 4th, 5th and 6th 
joints and the model was analyzed. The kinematic model for 
calibration utilized that provided by earlier work [Joubair 2015, 
Kong 2022, Driels 1993], while the non-kinematic model utilized 
another work [Nubiola 2013]. These involved 25 geometric error 
parameters and four compliance parameters of the 2nd, 3rd, 4th, 
and 5th joints being considered.  

Measurements can be made either with or without the use of 
external devices, where the robot itself provides the 
measurement. A number of measuring devices exist where laser 
trackers are typically attached to the robot [Joubair 2013, 
Nubiola 2013]. The drawbacks of the laser tracker represent 
measurement accuracy in an order of hundredths of a millimeter 
and its price, which makes measurement expensive. Other 
measuring devices represent measurement arms [Nubiola 
2013], ball bars, theodolites, indoor global positioning systems, 
coordinate measuring machines [Driels 1993], etc. The 
measurement of robot poses (position and orientation) can also 
be based on artifact measurement, where the robot can 
measure artifact geometry using a touch probe [Joubair 2015] or 
an artifact is attached to the robot flange and its position is 
measured using an external device. The design includes linear, 
planar, and 3-dimensional shapes. A precise artifact consisting of 
ellipsoidal, cylindrical, and spherical parts has been introduced 
[Kong 2022], where its position was measured using three laser 
displacement sensors. These methods require expensive 
equipment. [Legnani 2014] proposed a low-cost solution for 
pose measurements in the form of a wire sensor system. Not all 
robot configurations are suitable for measurement. An optimal 
configuration was presented by [Joubair 2015], and it describes 
an observability analysis based on a singular value 
decomposition of the Jacobian matrix. 

Error identification is based on the optimization of an objective 
function that results from the model being used. The objective 
function is usually proposed as a sum of the distances between 
the model and the measured positions. This optimization 
problem can be combined with the neural network solution used 
to further improve accuracy [Monica 2003]. [Kong 2022] 
proposed a novel kinematic error compensation that 
implements machine learning for nonlinear-error compensation.  

The last point of calibration represents the compensation and 
verification of the increased accuracy. Actually, there is no valid 
standard for measuring robot accuracy, because the standard 
[IOS 9283] was canceled in 2014 without any replacement. 
However, almost all papers focused on calibration contain the 
verification of industrial robots, where the accuracy before and 
after calibration is compared. The results differ a lot, but the 
mean error was reduced from 30% [Kong 2022] to 87% [Joubair, 
2015]. An interesting comparison of the complete and kinematic 
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models was presented [Joubair 2013], where the mean position 
error decreased by 59% and 77%, respectively. 

This paper presents a method for the calculation of nominal 
geometric parameter corrections, which aim to improve robot 
accuracy. The calculation is based on measuring the position of 
the end arm where only a single joint is moving and the 
demanded trajectory of the end arm is circular. At least three 
points are required for every single joint, and these points are 
used for circle identification, indicating the center point, radius 
and plane normal vector. Based on the identified circle values, 
the Denavit-Hartenberg parameters are evaluated, and the 
corrections are calculated as the difference between the 
calculated and nominal values. A slightly different approach is 
taken with flange geometry identification, which requires at 
least three identified circles. Chapter 2 describes the method of 
correction data calculation, Chapter 3 performs tests that 
include numerical simulations and industrial verification, 
Chapter 4 discusses the possibilities of the method, and Chapter 
5 contains the conclusion. 

2 GEOMETRIC CORRECTION IDENTIFICATION  

The identification of a geometric correction is based on the 
evaluation of real geometry, where the correction is considered 
as the difference between the evaluated and the nominal robot 
geometry. This data is then uploaded in the form of a correction 
to the control system, assuming that the control system 
implements these corrections. Since all joints are rotational, 
moving only a single joint moves the flange along a circular 
trajectory. Consequently, the presented method requires a 
single joint movement starting from the first joint to the last one; 
for the flange geometry measurement, more points have to be 
provided. The artifact geometry must be known, and together 
with its position, represent the only data inputs for the method 
presented. The real geometry of the robot is calculated from the 
artifact position measurement, where the artifact is attached to 
the robot flange. The artifact is equipped with at least three 
reflectors, whose position is measured using a laser tracker.  

2.1 Robot Kinematic Model Used 

The kinematic model used in the robot´s control system 
calculates the transformation between joint rotation and the 
selected Cartesian coordinate system (CCS). There are more 
CCSs defined with respect to the selected application. The most 
used represent world, base, tool, and flange coordinate systems. 
However, the transformation principle is similar, and it is based 
on transformation matrices. The Denavit-Hartenbetg (DH) 
description utilized two translations and two rotations to 
transform between two consequent coordinate systems 
[Denavit 1955]: 

𝑇12 = 𝑇𝜑𝑧(𝜃). 𝑇𝑧(𝑑). 𝑇𝑥(𝑎). 𝑇𝜑𝑥(𝛼), (1) 

Where 𝑇𝑧, 𝑇𝑥 is the transformation matrix for translation in the 
Z- and X-directions, respectively, and 𝑇𝜑𝑧, 𝑇𝜑𝑥  denotes the 
matrix for rotation about the Z- and X-axes. Parameters 𝜃, 𝑑, 𝑎, 𝛼 
define the distance and angle for translation and rotation, 
respectively, see Fig. 1. Geometric error compensation is based 
on the correction of the nominal dimensions and joint axes 
relative positions by evaluated offsets. The resulting kinematic 
model for transformation between two consequent CCSs is 
derived in the form: 

𝑇12 = 𝑇𝜑𝑧(𝜃 + 𝜃𝑜𝑓𝑓). 𝑇𝑧(𝑑 + 𝑑𝑜𝑓𝑓). 𝑇𝑥(𝑎 + 𝑎𝑜𝑓𝑓). 𝑇𝜑𝑥(𝛼 +

𝛼𝑜𝑓𝑓), (2) 

where 𝜃𝑜𝑓𝑓 , 𝑑𝑜𝑓𝑓 , 𝑎𝑜𝑓𝑓 , 𝛼𝑜𝑓𝑓 represent offsets correcting the 

use of the nominal values. 

 

 

Figure 1. Transformation from the ith  joint to the following one based 

on the standard Denavit-Hartenberg kinematic description. 

2.2 Circle Identification 

Circle identification means the circle space position calculation 
in the form of the radius, center point, and plane of the circle. 
The circle is a planar entity which cannot be described by an 
equation in three dimensions. First, the measured points plane 
must be identified. This identification is based on the least-
squares solution (LSS), where the plane minimizing normal 
distance from the points to the plane is calculated. Next, the 
measured points are transformed to the XY plane (see Fig. 2) 
using a transformation matrix 𝑇. This is calculated from the 
evaluated plane normal vector and the XY plane normal vector. 
After transformation of the measured points to the XY plane, the 
circle is identified as a result of residuum minimization: 

𝑅𝑒𝑠 = ∑ ‖(𝑥𝑖 − 𝑥𝐶)2 + (𝑦𝑖 − 𝑦𝐶)2 − 𝑟2‖2 → 𝑚𝑖𝑛,𝑁
𝑖=1  (3) 

where N denotes the number of measured points, (𝑥𝐶 , 𝑦𝐶), the 
circle center point, and 𝑟 is the radius of the identified circle. The 
residuum solution uses the nonlinear least-squares solution. The 
coordinates of the identified center point are transformed to the 
measured plane using 𝑆0 = 𝑇−1𝑆𝑇. Since the transformed 
matrix is orthonormal, the inverse of the matrix is equal to its 
transpositions 𝑇−1 = 𝑇𝑇 . 

 

Figure 2. Fitting a circle to the measured points is based on 
transformation to the XY plane. The 3-dimensional points (red) and the 

transformed points (blue) are shown with the plane normal vectors. T 
denotes the kinematic transformed matrix. 

2.3 Real Robot Kinematics Assembly 

With all the circle parameters identified, the resulting kinematic 
model can be derived. First, all the normal vectors of the plane 
as well as the center points of the circle are transformed to set 
the center point of first joint to the global coordinate system 
origin, so its plane normal vector will be parallel to the Z-axis of 
the global coordinate system. The origin of the first coordinate 
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system is set to be the origin of the global coordinate system, 
and the joint rotation axis is identical to the Z-axis. 

Based on the nominal kinematic model, every two consequent 
axes can be divided into perpendicular, parallel, and coincident 
groups, see Tab. 1. The kinematic transformation of both parallel 
and perpendicular axes is described in the following subsections. 

Axis Pair Kinematic configuration 

1-2 Perpendicular 

2-3 Parallel 

3-4 Perpendicular 

4-5 Perpendicular 

5-6 Perpendicular 

6-flange Coincident 

Table 1. Nominal axis kinematic configuration of every consequent axis 
pair of the considered industrial robot. 

2.3.1 Transformation between perpendicular axes 

Two axes perpendicular in the nominal robot kinematic model 
will probably not be perpendicular in the real robot. These skew 
axes will be nearly perpendicular, and it is here that the shortest 
distance defined by two points Ci and Ci+1 exists, see Fig. 1. The 
calculation of points Ci and Ci+1 represents a simple analytical 
task, and they are used for the calculation of DH parameters 
using the relations: 

1. θ = ∡(𝐶𝑖+1 − 𝐶𝑖 , 𝑥𝑖  ). 
2. 𝑑 = 𝑘. ‖𝐶𝑖 − 𝑂𝑖‖, where constant k is given by the scalar 

product : 
(𝑍𝑖). (𝐶𝑖 − 𝑂𝑖) > 0 → 𝑘 = 1 
(𝑍𝑖). (𝐶𝑖 − 𝑂𝑖) < 0 → 𝑘 = −1  

3. 𝑎 = ‖𝑂𝑖+1 − 𝑂𝑖  ‖. 
4. 𝛼 = ∡(𝐽𝐴𝑖+1, 𝑧𝑖). 

2.3.2 Transformation between parallel axes 

If two consequent axes are parallel in the nominal kinematic 
model, the transformation between their CCSs will be calculated 
using a distinct algorithm, see flowchart in Fig. 3. If the identified 
axes are parallel, their distance will be given by points Ci, Ci+1. 
The point Ci is considered in the origin of the ith CCS, and the 
point Ci+1 defines the origin of the following CCS. The DH 
parameters are then calculated using the relations, and a full 
correction is possible. 

1. θ = ∡(𝐶𝑖+1 − 𝐶𝑖 , 𝑥𝑖  ). 
2. 𝑑 = 0.  
3. 𝑎 = ‖𝑂𝑖+1 − 𝑂𝑖  ‖. 
4. 𝛼 = 0. 

If the axes are not parallel, they will either intersect each other 
or they will not. The transformation calculation depends on 
whether the robot control system implements a β angle. This 
angle extends standard DH parameters by Y-axis rotation, and it 
was introduced by [Hayati 1985] in the form of modified DH 
parameters. The kinematic transformation based on modified 
DH parameters can be expressed as: 

𝑇12 = 𝑇𝜑𝑧(𝜃). 𝑇𝑧(𝑑). 𝑇𝑥(𝑎). 𝑇𝜑𝑥(𝛼). 𝑇𝜑𝑦(𝛽).  (4) 

Using the β angle, a full correction is possible. If the control 
system does not implement the β angle, the transformation 
described in subsection 2.3.1 must be used. If the control system 
sets limit values for correction (e.g. Stäubli CS9 controller has a 
limit of ±200 mm for 𝑑 translation corrections), then the full 
transformation will be impossible if the 𝑑 translation is higher 
than the limit value. 

 

Figure 3. Flowchart of the transformation for two nominal parallel axes. 
The algorithm selected depends on the control system and real relative 
axes geometry as well. 

2.3.3 Transformation from J6 to flange 

The last kinematic transformation relates to the 6th joint (J6) and 
flange geometry. But, the description is different from the 
previous two, since the flange and J6 are nominally coincident. 
However, the transformation must be identified, because J6 and 
the flange are not coincident in reality and all technologies and 
applications use the flange as a connecting interface. The flange 
itself is precisely manufactured, but the assembly may cause the 
Z6 and Z7 axes to not be coincident so that X6 and X7 are not 
parallel (Fig. 4). The principle of the transformation is based on 
the measurement of distinct points on the flange. At least the 
position of three points must be measured with an identical 6th 
joint rotation for flange plane evaluation, see Fig. 5. 

 

Figure 4. Coordinate systems of the 6th joint and the flange. Rotation of 
the flange is actuated by the 6th axis drive [Staubli 2022]. 

Z7 

X7 X6 

Z6 
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Figure 5. Transformation from 6th Cartesian coordinate system to the 

flange. At least three points on the flange must be measured (red 
crosses). 

Rotation of the flange is actuated by the 6th joint, and the planes 
of the resulting circles will be perpendicular to this joint axis. The 
plane of the flange is calculated from at least the position of 
three points measured at the same 6th joint rotation as the cross 
product of the two vectors defined by the points measured 𝑛 =
(𝑃2 − 𝑃1 ) × (𝑃3 − 𝑃1 ). The coordinates of the measured points 
must be known in the flange coordinate system (x7,y7,z7). Based 
on the point’s position with the known 6th axis rotation, the 
origin of 7th coordinate system is calculated as the intersection 
of spheres with their center points in the measured points and 
radii given by their position in the 7th CCS. 

1. 𝜃 = ∡(𝑂7 − 𝐼7, 𝑥6), where 𝐼7 denotes the intersection of 
the 6th  joint axis and the perpendicular plane containing 
𝑂7. 

2. 𝑑 = ‖𝑂6 − 𝐼7‖.  
3. 𝑎 = ‖𝑂7 − 𝐼7‖. 

4. 𝛼 = arctg(
𝑛𝑟𝑜𝑡𝜃(2)

𝑛𝑟𝑜𝑡𝜃(1)
), where 𝑛𝑟𝑜𝑡𝜃 = 𝑇𝜑𝑧(−𝜃). 𝑛 is the 

plane normal vector rotated by (−𝜃) angle.   

5. 𝛽 = arctg (
𝑛𝑟𝑜𝑡𝜃(1)

‖𝑛𝑟𝑜𝑡𝜃(2),𝑛𝑟𝑜𝑡𝜃(3)‖
). 

2.4 Flange Position Measurement 

Measurement of the flange position is essential for application  
of the proposed method. The position does not need to be 
measured in the robot coordinate system, since the circle planes 
are evaluated relative to the first one. Since the range of the 
robot motion is expected to be large and nonlinear, an efficient 
method for the position measurement would be a laser tracker 
or laser tracer. A laser tracker measures the 3-dimensional point 
position or only the point distance in case of a laser tracer, 
respectively. If a laser tracer device is used, the point’s distance 
must be measured from distinct laser tracer positions, and the 
point position is evaluated using the multilateration principle. A 
laser tracker seems to be an efficient tool for position 
measurement, since only one laser tracker position is required. 
Thus, hereafter only a laser tracker will be considered; however, 
the principle is the same for a laser tracer. A laser tracker will 
measure the position of the spherical mounted reflector (SMR) 
attached to the flange. The position of the SMR on the flange 
must be known. It would be complicated to measure the position 
of the flange point directly, because some artifact holding the 
SMR attached to the flange is necessary and its geometry needs 
to be known.  
The conventional methods for robot geometric error evaluation 
require either the point’s position measurement in the robot 
coordinate system, or the transformation to the robot 
coordinate system as part of the solution. In both cases, it is not 

possible to distinguish between the flange and artifact real 
geometry, because these parameters are evaluated as a sum. 

3 RESULTS 

The proposed calibration method was tested in numerical 
simulations and subsequently with an industrial robot. In both 
cases, the Stäubli TX2-90 angular robot was selected as the use 
case. The numerical simulation contained both direct and 
inverse kinematic task solutions, where the direct method was 
used for simulation data calculations. The simulation data were 
calculated in two forms, where the first one involves nominal 
flange point measurement. Next, the flange point position was 
modified with respect to the typical accuracy of the flange point 
measurement to simulate real data acquisition. The industrial 
verification was based on an end effector position measurement 
using a laser tracker. The results are described in the following 
chapters. 

 

Figure 6. Stäubli TX2-90 industrial robot used within the numerical 

simulation and experimental verification [Staubli 2022]. The dimensions 
(right) were used to construct the nominal kinematic model.  

3.1 Numerical Simulation with Nominal Points 

Nominal measurement points can only be considered in a 
numerical simulation, and these points are defined without any 
measurement error. Their coordinates are only given by the 
robot and the artifact holding the reflector’s geometry. Based on 
Fig. 6, the nominal DH parameters of the Stäubli TX2-90 were 
derived, and they are listed in Tab 2. The chosen offsets were 
added to these parameters to simulate real robot geometry. 
Using forward kinematics, artifact geometry (SMR1=[100 100 
50] mm, SMR2=[80 125 50] mm, SMR3=[110 160 50] mm) and 
full joints rotation (J1=[-180 180] deg, J2=[-130 147.5] deg, J3=[-
145 145] deg, J4=[-270 270] deg, J5=[-115 140] deg, J6=[-270 
270] deg), the nominal point’s position was calculated. The 
scope of the joint’s rotation was divided into 30 positions, where 
the artifact positions were calculated. The identified circles are 
shown in the Fig. 7, and the difference between selected (Tab. 2) 
and identified robot geometry is given in Tab. 3. 

Joint 
nr. 

Theta 
[deg] 

D  
[mm] 

A  
[mm] 

Alpha 
[deg] 

1 0 - 0.22 0 - 0.16 50 + 0.11 -90 + 0.17 

2 -90 - 0.21 0 - 0.15 450 + 0.12 0 + 0.18 

3 90 - 0.20 50 - 0.14 0 + 0.13 90 + 0.19 

4 0 - 0.19 425 - 0.13 0 + 0.14 -90 + 0.20 

5 0 - 0.18 0 - 0.12 0 + 0.15 90 + 0.21 

6 0 - 0.17 100 - 0.11 0 + 0.16 0 + 0.22 

Table 2. Input kinematic parameters of the Stäubli TX2-90 robot used in 

the numerical simulation consist of nominal values (bold) and the offset. 
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Figure 7. Numerical simulation of a single joint’s rotation. 

Joint 
nr. 

Theta 
[deg] 

D  
[mm] 

A  
[mm] 

Alpha 
[deg] 

1 <1.10-9 <1.10-9 <1.10-9 <1.10-9 

2 <1.10-9 <1.10-9 <1.10-9 <1.10-9 

3 <1.10-9 <1.10-9 <1.10-9 <1.10-9 

4 <1.10-9 <1.10-9 <1.10-9 <1.10-9 

5 <1.10-9 <1.10-9 <1.10-9 <1.10-9 

6 <1.10-9 <1.10-9 <1.10-9 <1.10-9 

Table 3. Difference between the selected and identified robot geometry 
within the numerical simulation without any measurement error. 

3.2 Numerical Simulation with Measurement Error 

The point’s prostitution without any measurement error may 
only be considered for numerical testing. Real measurement 
always considers finite accuracy depending on the method and 
devices used. The proposed method uses a laser tracker device 
(Leica AT 960), in which typical measurement uncertainty may 
be expressed as a function of SMR and laser tracker distance: 

u =  ±(0.010 + 0.003d),    (5) 

where the uncertainty u [mm] consists of a constant and a 
variable part. This depends on the distance of the laser tracker 
and the SMR distance d [m]. Based on equation (5) and the robot 
size, the distance was defined as d=5 m, resulting in ±0.025 mm 
uncertainty. The nominal measured points from Chapter 3.1 
were combined with the normally distributed ±0.025 mm 
uncertainty, and the difference between selected (Tab. 2) and 
identified robot geometry is given in Tab. 4. 

Joint 
nr. 

Theta 
[deg] 

D  
[mm] 

A  
[mm] 

Alpha 
[deg] 

1 0.0000 0.0000 -0.0015 -0.0001 

2 0.0008 0.0016 0.0074 0.0002 

3 -0.00110 0.0020 0.0040 0.0006 

4 0.0027 -0.0015 0.0050 -0.0024 

5 -0.0020 0.0067 0.0064 0.0051 

6 -0.0011 -0.0033 -0.0029 -0.0013 

Table 4. Difference between the selected and identified robot geometry 
within the numerical simulation with measurement errors. 

3.3 Industrial Verification 

Industrial verification was performed using the Stäubli TX2-90, 
whose position was measured using a Leica AT960 
interferometer. First, the artifact geometry was measured on 
the coordinate measuring machine (CMM) using a Renishaw 

SP25M scanning probe (Fig. 8), where the center points of three 
spheres (i.e. the coordinates of the measured points) were 
evaluated with respect to the connection interface. Then, the 
artifact was mounted on the flange of the robot, and the laser 
tracker was placed in a suitable position for the measurement 
(Fig. 9). The initial robot position was set to J1=0°, J2=30°, J3=75°, 
J4=0°, J5=45° and J6=0°. From this position, the joints were 
consecutively rotated. The axes range was set with respect to 
artifact size, robot configuration, and experiment spatial 
distribution to J1=(-30°,+180°), J2=(-105°,+65°), J3=(-
120°,+130°), J4=(-10°,+200°), J5=(-100°,+100°) and J6=(-
90°,+270°). These ranges were divided into 20 intervals, resulting 
in 21 measured points for every joint. The robot program was 
developed in the Stäubli Robotic Suite environment, where a 
delay of 10 seconds was set after reaching the target position. 
Such a delay is high enough for precise measurement and has to 
been implemented as a constant value, since no communication 
between the robot controller and the laser tracker was 
established. The 0.5” SMRs have an acceptance angle of ±30°, 
and they need to be rotated so as not to interrupt the laser beam 
during the measurement. The reflectors are held in precise 
magnetic seats, which enables the rotation of the reflectors 
without a loss of precision. However, not all kinematic 
configurations reflected the beam back to the laser tracker, and 
these positions (5 of 168) have not been measured. 

 

Figure 8. The artifact holds the reflectors and its geometry was measured 
on a coordinate-measuring machine. The geometry measurement 
consists of sphere center (left) and basic plane evaluation (right). 

 

Figure 9. Industrial verification with the Stäubli TX2-90 robot. The 
artifact attached to the robot flange was measured by the laser tracker 
Leica AT 960. 



 

 

MM SCIENCE JOURNAL I 2022 I DECEMBER 

6174 

 

Based on the measured data, the DH parameters were 
calculated, and these were compared to their nominal values. 
Their offsets were evaluated, and updates were made in the 
control system. There are two approaches for the updates in the 
DH offsets in the robot Staubli controller: 

1. Generate a program with the setDH (theta, d, a, b, 
alpha, beta) function, in which parameters 
represented the updated DH offsets.  

2. Modify the configuration file arm.cfx, where the 
offsets are listed in array form (in the following 
sample, all offsets are zero, and parameter b is not 
implemented in the control system): 

  <DhArray name="dhOffset" > 
    <DH index="0" theta="0" d="0" a="0" b="0" alpha="0" beta="0" /> 
    <DH index="1" theta="0" d="0" a="0" b="0" alpha="0" beta="0" /> 
    <DH index="2" theta="0" d="0" a="0" b="0" alpha="0" beta="0" /> 
    <DH index="3" theta="0" d="0" a="0" b="0" alpha="0" beta="0" /> 
    <DH index="4" theta="0" d="0" a="0" b="0" alpha="0" beta="0" /> 
    <DH index="5" theta="0" d="0" a="0" b="0" alpha="0" beta="0" /> 
  </DhArray> 
 

Compared to the numerical simulation, the impact of identified 
DH offsets can only be evaluated for robot positioning accuracy, 
because the real parameters are not known. The end effector 
position is measured with the laser tracker as well, but the laser 
tracker and robot coordinate systems must be aligned to 
compare the nominal and real positions. Coordinate system 
alignment is based on the measurement of the N-points position 
with the laser tracker and the calculation of the transformation 
matrix between the robot and the laser tracker coordinate 
system. At least four points are required for the calculation. 
Although more approaches exist for the transformation matrix 
calculation, the quaternion-based solution was utilized [Horn 
1987]. Using the calculated transformation matrix, the values 
from the laser tracker are transformed to the robot coordinate 
system, and these values may be directly compared to the 
nominal robot position. Alignment is calculated from the 
measurement of eight points, where all joints move 
simultaneously. Verification of the proposed method was based 
on the measurement of ten points, both with and without the 
corrections. The results are shown in the Fig. 10. 

 

Figure 10. Comparison of positioning accuracy of the Stäubli TX2-90 
robot with both deactivated (off) and activated (on) identified 

corrections of the DH parameters. 

4 DISCUSSION 

The numerical simulation verified the proposed method with 
very promising results. In the simulation, the DH parameters are 
known, and the flange position was calculated using forward 

kinematic solutions. If the nominal flange position is considered, 
the DH parameters will be identified with an accuracy of the 
numeric rounding error (<<1.10-9 mm). Considering typical laser 
tracker measuring accuracy, the DH parameters were identified 
with very high precision as well, where the difference between 
the selected and identified parameters was still negligible. 
Industrial verification requires a different approach in 
evaluation, since the real DH parameters are not known. The 
approach is based on the measurement of the flange position 
and the calculated deviation of the set versus the actual value. 
Without the corrections, the mean and maximal deviations were 
0.086 mm and 0.126 mm, respectively. After activating the 
corrections, these deviations decreased to 0.049 mm and 0.070 
mm, respectively. Concluding the verification, the absolute 
position accuracy was increased by 43%. This improvement is 
significant. However, it is worth mentioning that the Stäubli TX2-
90 robot is already highly precise, even without the corrections. 
The manufacturer ensures a repeatability of 0.030 mm [Staubli 
2022].  

The main advantage of the proposed method represents its 
simplicity, since only the basic least-squares solution and linear 
algebra are required for its implementation. The next advantage 
comes from the principle method, where the measured points 
are not directly used for the correction calculation. Instead, they 
are used to construct derived geometric entities (circles). Also, 
because only tens of points are used for every single circle 
calculation, the result is identified with high accuracy. Another 
advantage is that the laser tracker measurement is made 
without the need for coordinate system alignment, because the 
relative position of the circles to the first one is evaluated. 
Finally, an advantage worth noting is the identification of the 
complete flange geometry, where some traditional methods 
cannot identify the full flange geometry, e.g. the axial offset of 
6th joint is evaluated as a sum of robot and artifact geometry. 

The main drawback is the need for artifact metrology 
measurement, because its geometry has to be identified. The 
artifact should be made of thermally invariant material, or it 
should be inspected within the same environmental conditions 
to achieve the highest accuracy. However, the artifact geometry 
only needs to be known for flange full geometry identification. 
The other joints are identified without the need for artifact 
geometry knowledge. The laser tracker required for the 
measurement is an expensive device, but so are the state-of-art 
calibration methods usually used in lieu of it. 

Follow-up research will be focused on the implementation of the 
proposed method onto the control systems, which do not allow 
the corrections of the kinematic model to be calculated. The 
implementation may be processed using two distinct methods. 
The first method is based on an offline robot trajectory 
modification using the corrected kinematic model. The second 
method calculates the modified positions online in a separate 
industrial computer, where it is connected to the robot control 
system and the robot is operated in an external automatic mode. 

5 CONCLUSIONS 

This article describes a method for increasing industrial robot 
positioning accuracy. The method is based on the correction of 
nominal kinematic model parameters like traditional calibration 
methods; however, the novelty comes from the method of the 
offsets calculation. The method was successfully verified by a 
numerical simulation and industrial verification with a Stäubli 
TX2-90 as well. The summary points of the proposed calibration 
can be defined as: 
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• The proposed method does not improve repeatability, it 
only increases industrial robot positioning accuracy; 

• The robot control system must implement corrections to 
the nominal kinematic model; 

• The geometry of the artifact mounted to the end effector 
must be known; 

• The position of the artifact mounted to the robot end 
effector must be measured (e.g. with a laser tracker); 

• Artifact position may be related to an arbitrary 
coordinate system, no laser tracker-robot alignment is 
needed; 

• The measured points themselves are not used in the 
calibration - they are simply used to build dervied 
geometric entities (circles) which are then used to 
increase the accuracy of the proposed method. 

The algorithmization of the proposed method is not difficult, and 
it allows full user control over the calculation. Based on this 
method, the calibrated robots achieve the higher positioning 
accuracy required for high accuracy application utilization.  
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