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A new method to simulate the varying static receptance of a 
thin-walled workpiece based on the Cholesky decomposition is 
presented in this paper. In this method, the system stiffness 
matrix is updated by subtracting the elemental stiffness matrices 
of the removed elements from the initial system stiffness matrix. 
The updated system stiffness matrix is permuted by using a 
novel method based on element removing sequence and 
considering fill-in reduction. The Cholesky factor of the 
permuted system stiffness matrix is reused to compute the static 
receptance of the workpiece for multiple cutter locations. The 
reduction of computation time by using this new method is 
proved by a numerical test and the accuracy of the simulation is 
demonstrated with a machining test. 
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1 INTRODUCTION  

The CAM planning for thin-walled workpieces poses a significant 
challenge [Koike 2013] [Wiederkehr 2013]. One primary 
challenge stems from shape errors arising due to the workpiece's 
substantial static receptance [Altintas 2018] [Denkena 2007] 
[Dittrich 2019]. Typically, numerous machining tests are needed 
to iteratively optimize CAM planning until suitable process 
parameters are identified [Bolar 2016]. However, this approach 
leads to substantial material and time costs [Bolar 2016]. The 
finite element simulation can be used to predict the static 
displacement of the thin-walled workpiece. The shape errors can 
be compensated based on the simulated static displacement. 
The most time-consuming step of a finite element simulation for 
static problems is to solve Eq. 1: 
Ku = r  (1) 

with: 
K: system stiffness matrix   
u: static displacement vector 
r: force vector 

 

Eq. 1 can be solved using a direct solving method based on the 
Cholesky decomposition [Bathe 2014]. The first step involves 
decomposing the matrix K: 

K = LLT (2) 
with: 
L: lower Cholesky factor (lower triangular matrix)  
LT: transposed matrix of L (upper Cholesky factor)  

The computation time of the Cholesky decomposition for a 
dense symmetric positive definite (SPD) matrix is proportional to 
n3 [Cormen 2022], where n is the number of the equations in 
Eq. 1. The matrix K for the structural mechanics problems is 
usually a sparse SPD matrix. The sparsity of the matrix K can be 
used to reduce the complexity of the Cholesky decomposition. 
The decomposition of a sparse SPD matrix includes a symbolic 

phase and a numerical factorization phase. The symbolic phase 
typically uses only the sparsity pattern of the matrix K to 
compute the nonzero structure of the Cholesky factor of K 
without computing the numerical values of the nonzeros. The 
number of nonzeros in the Cholesky factor is typically larger than 
the number of nonzeros in the matrix K. This phenomenon is 
named fill-in. The fill-in increases the memory and the 
computation time requirement for the numerical factorization 
phase. Therefore, the matrix K is typically permuted to reduce 
the fill-in in the symbolic phase [Scott 2023]: 

K̃ = PT ∙ K ∙ P  (3) 
with: 
P: matrix to reorder the columns   

PT: transposed matrix of P (matrix to reorder rows)  

The approximate minimum degree algorithm (AMD) is widely 
used to generate the permutation matrix P because of its good 
fill-in-reducing effect [Amestoy 1996]. Furthermore, the 
computation cost using the AMD algorithm is smaller than using 
other algorithms such as the multiple minimum degree 
algorithm (MMD) [Amestoy 1996]. The sparsity pattern of the 

Cholesky factor of the permuted matrix K̃ is computed at the end 
of the symbolic phase [Scott 2023]. This is used as the input for 
the numerical factorization phase to compute the values in the 
Cholesky factor G: 

K̃ = GGT (4) 
The displacement vector u can be computed by leveraging the 
Cholesky factor G. Substituting Eq. 3 into Eq. 1 yields Eq. 5: 

K̃(PTu) = PTr (5) 
Substituting Eq. 4 into Eq. 5 yields Eq. 6: 

Gv = PTr (6) 
with: 

GT(PTu) = v (7) 
v is computed in Eq. 6 by forward substitution. Subsequently, 

PT ∙ u is obtained in Eq. 7 by backward substitution. The last step 

is to compute u in Eq. 8 with PTu computed in Eq. 7: 

u = (PPT) ∙ u = P(PTu) (8) 
The most time-consuming step to solve the sparse linear 
problem in Eq. 1 is to compute the Choleksy factor G in the 
numerical factorization phase of the Cholesky decomposition 
[Scott 2023]. 
The peculiarity of the finite element simulation for the thin-
walled workpiece is the variation of the system stiffness matrix 
K because of the material removal. Therefore, multiple 
simulations for the intermediate states of the thin-walled 
workpiece are necessary. This can require extremely high 
computational costs.  
The typical methods for simulating thin-walled workpieces can 
be categorized into three groups. In the first group, the system 
stiffness matrix of the thin-walled workpiece remains constant 
throughout the entire machining process [Khandagale 2018]. As 
a result, only a single Cholesky decomposition is required for the 
complete machining process. However, the usability of the 
methods in this group is severely limited, as they do not account 
for variations in the workpiece's static receptance. The methods 
in the second group address this variation by performing a new 
Cholesky decomposition for each selected intermediate state of 
the workpiece [Budak 1995], [Ratchev 2005], [Wimmer 2019]. 
While this approach enhances simulation accuracy, it also leads 
to significant computational time demands. To mitigate this 
computational burden, the third group employs the 
substructure coupling method [Li 2018]. The basic idea of 
substructure coupling is that the physical properties of the entire 
structure can be determined by coupling the physical properties 
of the associated substructures [Chavan 2020]. When applying 
the substructure coupling method to simulate the thin-walled 
workpiece, the first step consists of conducting a finite element 
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simulation to get the static receptance of the initial workpiece. 
Subsequently, an intermediate state of the workpiece is 
considered to be the coupling of the preceding intermediate 
state (substructure 1) and the removed material (substructure 
2). The static receptance of this intermediate state is 
approximated based on the static receptances of substructures 
1 and 2. This iterative process continues until calculations 
encompass the entire machining process. With substructure 
coupling, the computation time is reduced because the 
computation results of one intermediate state are used for the 
computation of the next intermediate state. However, a large 
cumulative error can arise due to the approximation for each 
intermediate state. Consequently, the accuracy of the 
calculation cannot be assured. 
In summary, the current methods for simulating a thin-walled 
workpiece are either inefficient or lack sufficient accuracy. These 
limitations hinder the use of the finite element simulation in the 
CAM planning for the thin-walled workpiece. The purpose of the 
research presented in this paper is to improve efficiency without 
reducing the accuracy of the simulation for the thin-walled 
workpiece.  
Following this introduction section, section 2 presents a method 
to update the system stiffness matrix without remeshing the 
workpiece geometry. Subsequently, an efficient method to 
compute the Cholesky factor of the varying system stiffness 
matrix is developed in section 3. Based on the method 
developed in section 3, a method to compute the static 
receptance of the thin-walled workpiece is presented in section 
4. The efficiency and the accuracy of the simulation are analyzed 
in sections 5 and 6. The conclusions and outlooks are provided 
in the last section. 

2 METHOD TO UPDATE SYSTEM STIFFNESS MATRICES 
WITHOUT REMESHING 

The system stiffness matrix of the thin-walled workpiece can be 
updated by remeshing the workpiece geometry at each cutter 
location (CL). However, automating geometry remeshing is 
challenging.  Furthermore, the system stiffness matrix is changed 
completely after remeshing. Hence, the Cholesky factors of the 
system stiffness matrices before and after the remeshing are 
completely distinct. As a result, reusing the Cholesky factor 
becomes unfeasible after remeshing.  
In this section, a system stiffness matrix updating method 
without remeshing is presented. The procedure begins by 
meshing the initial workpiece. The elements and the nodes are 
extracted from the finite element model and stored in an 
element table and a node table (Fig. 1). In the element table, 
each element is in a row where the element ID, the elemental 
stiffness matrix and the IDs of the corresponding nodes are 
stored. In the node table, each node is in a row where the node 
ID, the node coordinates and the IDs of the corresponding 
elements are stored.  
Subsequently, the change history of the mesh due to material 
removal is computed using the extracted data from the finite 
element model and a geometry-based cutting simulation (Fig. 2). 
The cutter locations (CL) and the cutter geometry are exported 
from the geometry-based cutting simulation and used to 
generate the sweep volume of the cutter. The elements in this 
sweep volume are detected and removed from the mesh. The 
nodes associated with the removed elements are influenced. 
These nodes are classified into two groups. As shown in Fig. 2, 
the red nodes are deleted from the mesh after the removal of 
the green marked elements 1 to 9. These nodes are in the first 
group. The remaining nodes of these removed elements are only 
influenced, but not deleted. These nodes are in the second 

group. In order to track the change history of the mesh, the 
removed elements and the two groups of the affected nodes are 
stored in an intermediate mesh table, as shown in Fig. 3.  

Figure 1: extract data from the finite element model 

Figure 2: detect the removed elements 
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The system stiffness matrix for the mesh q is computed by 
subtracting the elemental stiffness matrices of the removed 
elements from the system stiffness matrix of the mesh q-1: 

Ksys,q = Ksys,q−1 −∑Ki

i

 (9) 

with: 
Ksys,q: system stiffness matrix of the mesh q   

Ksys,q−1: system stiffness matrix of the mesh q-1  

Ki: elemental stiffness matrix of the removed element i  
The matrices Ksys,q, Ksys,q−1 and Ki are nDoF × nDoF matrices, 

where nDoF is calculated by 
nDoF = nnodes ∙ ndimension (10)  

with: 

nDoF: number of the degrees of freedom (DoF) of the initial 
mesh 

nnodes: number of the nodes of the initial mesh 

ndimension: number of the DoF of each node 

The IDs of the removed elements are retrieved from the 
intermediate mesh table, and the elemental stiffness matrices of 
the removed elements are found in the element table. In most 
cases, the active nodes of the mesh q are fewer than nnodes due 
to multiple node removals. Hence, nDoF,deleted rows and 

columns in Ksys,q are filled by zeros, where: 

nDoF,deleted = nnodes,deleted ∙ ndimension (11) 

with: 
nDoF,deleted: number of the deleted DoF from the initial 

mesh to mesh q 

nnodes,deleted: number of the deleted nodes from the initial 

mesh to mesh q 
The matrix Ksys,q is singular because of these zero rows and 

columns. The corresponding Cholesky decomposition is 
impossible because of the singularity. In order to avoid the 
singularity, the removal of the zero rows and columns from the 
system stiffness matrix is necessary. An illustrative example 
clarifies the removal process. The example matrix Ksys,q is an 8 

× 8 matrix in Fig. 4. The red marked columns and rows have just 
zero entries. The first step is to construct an 8 × 6 matrix Scol: 
Scol(i, j + 1) = 1 (12) 

with: 
i: the index of the column in Ksys,q with at least one nonzero 

entry 
j: the number of the already inserted ones in Scol 

The matrix Scol in this example selects the columns 2, 4, 5, 6, 7 
and 8: 
Ksys,qScol (13) 

The matrix Srow to select the rows 2, 4, 5, 6, 7 and 8 is the 
transpose of Scol: 

Srow = Scol
T (14) 

Finally, the non-singular system stiffness matrix Ksys_spd,q is 

computed as: 
Ksys_spd,q = SrowKsys,qScol (15) 

The method outlined in this section to update the system 
stiffness matrix can be concluded into the following steps: 

 Extract the data from the finite element model of the initial 
workpiece and store the data into the element table and 
the node table. 

 Detect the removed elements and the influenced nodes for 
each CL and store these data into the intermediate mesh 
table. 

Figure 3. intermediate mesh table 

Figure 4. removal of the zero rows and columns 
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 Compute the singular system stiffness matrix using Eq. 9. 

 Compute the non-singular system stiffness matrix using 
Eq. 15. 

By following these steps, the method updates the system 
stiffness matrix without remeshing the workpiece geometry. 
This facilitates the reuse of the Cholesky factor for multiple CLs. 

3 AN EFFICIENT METHOD TO COMPUTE THE CHOLESKY 
FACTOR 

As explained in the introduction, computing Cholesky 
decompositions for multiple intermediate meshes demands 
substantial computational time. The aim of this section is to 
develop a method to efficiently compute the Cholesky 
factors for a thin-walled workpiece.  

For simplicity, this section focuses on the lower Cholesky 
factor, since the upper Cholesky factor is its transpose. The 
fundamental idea is to reuse the Cholesky factor from one 
intermediate mesh to compute Cholesky factors for several 
others. This concept hinges on a specific property of the 
lower Cholesky factor [Scott 2023]:  

 The value Li,j in the i-th row and j-th column of the lower 

Cholesky factor L is dependent on the entries Kv,w in 

the system stiffness matrix K, where v ≤ i and w ≤ j.  

It is assumed, that the initial mesh of the thin-walled 
workpiece has n DoF. An intermediate mesh emerges by 
removing multiple elements from the initial mesh, and m 
DoF are affected by the removal of these elements. If these 
m DoF correspond to the last m DoF of the initial mesh, the 
top left (n −m) × (n − m) submatrices for both the initial 

and the intermediate meshes are identical. According to the 
aforementioned property of the lower Cholesky factor, the 
top left (n −m) × (n − m) submatrices of the lower 

Cholesky factors for both the initial and the intermediate 
meshes are identical. Hence, the computed (n − m) × (n −
m) submatrix of the Cholesky lower factor can be reused 

for multiple intermediate meshes. However, it's not 
guaranteed that the affected nodes stored in the 
intermediate mesh table are the last nodes of the mesh. 
Consequently, the correspondingly influenced DoF may not 
necessarily be the last DoF. To address this, a node 
permutation method is introduced as follows: 

 The memory with the size of the original node list 
stored in the node table is allocated for the reordered 
node list. The front insert pointer points to the first 
position of the allocated memory, and the back insert 
pointer points to the last position of the allocated 
memory. 

 The influenced nodes stored in the intermediate mesh 
table (Fig. 3) are back inserted into the reordered node 
list.  The back insert pointer shifts up one position after 
each insertion. 

 The uninfluenced nodes (nodes in the node table but 
not in the intermediate mesh table) are front inserted 
into the reordered node list. The front insert pointer 
shifts down one position after each insertion. 

This method is illustrated with an example in Fig. 5. Initially, 
memory is allocated for the new node list containing nine 
integers. The front insert pointer points to the first position 
of the new node list and the back insert pointer points to the 
9th position. The machining process involves two 
machining steps. The nodes 1, 2, 8 and 9 are influenced by 
removing the element E1 during the first machining step. 
These nodes are back inserted into the new node list. The 
position to start the back insertion for this machining step is 
the 9th position of the new node list, where the back insert 
pointer points to. The back insert pointer is pointed to the 
5th position of the new node list after inserting these 4 

nodes. The nodes 6, 7, 8 and 9 are influenced by removing 
the element E2 during the second machining step. 
However, the nodes 8 and 9 are already considered in the 
last machining step. Hence, only the nodes 6 and 7 are 
inserted at the back of the new node list. In the last step, 
the uninfluenced nodes 3, 4 and 5 are inserted into the front 
of the new node list.  

A permutation matrix P1 is created based on the reordered 
node list, as shown in Fig. 6. Firstly, a list of DoF 
corresponding to the list of the reordered nodes is 
constructed. In this example, the reordered node list has 
nine nodes, each of them has two DoF. A list of DoF with a 
length of 18 is constructed by iterating over the reordered 
node list. After any machining step i, the number of the DoF 
which not affected by the steps from 1 to i is stored in a map 
data structure. In Fig. 6, the numbers of the unaffected DoF 
after machining step 1 and machining step 2 are stored in 
the map as two key to value pairs: 110 and 26. The 
permutation matrix P1 is created by assigning the ones to 
a zero matrix according to the list of DoF. For the DoF i in 

Figure 5. reorder the node list 
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the position j of the DoF list, a value 1 is inserted to the 
matrix P1 as follows: 

p1i,j = 1 (16) 

with i equal to (nodepos*nDoF − 1), where nodepos is the 

position of the node in the reordered node list, and  nDoF is the 
number of DoF for each node. 

In this example, as shown in Fig. 6, 18 ones are inserted 
into the permutation matrix P1.  

In order to reduce the computation time and the memory 
requirement of a single Cholesky decomposition, the AMD 
algorithm based permutation is combined with the element 
removing sequence based permutation. Firstly, the system 
stiffness matrix K is permuted using the matrix P1 (based 
on the sequence of the element removal). The first m rows 
and the first m columns of the permuted matrix are 

extracted and stored in the matrix K̃top_lef, where m is the 

number of the unaffected DoF after the whole machining 
process. The AMD method uses this matrix as the input and 
generates a fill-in reducing m×m permutation matrix 

P2top_lef. The permutation matrix P2top_lef is extended to a 

n × n matrix P2 by inserting ones on the diagonal after the 

m-th row. The system stiffness matrix permuted by P1 is 
permuted again with the matrix P2. 

The Cholesky factor of the system stiffness matrix can be 
reused, as shown in Fig. 7. The initial system stiffness 
matrix Kinitial is permuted with the permutation matrix P =
P1 ∙ P2, and the corresponding Cholesky factor is 

computed. The system stiffness matrix Kq for the 

intermediate mesh q is obtained by using Eq. 9. The matrix 
Kq is permuted and the zero columns and rows are deleted 

according to Eq. 15. The top left submatrix Gq_top_lef of the 

Cholesky factor Gq is equal to the top left submatrix 

Ginitial_top_lef of the Cholesky factor Ginitial, because the 

corresponding submatrices of the permuted system 
stiffness matrices are identical. Therefore, the values in 

Ginitial_top_lef can be reused for multiple intermediate 

meshes to save the computation time.  

The presented method to compute the varying Cholesky 
factor for thin-walled workpieces can be summarized in the 
following steps: 

 Generate the permutation matrix P1 based on the 
sequence of the element removal. 

 Generate the permutation matrix P2 based on the AMD 
algorithm. 

 Compute the Cholesky factor of the initial system 
stiffness matrix permuted with the permutation matrix 
P = P1 ∙ P2. 

 Compute the Cholesky factor for the permuted system 
stiffness matrix of arbitrary intermediate mesh by 
reusing the Cholesky factor of the permuted initial 
system stiffness matrix. 

The computed Cholesky factors for the intermediate 
meshes are used in the next section to get the varying static 
receptance of the workpiece. 

Figure 7. reuse the Cholesky factor 

Figure 6. construct the permutation matrix P1  
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4 METHOD TO CALCULATE THE STATIC RECEPTANCE FOR 
EACH CUTTER LOCATION 

The finite element model of the thin-walled workpiece is 
assumed to be a linear model in this paper. As a result, the 
static receptance at each cutter location remains a system 
characteristic, unrelated to the process force. The 
calculation of this static receptance involves the following 
steps (Fig. 8): 

1. Identify the influenced but not deleted nodes in the 
search circle of the radius r around the tool center 
point. The system stiffness matrix is updated based on 
the method introduced in section 2 and permuted using 
the method introduced in section 3. 

2. Define a concentrated static force fconcentrated with an 

arbitrary amplitude in any orthogonal direction. 
3. Distribute the concentrated force to multiple identical 

forces fdistributed on the nodes found in the first step. 

4. Calculate the displacement vector of the finite element 
model under the distributed load defined at the 
previous step.  

5. Extract the displacements of the nodes identified in the 
first step and compute the average displacement.  

6. Compute the static receptance by  

gi,j =
uj

fi
 (17) 

with: 

i: direction of the force  

j: direction of the displacement  

gi,j: static receptance   

uj: average displacement in direction j  

fi: concentrated force in direction i  

It's important to note that Step 4, where the system stiffness 
matrix's Cholesky factor must be updated for each cutter 
location, is the most time-consuming part of the process. 
The method introduced in the previous section aims to 
mitigate this time requirement by reusing the Cholesky 
factor. The real efficiency improvement is assessed in the 
upcoming section through a numerical example.  

5 NUMERICAL TEST 

In this section, the efficiency improvement achieved by 
reusing the Cholesky factor is assessed through a 
numerical example involving the flank milling of a thin wall, 
as depicted in Fig. 9. The initial mesh comprises 236,715 
tetrahedron elements and 47,489 nodes. The stiffness 
matrix is updated and the static receptance is calculated for 
47 CLs. These 47 CLs are evenly spaced along the feed 
direction. The distance between any two adjacent CLs is 
2 mm.  

The computation times for each CL are detailed in Fig. 10. 
Utilizing the method that reuses the Cholesky factor results 
in an average computation time of 33.3 s, compared to an 
average of 63.1 s without the reuse of the Cholesky factor. 
This demonstrates a substantial efficiency enhancement 
with a computation time reduction of 47.2 %. 

When not reusing the Cholesky factor, the computation time 
for a single CL varies within a relatively small range of 58 s 
to 73 s. On the other hand, the computation time with the 
new method exhibits a cyclic variation. This can be 
explained by considering the computation times for the first 
five CLs. The initial CL necessitates a time-consuming 
complete Cholesky decomposition, leading to a 
computation time of around 70 s, which is obviously larger 
than the computation times for the other four CLs. The 
second CL, being the most similar to the initial one in terms 
of the system stiffness matrix, results in the shortest 
computation time of 13.1 seconds. Subsequently, the 
computation time increases due to the growing difference 
between the corresponding system stiffness matrices. This 

Figure 8. compute the static receptance 

Figure 10. time to compute the static receptance 

Figure 9. numerical example 
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pattern continues until the sixth CL, which is considered to 
be the new initial mesh for the subsequent five CLs.  

The numerical example demonstrates the considerable 
efficiency improvement brought about by the new method. 
The next section delves into the accuracy of this method 
through a machining test. 

6 VALIDATION 

The objective of this section is to validate the accuracy of 
the simulated static receptance through a machining test 
depicted in Fig. 11, corresponding to the numerical 
example discussed in the previous section. The process 
force is measured with a force measurement platform. The 
displacement of the workpiece along the feed direction is 
computed from the simulated static receptance and the 
measured process force. The cutting tool exhibits 
significantly greater stiffness compared to the workpiece. 
As a result, any deformation of the cutting tool is considered 
negligible in terms of its impact on the displacement of the 
workpiece. Furthermore, the workpiece displacement along 
the feed direction is determined by measuring the finished 
workpiece with a coordinate measuring machine (CMM). 
The computed displacement and the displacement 
determined using the CMM in z direction are nearly 

indistinguishable. Apart from validating through machining 
test, the workpiece receptance simulated using the novel 
method is also compared to the receptance simulated with 
Abaqus. The simulation results demonstrate a good match 
between the two methods. The machining test and the 
simulation with Abaqus show that the presented method in 

this paper can predict the varying static receptance of the 
thin-walled workpiece with a good accuracy. 

7 CONCLUSIONS 

An efficient algorithm to simulate the varying static stiffness 
of the thin-walled workpiece is presented in this paper. The 
first part of this algorithm is a method to update the system 
stiffness matrix without remeshing the workpiece geometry. 
Subsequently, a method to permute the system stiffness 
matrix based on the sequence of the element removal is 
introduced. This cutting sequence based permutation 
method is combined with a fill-in reducing permutation 
method based on the AMD algorithm. The Cholesky factors 
for multiple intermediate meshes are computed by reusing 
the Cholesky factor of the permuted initial system stiffness 
matrix. These Cholesky factors are used to simulate the 
varying static receptance of the thin-walled workpiece. A 
large efficiency improvement is shown in a numerical 
example by using the new simulation method. Finally, the 
accuracy of the simulation method is validated by 
comparing the simulated displacement with the 
displacement determined using the CMM for a thin-walled 
workpiece. 

The combination of high efficiency and good accuracy 
underscores the substantial potential of this novel 
approach. In future work, the method will be applied to real 
workpieces during CAM planning to validate its efficiency 
and accuracy under practical conditions. 
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