
 

 

MM SCIENCE JOURNAL I 2024 I DECEMBER 

7855 

 

ACCELERATED SUBSPACE 
ITERATION METHOD FOR 

SIMULATING VARYING 
EIGENPAIRS OF THIN-

WALLED WORKPIECES   
CHRISTIAN BRECHER1, GUIFENG ZHAO1, MARCEL FEY1 

1RWTH Aachen University, Laboratory for Machine Tools and 
Production Engineering, Aachen, Germany 

DOI: 10.17973/MMSJ.2024_12_2024045 

G.Zhao@wzl.rwth-aachen.de 

This paper presents an innovative accelerated subspace iteration 
method tailored for simulating varying eigenpairs of thin-walled 
workpieces. The proposed approach significantly boosts 
computational efficiency by selecting optimal start iteration 
vectors for a given cutter location. The optimal start iteration 
vectors are generated based on the previously calculated 
eigenvectors from the preceding cutter location. A numerical 
example illustrates the efficiency enhancement achieved by the 
proposed method, showcasing a notable reduction in 
computation time. Furthermore, to evaluate the numerical 
accuracy of the accelerated subspace iteration method, 
comprehensive comparisons are conducted with results 
obtained from Abaqus simulations. The outcomes affirm the 
numerical accuracy of the proposed approach. 
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1 INTRODUCTION  

CAM planning for thin-walled workpieces poses substantial 
challenges [Do 2018] [Ratchev 2005] [Sun 2023]. A critical issue 
in this domain is the significant vibration encountered during the 
machining process [Dang 2021] [Karimi 2022] [Karimi 2024] [Liu 
2022] [Tehranizadeh 2022]. To avoid the large vibration, optimal 
selection of process parameters is necessary. However, the 
conventional approach to parameter refinement entails 
numerous machining tests and iterative adjustments, resulting 
in substantial material wastage and time consumption. 
A promising approach involves utilizing numerical methods to 
predict the dynamic characteristics of thin-walled workpieces, 
which can then guide the selection of optimal process 
parameters [Karimi 2022] [Karimi 2024] [Tuysuz 2017] [Tuysuz 
2018]. The essence to predict the dynamic characteristics of a 
mechanical structure is the solution of the first 𝑝 eigenpairs of 
the generalized eigenproblem [Bathe 2014]: 

𝐾𝛷 = 𝑀𝛷Ʌ (1) 
with: 

𝐾: 𝑛 × 𝑛 system stiffness matrix  

𝑛: number of degrees of the freedom (DOF)  

𝛷: [𝜙1, … , 𝜙𝑝], first 𝑝 eigenvectors  

𝑀: 𝑛 × 𝑛 system mass matrix  

Ʌ: 𝑑𝑖𝑎𝑔(𝜆𝑖), 𝑖 = 1, … , 𝑝, first p eigenvalues.  

Bathe’s subspace iteration method is widely used to solve Eq. 1 
because of its high efficiency. This method consists of the 
following main steps [Bathe 2013] [Bathe 2014]: 

1. Set the number of required eigenpairs 𝑝. 
2. Set the number of the iteration vectors 𝑞 equal to 

𝑚𝑎𝑥{2𝑝, 𝑝 + 8}. 
3. Generate 𝑞 start iteration vectors 𝑋1: 

𝑋1 = [𝑥1,1, 𝑥1,2, … , 𝑥1,𝑞] (2) 

4. Solve the following equations for 𝑘 = 1,2, …: 
𝐾�̅�𝑘+1 = 𝑀𝑋𝑘 (3) 

𝐾𝑘+1 = �̅�𝑘+1
𝑇 𝐾�̅�𝑘+1 (4) 

𝑀𝑘+1 = �̅�𝑘+1
𝑇 𝑀�̅�𝑘+1 (5) 

𝐾𝑘+1𝑄𝑘+1 = 𝑀𝑘+1𝑄𝑘+1Ʌ𝑘+1 (6) 

𝑋𝑘+1 = �̅�𝑘+1𝑄𝑘+1 (7) 
         with: 

𝑋𝑘  (𝑛 × 𝑞 matrix): approximation of the eigenvectors 
in iteration 𝑘 − 1 
�̅�𝑘+1 (𝑛 × 𝑞 matrix): intermediate matrix to calculate 
𝐾𝑘+1 and 𝑀𝑘+1 

�̅�𝑘+1
𝑇  (𝑞 × 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥): transpose of �̅�𝑘+1 

𝐾𝑘+1 (𝑞 × 𝑞 matrix): reduced stiffness matrix 

𝑀𝑘+1 (𝑞 × 𝑞 matrix): reduced mass matrix 

𝑄𝑘+1 (𝑞 × 𝑞 matrix): eigenvectors of the reduced 
eigenproblem Eq. 6 

Ʌ𝑘+1 (𝑞 × 𝑞 diagonal matrix): eigenvalues of the 
reduced eigenproblem Eq. 6 

𝑋𝑘+1 (𝑛 × 𝑞 matrix): approximation of the 
eigenvectors in iteration 𝑘 

From step 1 to step 3, using a larger number of iteration vectors 
𝑞 compared to the number of required eigenpairs 𝑝 facilitates 
accelerated convergence in Step 4, as noted by Bathe [Bathe 
2013]. In step 4, the original eigenproblem Eq. 1 of order 𝑛 is 
transformed into the eigenproblem Eq. 6 of order 𝑞. For most 
engineering problems, the number of required eigenpairs is 
considerably smaller than the system size 𝑛. Hence, the 
eigenproblem Eq. 6 can be efficiently solved by using the Jacobi 
solution method [Bathe 2014]. The required eigenpairs are 
iteratively approximated from Eq. 3 to Eq. 7. 
It’s important to note that one of the most time-consuming 
computations in the subspace iteration method is the solution of 

�̅�𝑘+1 in Eq. 3. This computation requires the Cholesky 

decomposition of 𝐾 [Scott 2023]: 

𝐾 =  𝐿𝐿𝑇 (8) 
with: 

𝐿: 𝑛 × 𝑛 lower Cholesky factor  

𝐿𝑇: 𝑛 × 𝑛 upper Cholesky factor   

Furthermore, the efficiency of the iteration process between 
Eq. 3 and Eq. 7 is tied to its convergence rate, having a direct 
impact on computation time. The inherent drawback of the 
subspace iteration method lies in the possibility for slow 
convergence, leading to high computation time. However, this 
drawback is counterbalanced by the method's ability to be highly 
efficient when convergence occurs rapidly [Bathe 2013] [Bathe 
2014].  
The special challenge in predicting the dynamic characteristics of 
thin-walled workpieces using the subspace iteration method 
arises from the variation of the workpieces’ eigenpairs caused by 
material removal during the machining process. To consider the 
variation, the eigenproblem Eq. 1 is required to be solved for 
multiple intermediate states of the workpiece. This requires 
generation of system stiffness matrix 𝐾 and system mass matrix 
𝑀 for these intermediate states. The system stiffness matrix of a 
workpiece during machining process can be generated by using 
the following procedures [Brecher 2023]: 
1. Mesh the initial geometry of the thin-walled workpiece. 
2. Store the elemental stiffness matrices and the system 

stiffness matrix 𝐾𝑠𝑦𝑠,1 of the initial workpiece.  
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3. Detect the deleted finite elements after each cutting step. 
4. Update the system stiffness matrix for 𝑞 = 2,3, …: 

𝐾𝑠𝑦𝑠,𝑞 = 𝐾𝑠𝑦𝑠,𝑞−1 − ∑ 𝐾𝑖

𝑖

 (9) 

         with: 
𝐾𝑠𝑦𝑠,𝑞: system stiffness matrix of the mesh 𝑞  

𝐾𝑠𝑦𝑠,𝑞−1: system stiffness matrix of the mesh 𝑞 − 1 

𝐾𝑖: elemental stiffness matrix of the removed element 𝑖 

The outlined procedures can also be employed to generate the 
system mass matrix. However, considering the varying system 
stiffness matrix and system mass matrix, solving eigenproblems 
for multiple intermediate states of the workpiece using the 
subspace iteration method can require a large computation 
time. This limits the application of the numerical method to 
support the process parameter optimization in the industry. 
This paper primarily seeks to enhance the convergence rate of 
the subspace iteration method in calculating varying eigenpairs 
of thin-walled workpieces. Following this introductory section, 
section 2 outlines a strategy for augmenting the convergence 
rate by generating optimal start iteration vectors for the 
subspace iteration method. Subsequently, section 3 
systematically evaluates both the efficiency and the accuracy of 
the accelerated subspace iteration method. The final section 
summarizes the key findings and outlines future research 
directions. 

2 ACCELERATION OF THE SUBSPACE ITERATION METHOD BY 
USING OPTIMAL START ITERATION VECTORS 

This section presents a method to increase the efficiency of the 
subspace iteration method in solving the eigenproblems for thin-
walled workpiece. One important property of the subspace 
iteration method is: 

 If the start iteration vectors are the required eigenvectors 
or linear combinations of the required eigenvectors, the 
subspace iteration method converges in one step [Bathe 
2014].  

This property leads to the following hypothesis: 

 Hypothesis 1: The convergence rate of the subspace 
iteration method can be increased by minimizing the 
disparity between the start iteration vectors and the real 
eigenvectors. 

It is import to note that the machining process of a workpiece is 
a continuous process. This leads to the second hypothesis:  

 Hypothesis 2: The material removal during a machining 
process leads to a continuous variation of the workpiece's 
mass and stiffness properties. Consequently, the difference 
between two successive intermediate states of the 
workpiece, with regard to their mass and stiffness 
properties, is minimal. As a result, the corresponding 
eigenvectors exhibit only minor disparities. 

Assuming the validities of the hypotheses, the convergence rate 
of the subspace iteration method to simulate an intermediate 
state 𝑞 of a thin-walled workpiece can be increased by using the 
following process: 

1. Generate start iteration vectors for intermediate state 𝑞 by 
selecting entries from eigenvectors 𝛷𝑞−1 of intermediate 

state 𝑞 − 1. The chosen entries correspond to the common 
DoF of meshes 𝑞 and 𝑞 − 1.  

2. Solve the eigenproblem Eq. 1 for intermediate state 𝑞 to get 
eigenvectors 𝛷𝑞 and eigenvalues Ʌ𝑞  using the subspace 

iteration method. The optimal start iteration vectors 
selected in the previous step accelerate the convergence of 

the subspace iteration method. 

This process is illustrated in Fig. 1, where each node has a single 
DoF in vertical direction. Mesh 𝑞 − 1 comprises 10 nodes and 10 
corresponding DoF. The eigenvectors 𝛷𝑞−1 ∈  ℝ10×2 are known 

from a prior simulation. Mesh 𝑞 is derived by removing node N1 
from the mesh 𝑞 − 1. The entries in 𝛷𝑞−1 corresponding to the 

remaining nodes are selected to establish start iteration vectors 
𝛷𝑞

1 ∈  ℝ9×2 for mesh 𝑞. The start iteration vectors 𝛷𝑞
1 are used 

to calculate the eigenvectors 𝛷𝑞 ∈  ℝ9×2 for mesh 𝑞. Given the 

small difference between the meshes 𝑞 and 𝑞 − 1, 𝛷𝑞
1 is 

expected to be a reliable approximation of 𝛷𝑞, facilitating a high 

convergence rate of the subspace iteration method used for the 
mesh 𝑞. 

It's necessary to acknowledge that the method for generating 
optimal start iteration vectors for mesh 𝑞 utilizes the calculated 
eigenvectors of the previous mesh 𝑞 − 1 as input. Consequently, 
this method is not applicable to the first mesh. Addressing this 
special case for the first mesh and the normal case for the other 
meshes, the full process to calculate eigenpairs for all 
intermediate meshes of a thin-walled workpiece involves the 
following steps: 

 Generate system stiffness matrices and system mass 
matrices for all workpiece’s intermediate states by using 
the matrix updating procedures explained in the 
introduction section [Brecher 2023]. 

 Calculate the eigenpairs including eigenvectors 𝛷1 and 
eigenvalues Ʌ1 for 𝑞 = 1 (first mesh) with start iteration 
vectors established by using the standard method of Bathe 
[Bathe 2014]. 

 For 𝑞 = 2, … , 𝑄 − 1, 𝑄, where Q is the total number of the 
intermediate meshes: 

 Generate the start iteration vectors 𝛷𝑞
1 based on 𝛷𝑞−1

1 . 

 Calculate eigenvectors 𝛷𝑞 and eigenvalues Ʌ𝑞  using 

the subspace iteration method with the generated 
start iteration vectors 𝛷𝑞

1.  

The presented section introduces a concise approach to 
generate the optimal start iterating vectors for the subspace 
iteration method in simulating thin-walled workpieces. The 
subsequent section evaluates the efficiency and accuracy of the 
subspace iteration method when employing the well-established 
start iteration vectors, demonstrated through a numerical 
example. 

3 NUMERICAL TEST 

In this section, the accelerated subspace iteration method 
introduced in the previous section is evaluated through a 
numerical example involving the flank milling of a thin-walled 
workpiece, as illustrated in Fig. 2. The raw workpiece is a 
50 𝑚𝑚 ×  6 𝑚𝑚 × 40 𝑚𝑚 thin wall. 7 Z-layers with a total 
thickness of 1.9 𝑚𝑚 are removed from the workpiece during 
machining process. All Z-layers have the same height 40 𝑚𝑚. 
Each Z-layer is removed by 267 cuts. The offset in Y-direction 
between two successive cuts is 0.15 𝑚𝑚.  

The material removal during a real milling process occurs 
continuously, resulting in an infinite number of intermediate 
states for the workpiece. However, it is impractical to simulate 
all of these intermediate states. To ensure accurate simulation 
results without incurring excessive computation time, it's crucial 
to achieve a balance in selecting the number of simulated 
intermediate states. While an extensive simulation with 
numerous intermediate states enhances precision, it also 
escalates computational demands. Conversely, opting for too 
few intermediate states reduces accuracy. In this numerical 
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example, 19 intermediate states corresponding to 19 
equidistantly distributed cutter locations (CL) are simulated for 
each Z-layer. Hence, the whole machining process of the 
workpiece requires 19 × 7 = 133 simulations. In the first 
simulation, the eigenproblem Eq. 1 has 75,744 DoF. The number 
of DoF decreases to 53,904 in the last simulation due to material 
removal. The first 10 eigenvalues and the corresponding 10 
eigenvectors are calculated in each simulation. 

In Fig. 3, the time usage for each cutter location (CL) is detailed. 
As explained in the introduction section, the two primary time-
consuming components in the subspace iteration method are 

Figure 2: Numerical example Figure 1: Generation of an optimal start iteration vector 
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the iterative approximation of eigenpairs (from Eq. 3 to Eq. 7) 
and the Cholesky decomposition (Eq. 8). The corresponding time 
usages are denoted as iteration time and Cholesky 
decomposition time. The total time of the subspace iteration 
method is the sum of the iteration time and the Cholesky 
decomposition time. As depicted in the lower part of Fig. 3, 
utilizing optimal start iteration vectors reduces the number of 
iterations from more than 15 to less than 5. This results in a 
significant reduction of iteration time, as shown in the upper 
part of Fig. 3. However, the Cholesky decomposition time is 
solely dependent on the system stiffness matrix. Hence, the 
curves depicting the Cholesky decomposition time with and 
without optimal start iteration vectors are overlapped. 

Consequently, the total time reduction (approximately 50 %) for 
the simulation is realized by the reduction of the iteration time.  

The accuracy of the subspace iteration method, accelerated by 
using optimal start iteration vectors, is evaluated by comparing 
it to the commercial software Abaqus. The first two natural 
frequencies of all 133 intermediate states are calculated with 
Abaqus and presented in the upper part of Fig. 4. The results 
from Abaqus serve as reference. Upon comparing the results of 
the accelerated subspace iteration method to those of Abaqus, 
a small difference is observed within a narrow tolerance range 
from −0.1 𝐻𝑧 to 0.1 𝐻𝑧 in the lower part of Fig. 4. Therefore, 
the numerical accuracy of the accelerated subspace iteration 
method is confirmed. 

In this section, the efficiency of the accelerated subspace 
iteration method is demonstrated by a significant total time 
reduction of about 50 %. Additionally, the numerical accuracy of 
this accelerated method is confirmed through comparison with 
the commercial software Abaqus. 

 

Figure 4: Accuracy of the accelerated subspace iteration method 

4 CONCLUSIONS 

This paper presents a concise and efficient approach for 
simulating the varying eigenpairs of thin-walled workpieces 
using an accelerated subspace iteration method. The method's 
efficiency is notably enhanced by establishing optimal start 
iteration vectors based on the simulated eigenvectors from 
preceding cutter locations. Comparative analysis demonstrates 
its outstanding efficiency compared to the subspace iteration 
method without optimal start iteration vectors, while the 
numerical accuracy level of the commercial software Abaqus is 
achieved. The combination of high efficiency and good accuracy 
of this novel approach makes it well-suited to predict the varying 
dynamic characteristics of thin-walled workpieces, thereby 
facilitating the selection of optimal process parameters.  

In future work, the method will be applied to real workpieces 
during CAM planning to validate its efficiency and accuracy 
under practical conditions. 

Figure 3. Numerical example [Brecher 2023] 

 
Figure 3: Time to compute the eigenpairs 
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