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Abstract 

In this work, the application of various machine learning (ML) algorithms for predicting tensile strength 
based on welding parameters in AA2014-T6 aluminium alloy joints is studied. Six ML models namely 
linear regression, AdaBoost regression, random forest regression, support vector regression (SVR), multi-
layer perceptron regression and gaussian process regression (GPR) are considered. The comprehensive 
analysis revealed that SVR exhibited superior generalization capabilities on unseen data, achieving an 
R² of 0.89 and a low RMSE of 15.64. In contrast, GPR, despite its high training accuracy, showed 
significant overfitting. This work highlights the potential of ML in optimizing welding parameters and 
highlights the importance of model selection and tuning to prevent overfitting and ensure reliable 
predictions. 
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1. INTRODUCTION 

Welding is a critical process in manufacturing industries for 
applications ranging from automotive to aerospace to 
construction to shipbuilding. Welding is highly preferred 
over other joining techniques due to its high strength, 
reliability and cost efficiency [Kalita 2023]. However, 
optimal welding performance is dependent on the precise 
control of various welding process parameters like current, 
voltage, speed and gas flow rate [Arifin 2020]. These 
process parameters significantly affect the quality of the 
weld, its mechanical properties and microstructure. 
Traditionally, determination of optimal welding parameters 
was done through empirical methods, domain knowledge 
expertise and extensive experimentation. However, it is 
time- and resource-intensive [Albak 2024]. 

Traditionally, optimization of welding parameters is 
achieved through trial-and-error methods, domain 
knowledge expertise and statistical techniques such as 
Design of Experiments. Despite the ease of use and 
valuable insights provided by these methods, they are 

limited due to dependence on need for domain expertise 
and excessive experimentation. For example, many studies 
have used response surface methodology (RSM) 
[Bellamkonda 2024] [Ramamurthy 2022] and Taguchi 
methods [Linger 2023] to find optimal parameters. 
However, these methods are labour-intensive and do not 
fully comprehensively capture the nonlinear interactions 
between parameters [Chen 2020]. 

The advent of ML algorithms has revolutionized various 
engineering domains. ML algorithms can analyse large 
datasets, identify patterns and generate predictive models. 
In welding sciences, ML-based predictive modelling has the 
potential to optimize welding parameters, reduce defects, 
enhance productivity and ensure consistent weld quality. 
The integration of ML into welding research has leaf the 
way for parameter optimization and quality prediction. ML 
algorithms like artificial neural networks (ANNs), support 
vector regressions (SVRs) and decision trees (DTs) are 
good in modelling complex relationships between welding 
parameters and quality. 

ANNs are widely used for their ability to model nonlinear 
relationships. For example, Salhan et al. [Salhan 2022] 
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predicted heat generated and microstructure behaviour of 
friction stir welded AA7075 by using ANN. Similarly, Rawa 
et al. [Rawa 2023] used ANN in optimizing pulsed laser 
welding of different steels. SVRs have also been effective 
in various regression and classification tasks in welding 
research. For example, Patil et al. [Patil 2021] employed 
SVRs to classify weld defects based on the image of 
welded parts. Jaypuria et al. [Jaypuria 2023] predicted weld 
quality by looking at the surface attributes using SVR. DTs 
and Random Forests provide interpretability, allowing 
researchers to understand the importance of different 
parameters. Zeng et al. [Zeng 2023] applied random forests 
to predict amount of oxidation in aluminium alloys while 
laser welding. 

Despite the promising results, several challenges remain in 
the application of ML to welding. One primary challenge is 
the quality and quantity of data. Welding experiments can 
be expensive and time-consuming, leading to limited 
datasets that may not capture the full variability of the 
process. Additionally, the presence of noise and outliers in 
the data can adversely affect model performance. 
Techniques such as data augmentation, cross-validation 
and robust outlier detection are essential to address these 
issues [Hastie 2009]. Another challenge is the 
interpretability of ML models. Though advanced models 
such as deep neural networks are more accurate, their 
black-box nature makes it difficult to extract meaningful 
insights about the underlying physical phenomena. Efforts 
to enhance model interpretability, such as feature 
importance analysis and surrogate modelling, are critical for 
gaining acceptance in the engineering community [Ribeiro 
2016]. 

In this paper several ML algorithms (namely, linear 
regression, AdaBoost regression, random forest regression 
(RFR), SVR, MLP and Gaussian process regression 
(GPR)) are used to develop predictive models for welding 
parameters. The remainder of the paper is arranged as— 
Section 2 details the various ML algorithms used in this 
study, Section 3 discusses the case study and the analyses 
the data to understand the effect of various welding process 
parameters on tensile strength of the specimens. Section 4 
summarizes the study and highlights the main contributions 
of the work.  

2. MATERIALS AND METHODS  

2.1 Data Description 

The dataset used in this study originates from the work of 
Rajendran et al. [Rajendran 2019] in which they focused on 
optimizing friction stir welding (FSW) parameters to achieve 
maximum tensile strength in AA2014-T6 aluminium alloy 
joints. This data is highly relevant due to its comprehensive 
coverage of key welding parameters and their effects on 
joint strength. Thus, it could serve as an excellent 
foundation for developing machine learning-based 
predictive models. The dataset was acquired through 
controlled experiments where various FSW parameters 
were systematically varied. The various process 
parameters considered are— 

 Tool rotational speed (N) measured in revolutions per 

minute (rpm) and varied between 1300 - 1700 rpm. 

 Welding speed (S) in millimeters per minute (mm/min) 

and varied between 20 - 60 mm/min. 

 Tool shoulder diameter (D) which is crucial for 

determining heat generation and material flow, ranged 

from 4 - 8 mm. 

 Tool tilt angle (Q) ranged from 0.5° - 2.5°. 

These process parameters were selected based on their 
known influence on the quality and strength of welds. The 
response variable in this dataset is the tensile strength (TS) 
of the welded joints, measured in megapascals (MPa). 

2.2 Methodology 

The dataset is used for training various ML predictive 
models which are then cross evaluated to understand the 
most suitable ML model for the given problem. The machine 
learning models were implemented using Python v3.12.4 in 
Jupyter Notebook v7.0.8, accessed through Anaconda 
Navigator v2.6.2. The libraries used include Scikit-learn, 
Pandas, NumPy, matplotlib, and seaborn. All simulations 
were performed on a Windows 11 64-bit system with a 12th 
Gen Intel(R) Core (TM) i5-12450H processor, 16 GB RAM, 
and a 1 GB NVIDIA GeForce RTX 2050 GPU. Figure 1 
illustrates the schematic diagram showing the various input 
process parameters (N, S, D, Q), the output response 
(tensile strength) and the ML algorithms considered in this 
study. 

2.3 Linear Regression 

Linear regression assumes that the relationship between 
the variables is linear, meaning it can be represented by a 
straight line. The simplest form, known as simple linear 
regression, involves one independent variable and aims to 
find the best-fitting line (regression line) through the data 
points [Montgomery 2021]. This line is determined by 
minimizing the sum of the squared differences between the 
observed values and the values predicted by the model. 
The coefficients in the linear equation represent the slope 
and intercept, providing insights into the strength and 
direction of the relationship. Linear regression is widely 
used for its simplicity and interpretability, although it may 
not perform well with complex, nonlinear relationships or in 
the presence of significant multicollinearity among 
predictors [Draper 1998]. 

2.4 AdaBoost Regression 
AdaBoost Regression combines multiple weak learners 
(generally DTs), to form a stronger predictive model. In 
AdaBoost, each subsequent model attempts to correct the 
errors made by its predecessor by assigning higher weights 
to the data points that were previously mis predicted. This 
iterative process continues, resulting in a final model that 
aggregates the predictions of all weak learners, weighted 
by their accuracy [Freund 1997]. The strength of AdaBoost 
lies in its ability to improve performance over a single model 
by focusing on difficult-to-predict cases, making it 
particularly useful for complex datasets. However, noise 
and outliers in data can disproportionately influence the 
final model due to their increased weights. Despite this, it 
remains a popular choice for regression tasks due to its 
effectiveness in boosting model accuracy [Schapire 2003]. 

2.5 Random Forest Regression 

RFR develops several DTs during training and outputs the 
mean prediction of the individual trees [Breiman 2001]. This 
technique addresses the limitations of single decision trees, 
such as overfitting, by averaging the results, thereby 
enhancing accuracy and robustness. Trees are built from a 
random subset of the data and features, which introduces 
diversity and reduces the correlation between individual 
trees. The "randomness" in feature selection and data 
sampling helps in capturing different aspects of the data, 
making the model more generalized. Random Forest 
Regression is particularly effective in handling datasets with 
a large number of features and complex relationships. It 
also provides useful metrics, such as feature importance, 
which indicate the contribution of each feature to the 
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prediction. However, the interpretability of the model can 
decrease as the number of trees increases [Liaw 2002]. 

2.6 Support Vector Regression 

SVR is based on the principles of Support Vector Machines 
(SVM) [Vapnik 2013]. Unlike traditional linear regression, 
SVR seeks to fit the best line within a threshold, known as 
the epsilon-insensitive zone, which ignores small errors in 
prediction. The primary goal is to minimize the prediction 
error while maintaining flatness in the model, which is 
controlled by a regularization parameter. SVR can perform 
linear and nonlinear regression by using different kernel 
functions, such as linear, polynomial, or radial basis 
functions (RBF), which enable it to model complex 
relationships. SVR is particularly effective in situations 
where the data has high dimensionality or when the 
relationship between features and target variable is not 
strictly linear. However, SVR are computationally intensive 
and need hyperparameter tuning for optimal performance 
[Smola 2004]. 

2.7 MLP Regression 

MLP is a feed forward artificial neural network model 
[Haykin 1998] containing input layer, hidden layer and 
output layer. MLP is a perceptron with multiple layers and 
every layer is connected to each other. In this, each neuron 
has its activation function. The input layer provides the input 
value into the network. It doesn’t contain any activation 
function or do any processing. Next is a hidden layer which 
classifies the function and in multi-layer perceptron there 
will be as many hidden layers as possible. After that the 
output layer is there from which desired output can be 
obtained. In this process, the weighted summation of 
inputs, alongside the bias term, is transmitted to an 
activation level via a transfer function to yield an output 
[Bishop 1995]. The benefits of MLP is that nonlinearly 
separable problems are being solved with this. 

2.8 Gaussian process Regression 

GPR constitutes a set of stochastic variables, of which a 
finite subset exhibits a coherent joint Gaussian distribution 
[Williams 1998] [Williams 2006]. Regression based on 
Gaussian process are simple, flexible and a powerful tool 
being used in many areas.GP is limited due to memory 
requirements and computational demands. GPR operates 
by generalizing the concept of a probability distribution 
concerning a scalar quantity to that of a probability 
distribution pertaining to functions. In the context of GPR, 
the covariance function is established by a designated 
kernel function, which quantitatively characterizes the 
degree of influence one data point exerts over another. This 
mechanism fundamentally dictates the degree of 
smoothness exhibited by the function within the specified 
distribution. Given a set of data points fitting the probability 
distribution can be done by choosing the distribution 
parameter to match the properties of the distribution to the 
properties of the data. Similarly, for given set of function 
values fitting probability distribution of function that closely 
match the given function values. Considering the whole 
fitted distribution of function can be determined by the mean 
as well as confidence interval. 

3. RESULTS AND DISCUSSION 

3.1 Effect of Process Parameters 

The selection and control of process parameters are crucial 
in determining the quality and mechanical properties of the 
welded joints. The primary process parameters considered 
in this study are tool rotational speed (𝑁), welding speed 

(𝑆), tool shoulder diameter (𝐷) and tool tilt angle (𝑄). Each 

of these parameters influences the heat generation, 
material flow and consequently the tensile strength of the 
weld.  

Figure 2 presents relationships between the input process 
parameters and the output response. This plot helps 
visualize the correlations and possible interactions between 
different parameters, such as how increases in rotational 
speed or tool diameter might correlate with changes in 
tensile strength. From Figure 2 it is observed that there is 
an apparent positive correlation between increased tool 
rotational speed and tensile strength. This is because 
higher rotational speeds enhance material mixing and heat 
distribution, thereby improving weld integrity. However, this 
trend is not linear. It is perhaps an indication of the presence 
of an optimal range beyond which further increases may 
lead to defects due to excessive heat input. 

Figure 3 provides a linear correlation plot that quantitatively 
depicts the strength and direction of the relationships 
between the various process parameters and the output 
response. 𝑇 and 𝑆 are the most influential factors affecting 

tensile strength with correlation coefficients indicating a 
moderate to strong positive relationship. 𝐷 and 𝑄 also show 

correlations, but with more complex, non-linear 
interactions. 

 

Fig. 1: Schematic diagram showing various input (process) 

parameters, output response and ML algorithms 

considered in this study.  

 

Fig. 2: Pair plot showing influence of diverse input (process) 

parameters on the resultant output response. 
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Fig. 3: Linear correlation plot of various input (process) 

parameters and output response. 

 

 

 

 

 
Fig. 4: Scatter plot of actual versus predicted tensile 

strength as predicted by various regression models (a) 

linear (b) AdaBoost (c) random forest (d) support vector (e) 

MLP and (f) Gaussian process. 

3.2 Discussion on Process Parameters 

Tool rotational speed significantly affects the heat input and 
the plasticization of the material during the welding process. 
Higher rotational speeds typically increase the heat input, 
which can enhance the material's flowability, leading to 
better mixing of materials at the joint interface. However, 
excessive rotational speeds may cause overheating, 
resulting in defects such as porosity or excessive grain 
growth, which can reduce the tensile strength of the weld. 

Welding speed is inversely related to the heat input per unit 
length of the weld. A higher welding speed reduces the 
exposure time of the material to the heat source, potentially 
leading to insufficient fusion and weaker joints. Conversely, 
a lower welding speed increases the heat input, which can 
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improve the weld strength but may also introduce thermal 
distortions or residual stresses if not properly controlled. 

The diameter of the tool's shoulder plays a critical role in 
determining the amount of frictional heat generated during 
the welding process. A larger shoulder diameter increases 
the contact area, thereby enhancing heat generation and 
material stirring. This can result in a more uniform 
temperature distribution and better consolidation of the 
weld. However, if the shoulder diameter is too large, it may 
cause excessive material thinning or increase the risk of 
defects such as flash or undercutting. 

The tilt angle of the tool affects the flow of plasticized 
material and the formation of the weld bead. A slight tilt can 
help in directing the plasticized material back into the joint, 
enhancing weld formation and reducing voids. However, an 
inappropriate tilt angle can lead to surface defects and 
compromise the structural integrity of the weld. 

3.3 Comparison of Various ML Predictive Models 

Figure 4 provides scatter plots comparing the actual versus 
predicted tensile strength values for each ML model. The 
closer the points are to the diagonal line, the more accurate 
the predictions. From these plots, it is evident that GPR 
provides the closest fit to the actual values, indicating 
superior predictive performance. In contrast, MLP shows 
significant deviation, highlighting its poor performance for 
this specific task. 

In this study, multiple statistical metrics like 𝑅², Root Mean 
Squared Error (𝑅𝑀𝑆𝐸), Mean Absolute Error (𝑀𝐴𝐸), 

Maximum Error, Mean Squared Logarithmic Error (𝑀𝑆𝐿𝐸) 

and Median Absolute Error (𝑀𝑒𝑑𝐴𝐸) are considered to 

assess the performance of the ML models. Table 1 and 
Table 2 summarize the performance metrics of each model 
on the training and testing datasets, respectively. These 
tables provide quantitative insights into each model's 
accuracy, robustness and generalizability. 

The Linear Regression (LR) model, with an 𝑅² of -0.89 and 
a high 𝑅𝑀𝑆𝐸 (66.17) on testing data, shows poor predictive 

power, likely due to its inability to model the nonlinear 
relationships inherent in the data. Random Forest 
Regression (RFR) demonstrates strong performance with a 
high R² value (0.79), indicating that it explains a substantial 
proportion of the variance in tensile strength. This model 
also shows second lowest 𝑅𝑀𝑆𝐸 (25.51), suggesting good 

accuracy. However, in testing, its 𝑅² (0.20) and 𝑅𝑀𝑆𝐸 
(42.99) indicate some overfitting, as the metrics deteriorate 
compared to training data results. 

GPR outperforms other models on training data, with the 
highest R² (0.86) and lowest 𝑅𝑀𝑆𝐸 (20.7). But it shows 

significant overfitting with a negative R² (-6.19) on testing 
data, indicating poor generalization. This is likely due to the 
complexity of the model, which may fit the training data too 
closely, capturing noise as well as signal. 

MLP shows poor performance, evidenced by a negative 𝑅² 
(-2.18), indicating that the model fails to capture the 
relationship between input features and output response 
effectively. The high 𝑅𝑀𝑆𝐸 (98.75) in training 𝑅𝑀𝑆𝐸 

(109.68) in testing further confirm its inadequacy in this 
context. On testing data, SVR performs notably well with an 

𝑅² of 0.89 and a low 𝑅𝑀𝑆𝐸 of 15.64. This suggests that SVR 
has good generalization capability and effectively predicts 
tensile strength. 

The discrepancies between training and testing data 
performance highlight the challenges of overfitting, 
particularly in complex models like GPR and MLP. 
Overfitting arises when a model learns both the genuine 
structures and the noise in the training data, resulting in 

inadequate performance on unseen data. The strong 
performance of SVR on testing data suggests that its 
regularization mechanism effectively balances bias and 
variance, providing robust predictions even with potential 
data noise. The poor performance of MLP and LR can be 
attributed to insufficient data or inadequate tuning of 
hyperparameters. MLP, being a neural network-based 
model, may require a larger dataset to train effectively and 
avoid overfitting. LR's linear nature limits its capacity to 
model the complex, nonlinear interactions between welding 
parameters and tensile strength. 

 

Tab. 1: Assessment of predictive performance of various 

ML models using different statistical metrics on training 

data. 

Metric LR RFR ABR SVR MLP GPR 

𝑅2  0.17 0.79 0.66 0.69 -2.18 0.86 

RMSE  50.51 25.51 32.51 30.67 98.75 20.70 

MAE  43.39 17.00 23.29 13.32 69.66 6.95 

Max. Error  90.13 98.12 81.63 113.90 209.43 100.83 

MSLE  0.03 0.01 0.01 0.01 0.15 0.00 

MedAE  43.81 13.08 18.75 0.10 39.52 0.00 

 

Tab. 2: Assessment of predictive performance of various 

ML models using different statistical metrics on testing data. 

Metric LR RFR ABR SVR MLP GPR 

𝑅2  -0.89 0.20 -0.17 0.89 -4.20 -6.19 

RMSE  66.18 42.99 51.94 15.64 109.68 128.99 

MAE  61.33 31.79 45.16 11.26 78.00 112.89 

Max. Error  87.13 79.00 86.63 27.77 204.43 200.65 

MSLE  0.05 0.02 0.03 0.00 0.17 0.47 

MedAE  61.85 22.92 35.50 8.44 47.50 111.88 

4. CONCLUSIONS  

This study demonstrates that machine learning models can 
effectively predict tensile strength based on welding 
parameters, offering a valuable tool for optimizing welding 
processes in industrial applications. The performance of 
different ML models varied significantly. SVR showed the 
highest generalization capability on testing data, achieving 
an R² of 0.89, indicating a strong ability to predict tensile 
strength accurately. GPR despite its high accuracy on 
training data, exhibited significant overfitting, as evidenced 
by poor performance on testing data. This finding highlights 
the importance of balancing model complexity with 
generalization capacity to prevent overfitting. The study 
also highlights the challenges associated with data quality 
and quantity in welding research. Limited datasets and the 
presence of noise can adversely affect model performance, 
thereby necessitating robust data collection and 
preprocessing techniques. 

The study advocates for future investigations into hybrid 
models integrating diverse ML methodologies and 
improving interpretability. This could involve integrating 
domain-specific knowledge with ML to improve model 
accuracy and usability in practical welding scenarios. The 
study illustrates that ML models can optimize welding 
parameters effectively, minimizing trial-and-error 
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methodologies and improving welding quality and 
efficiency. 
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