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   When parts are machined, especially on heavy machine tools, 
an accurate description of the rotations around the geometric 
axes is required. The work adds the concept of rotation around 
the machine and the workpiece axes. Both types of rotation in 
mechanics are related to internal and external rotations, which 
we describe in detail. We show how both types convert to each 
other and how conversion formulas are derived. The resulting 
conversions are formalized as functions in the C and MATLAB 
programming languages. The result of this mathematical 
description will be transferred to a new transformation cycle that 
can be used on machines as a standard.  
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1 INTRODUCTION  

 

   A discussion of the use of polynomial transformations by five-
axis machining can be found in [Ohnistova 2018]. It deals with a 
description of spline interpolation on surfaces. Information on 
the use of new devices for rapid measurement of geometric 
errors of machine tools is described in [Kuprin 2022]. The 
measurement of these errors and information on how to use a 
volumetric compensation on machine tools is provided in [Holub 
2015]. The basis rotations of surfaces are different from the focus 
of these publications. No source was found to describe 
transformations (translation and rotation) on machine tools using 
the milling heads, rotary tables, positioning equipment, and their 
combinations. It is practically used in cycles of the SINUMERIC 
operation system (Traori or Cycle 800) [Siemens manual 2017] 
without more detailed information. In this contribution, we aim 
to describe the above-mentioned transformations and extensions 
of their applicability. We complete a survey of intrinsic and 
extrinsic rotations and their mutual transformations.   

There are primarily two possible cases for determining the 
position of a large workpiece in heavy-machine tools. 

- The coordinate system of the workpiece is aligned to the 
position corresponding to the coordinate system of the 
machine tool and, subsequently, the workpiece is fixed-
clamped 

- The workpiece is clamped in an unknown position, and the 
coordinate system of the machine tool is subsequently 
rotated according to the coordinate system of the workpiece. 

 

The workpiece coordinate system is adapted to the machine 
coordinate system. 

   The workpiece is freely positioned in the working space of the 
machine and is then aligned either manually or automatically (in 
the case of the use of sophisticated jigs) to a position where the 
workpiece axes are parallel to the machine axes. Subsequently, 
the workpiece is clamped and its position is checked again in the 
event of deformation or other movement. A typical example can 
be, for example, turbine rotors or generators weighing up to 
several hundred tons; see Figure 1. Gas turbine machining. This 
offers the possibility of full automation of measurements and, at 
the same time, full automation of compensation. The position of 
such a rotor is measured, for example, by means of a workpiece 
measuring probe in the basic coordinate system of the machine, 
where the difference between two points of known distance, in 
the vertical and horizontal directions of contact, is determined. It 
is also necessary to consider the bending of the workpiece, which 
is caused by its own weight. After alignment, the zero point of the 
workpiece, usually located in the workpiece axis at one of its 
ends, follows. 

 

 

The machine coordinate system is adapted to the workpiece 
coordinate system. 

   The workpiece is clamped to the machine working space in an 
indefinite position, respectively. Repeatability of its clamping is 
not guaranteed due to dimensions, unworked surfaces, deviating 
dimensions, etc. A typical example can be a hollow workpiece of 
cylindrical or ellipsoidal shape, where the outer dimensional 
surfaces are made in deviations of units of millimeters. Still, the 
distance between the two fixtures is several tens of meters. The 
free ends of the workpiece, which are machined, can then be 
several hundred millimeters, and the inclination in the order of 
units of degrees relative to all the vectors of the Cartesian 
coordinate system of the machine, even with a seemingly 
identical clamping position. To determine the position of such a 
workpiece, relatively expensive static or mobile scanning systems 
with long measurement times and output results with an 
accuracy of 0.005 mm and 0.002 ° can be used, or a workpiece 
probe provided the workpiece is delivered to the machine with a 
pre-roughed end/flange from previous production process and 
can be used as a reference plane. The measurement of the 

Figure 1.  Gas turbine machining (formerly operated by Alstom 
INC and located in Tennessee, USA). 
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inclination of such a flange is performed in the basic coordinate 
system of the machine, i.e., its three linear non-tilted axes will 
suffice. For this purpose, two measuring points are used on the – 
X-axis and two on the Y-axis with known distances read from the 
machine measuring system. Standard measuring cycles can be 
used in manual or automatic machine cycles; see Figure 2: Wind 
turbine measurement. The resulting generated values of the two 
angles are used for a transformation cycle that places the tool 
axis, namely the workpiece probes, perpendicular to the surface 
of the inclined plane. In this plane, you can focus the rotation of 
the workpiece around the newly created geometric axis Z, 
assuming the existing datums. Suppose that these points cannot 
be unambiguously determined. In that case, a spindle-clamped 
template is offered instead of a tool that reveals the desired state  
of a previously known contour (depending on the required / 
acceptable tolerance). This results in values of three angles, which 
are then used as input parameters to a transformation cycle that 
recalculates the relationship between rotations. 

2 PRACTICAL EXAMPLE 

 

Transformation matrices are used to mathematically express the 
previous cases. They generally realize three rotations of a solid 
body and at the same time its displacement (translation). 

 

Transform using displacement 
 
   Displacement is defined in such a way that each given point of 
the object is displayed at a new point displaced by the same 
vector, thus expressing the displacement of the entire body. The 
displacement operation is realized by multiplying the expanded 
coordinate vector by a translation matrix of the form: 

(

𝐵𝑋
𝐵𝑌
𝐵𝑍
1

) = (

1 0 0 𝑉𝑥
0 1 0 𝑉𝑌
0 0 1 𝑉𝑍
0 0 0 1

) . (

𝐴𝑋
𝐴𝑌
𝐴𝑍
1

), (1) 

where Ax, Ay, and Az represent the coordinates of the original 
point, and Bx, By, and Bz represent the coordinates of the point 
after displacement. The expansion of matrices and vectors by the 
value 1 in the last row is introduced here artificially and leads to 
a natural translation condition: 
 

(
𝐵𝑋
𝐵𝑌
𝐵𝑍

) = (

𝐴𝑋
𝐴𝑌
𝐴𝑍

) + (
𝑉𝑋
𝑉𝑌
𝑉𝑍

). (2) 

 
 
Transform using rotation 
 
   A rotation is defined as turning an object or coordinate system 
by a given angle about a fixed point (applies in a plane) or an axis 
in the case of space. 

An example of the assembly of rotary matrices is shown in Figure 
3. Transform using rotation. 

The resulting rotation matrix is given by the product of the 
submatrices listed above in a specific order. Unlike translation 
matrices, the order of the matrices in the product matters since 
the product of matrices is known to be noncommutative.  

 
Example (ZYX rotation) 1 

   If, for example, a rotation is performed first around the Z-axis 
(by angle γ), then around the Y-axis (by angle β), and finally 
around the X-axis (by angle α), the total rotation matrix Rc is given 
by the product: 
 

𝑅𝐶 = 𝑅𝑍𝑌𝑋 = 𝑅𝑋 · 𝑅𝑌 · 𝑅𝑍 . (3) 

 
   Individual rotation matrices are placed from right to left and the 
total rotation matrix Rc represents their product. The matrices 
are given as: 

 

𝑅𝑋 = (

1 0 0 0
0 𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼 0
0 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0
0 0 0 1

) , 

 
 

𝑅𝑌 = (

𝑐𝑜𝑠 𝛽 0 𝑠𝑖𝑛 𝛽 0
0 1 0 0

−𝑠𝑖𝑛 𝛽 0 𝑐𝑜𝑠 𝛽 0
0 0 0 1

) , 

 
 

𝑅𝑍 = (

𝑐𝑜𝑠 𝛾 −𝑠𝑖𝑛 𝛾 0 0
𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝛾 0 0
0 0 1 0
0 0 0 1

). 

 

(4) 

Figure 2. Wind turbine measurement (formerly operated by 
Enercon GmbH and located in Aurich, Germany). 
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It can be multiplied further. For this, it is convenient to denote sin 
and cos of the entering angles as coefficients, so we define: 
 

𝑐𝑜𝑠 𝛼 = 𝑐1,   𝑐𝑜𝑠 𝛽 = 𝑐2,   𝑐𝑜𝑠 𝛾 = 𝑐3, 

𝑠𝑖𝑛 𝛼 = 𝑠1,   𝑠𝑖𝑛 𝛽 = 𝑠2,   𝑠𝑖𝑛 𝛾 = 𝑠3. 
(5) 

 
   With the help of this notation, the notation of the total rotation 
matrix after multiplication is simplified to the form: 
 

𝑅𝑍𝑌𝑋 = 

(

 
 

c3
´ c2
´ −c2

´  𝑠3
´ 𝑠2

´ 0

c1
´  𝑠3

´ + c3
´  s1

´  s2
´ c1

´  𝑐3
´ − s1

´  s2
´  s3

´ −c2
´  𝑠1

´ 0

s1
´  𝑠3

´ − c1
´  c3

´  s2
´ c3

´  𝑠1
´ + c1

´  s3
´  s2

´ c1
´  c2

´ 0
0 0 0 1)

 
 

. 
(6) 

Formulas for recalculating angles can be expressed using the 
positions of individual elements in the matrix A=𝑅𝑍𝑌𝑋: 

 

X(𝛼) = −𝑎𝑡𝑎𝑛 (
𝐴23

𝐴33
), 

 

Y(𝛽) = 𝑎𝑟𝑐𝑠𝑖𝑛(𝐴13), 
 

Z(𝛾) = −𝑎𝑡𝑎𝑛 (
𝐴12

𝐴11
). 

(7) 

   This example describes the resulting rotation matrix, which is 
built up successively from partial rotations around the axes 
connected to the original coordinate system (always meaning the 
individual axes of the machine coordinate system). The same 
rotation matrix can be constructed equivalently from partial 
rotations around the axes connected to the rotating body (always 
meaning a gradual rotation of axis by axis, that is, individual 
rotations of the system of geometric axes). The first variant of the 
axes connected to the original coordinate system is called 
extrinsic rotation, whereas the second variant of the axes 
connected to the rotating body is called intrinsic rotation. The 
essential difference when compiling the resulting rotation matrix 
is the individual order of the subrotation matrices entering the 
product and applies [Shoemake 1985]: 
 

- with extrinsic rotations, the matrix is multiplied from right 
to left, and the angles are marked α, β, γ 
- with intrinsic rotations, the matrices are multiplied from left 
to right, and the angles are marked α´ , β´, γ´.  

 
   If an intrinsic rotation is performed first around the X-axis (by 
angle α´), then around the Y-axis (by angle β´) and finally around 
the Z-axis (by angle γ´), then the total rotation matrix Rc´ is given 
by the product [Shoemake 1985]: 
 

𝑅𝐶´ = 𝑅𝑋´𝑌´𝑍´ = 𝑅𝑋´ . 𝑅𝑌´ . 𝑅𝑍´. 
(8) 

Individual rotation matrices are placed from left to right.  

Figure 3. Transform using rotation. 
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𝑅𝑋´𝑌´𝑍´ = (

1 0 0 0

0 𝑐𝑜𝑠 𝛼´ −𝑠𝑖𝑛 𝛼´ 0

0 𝑠𝑖𝑛 𝛼´ 𝑐𝑜𝑠 𝛼´ 0

0 0 0 1

)  . 

 

(

𝑐𝑜𝑠 𝛽´ 0 𝑠𝑖𝑛 𝛽´ 0
0 1 0 0

−𝑠𝑖𝑛 𝛽´ 0 𝑐𝑜𝑠 𝛽´ 0
0 0 0 1

) . 

 

(

𝑐𝑜𝑠 𝛾´ −𝑠𝑖𝑛 𝛾´ 0 0
𝑠𝑖𝑛 𝛾´ 𝑐𝑜𝑠 𝛾´ 0 0
0 0 1 0
0 0 0 1

) 

(9) 

Using a similar notation: 
 

𝑐𝑜𝑠 𝛼´ = 𝑐1´,  𝑐𝑜𝑠 𝛽´ = 𝑐2´, 𝑐𝑜𝑠 𝛾´ = 𝑐3´, 

𝑠𝑖𝑛 𝛼´ = 𝑠1´,  𝑠𝑖𝑛 𝛽´ = 𝑠2´, 𝑠𝑖𝑛 𝛾´ = 𝑠3´. 
(10) 

 
   The total intrinsic rotation matrix is simplified to the following 
form: 

 

𝑅𝑋´𝑌´𝑍´ = 

 

(

c2´ c3´ −c2´ s3´ s2´ 0
c3´ s1´ s2´ + c1´ s3´ c1´ c3´ − s1´ s2´ s3´ −c2´ s1´ 0
s1´ s3´ − c1´ c3´ s2´ c1´ s2´ s3´ + c3´ s1´ c1´ c2´ 0

0 0 0 1

). 

 

(11) 

   Formulas for recalculating angles can also be expressed by using 
the positions of individual elements in the matrix 𝐴 = 𝑅𝑋´𝑌´𝑍´ : 
 

𝛼´ = −𝑎𝑡𝑎𝑛 (
𝐴23

𝐴33
), 

 

𝛽´ = 𝑎𝑟𝑐𝑠𝑖𝑛(𝐴13), 
 

𝛾´ = −𝑎𝑡𝑎𝑛 (
𝐴12

𝐴11
). 

(12) 

 
Relations between Rotations 
 
   Any extrinsic rotation is equivalent to an intrinsic rotation by the 
same angles, but with inverted order of elemental rotations and 
vice versa [Shoemake 1985]. Based on this definition, the angles 
for extrinsic rotations and the angles for intrinsic rotations can be 
expressed from the resulting rotation matrix [Shoemake 1985]. 
 

𝑅𝑍𝑌𝑋 = 𝑅𝑋´𝑌´𝑍´ (13) 

 
Key formulas 
 
  The formulas for calculating α´, β´, γ´ and α, β, γ must also be 
expressed from the resulting rotation matrix as their opposite 
permutation for the given rotation sequence: 

X-Y-Z: 
 
 
 

𝑅𝐶
´ :                      𝑅𝐶

´ : 
 

𝛼´ = −𝑎𝑡𝑎𝑛 (
𝐴23

𝐴33
),        𝛼 = 𝑎𝑡𝑎𝑛 (

𝐴32

𝐴33
), 

   

𝛽´ = 𝑎𝑟𝑐𝑠𝑖𝑛(𝐴13),      𝛽 = −𝑎𝑟𝑐𝑠𝑖𝑛(𝐴31), 

  

(14) 

𝛾´ = −𝑎𝑡𝑎𝑛 (
𝐴12

𝐴11
),        𝛾 = 𝑎𝑡𝑎𝑛 (

𝐴21

𝐴11
) , 

 
X-Z-Y: 

 
𝑅𝐶
´ :       𝑅𝐶

´ :   
 

𝛼´ = 𝑎𝑡𝑎𝑛 (
𝐴32

𝐴22
),      𝛼 = −𝑎𝑡𝑎𝑛 (

𝐴23

𝐴22
), 

   

𝛽´ = 𝑎𝑡𝑎𝑛 (
𝐴13

𝐴11
),     𝛽 = −𝑎𝑡𝑎𝑛 (

𝐴31

𝐴11
), 

  

𝛾´ = −𝑎𝑟𝑐𝑠𝑖𝑛(𝐴12),    𝛾 =  𝑎𝑟𝑐𝑠𝑖𝑛(𝐴21), 
 

(15) 

Y-Z-X: 
 
𝑅𝐶
´ :      𝑅𝐶

´ : 
  

𝛼´ = −𝑎𝑡𝑎𝑛 (
𝐴23

𝐴22
),      𝛼 =  𝑎𝑡𝑎𝑛 (

𝐴32

𝐴22
), 

  

𝛽´ = −𝑎𝑡𝑎𝑛 (
𝐴31

𝐴11
),     𝛽 = 𝑎𝑡𝑎𝑛 (

𝐴13

𝐴11
), 

  

𝛾´ = 𝑎𝑟𝑐𝑠𝑖𝑛(𝐴21),     𝛾 = −𝑎𝑟𝑐𝑠𝑖𝑛(𝐴12), 
  
 

(16) 

Y-X-Z: 
 
𝑅𝐶
´ :         𝑅𝐶

´ :  
 

𝛼´ = −𝑎𝑟𝑐𝑠𝑖𝑛(𝐴23),     𝛼 =  𝑎𝑟𝑐𝑠𝑖𝑛(𝐴32), 
   

𝛽´ = 𝑎𝑡𝑎𝑛 (
𝐴13

𝐴33
),      𝛽 = −𝑎𝑡𝑎𝑛 (

𝐴31

𝐴33
), 

   

𝛾´ = 𝑎𝑡𝑎𝑛 (
𝐴21

𝐴22
),      𝛾 = −𝑎𝑡𝑎𝑛 (

𝐴12

𝐴22
), 

   

(17) 

Z-Y-X: 
 
𝑅𝐶
´ :       𝑅𝐶

´ : 
 

𝛼´ = 𝑎𝑡𝑎𝑛 (
𝐴32

𝐴33
),       𝛼 = −𝑎𝑡𝑎𝑛 (

𝐴23

𝐴33
), 

  

𝛽´ = −𝑎𝑟𝑐𝑠𝑖𝑛(𝐴31),     𝛽 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝐴13), 
  

𝛾´ = 𝑎𝑡𝑎𝑛 (
𝐴21

𝐴11
),      𝛾 =  −𝑎𝑡𝑎𝑛 (

𝐴12

𝐴11
), 

   

(18) 

Z-X-Y: 
 
𝑅𝐶
´ :      𝑅𝐶

´ :  
  

𝛼´ = 𝑎𝑟𝑐𝑠𝑖𝑛(𝐴32),      𝛼 = −𝑎𝑟𝑐𝑠𝑖𝑛(𝐴23), 
 

𝛽´ = −𝑎𝑡𝑎𝑛 (
𝐴31

𝐴33
),      𝛽 = 𝑎𝑡𝑎𝑛 (

𝐴13

𝐴33
), 

 

𝛾´ = −𝑎𝑡𝑎𝑛 (
𝐴12

𝐴22
),      𝛾 =  𝑎𝑡𝑎𝑛 (

A21

A22.
). 

 

(19) 

According to this statement, from one of the resulting rotation 
matrices it is possible to use these formulas to express the original 
rotation angles or the angles for another rotation.  
 
Example 2 

 
The successive extrinsic rotations X-Y-Z are given in the following 
order:  

α = 30° around the X axis 
β = 45° around the Y axis  
γ = 60° around the Z axis 
 

and correspond to the matrix: 
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𝑅𝑋𝑌𝑍 = (

0,3536 −0,5732 0,7392 0
0,6124 0,7392 0,2803 0
−0,7071 0,3536 0,6124 0

0 0 0 1

). 
(20) 

   Using the formulas for the intrinsic matrix with inverted order 
of elemental rotations, the angles can be expressed as follows: 
 

𝛼´ = −𝑎𝑡𝑎𝑛 (
𝐴23
𝐴33
) =  −𝑎𝑡𝑎𝑛 (

0,2803

0,6124
) ≅ −24,5939°, 

 

𝛽´ = 𝑎𝑟𝑐𝑠𝑖𝑛(𝐴13) = 𝑎𝑟𝑐𝑠𝑖 𝑛(0,7392) ≅ 47,6633°, 

 

𝛾´ = −𝑎𝑡𝑎𝑛 (
𝐴12

𝐴11
) = −𝑎𝑡𝑎𝑛 (

−0,5732

0,3536
) ≅ 58,3301°. 

(21) 

   The resulting rotation matrix for intrinsic rotations, which is also 
constructed by permutation of R X´Y´Z´ , (α=-24.5939° around the X 
axis, β=47.6633° around the Y axis and γ=58.3301° around the Z 
axis), looks as follows: 

 

𝑅𝑋´𝑌´𝑍´ = 

(

1 0 0 0
0 𝑐𝑜𝑠−24,5939° − 𝑠𝑖𝑛−24,5939° 0
0 𝑠𝑖𝑛 −24,5939° 𝑐𝑜𝑠−24,5939° 0
0 0 0 1

) ·  

(

𝑐𝑜𝑠 47,6633° 0 𝑠𝑖𝑛 47,6633° 0
0 1 0 0

−𝑠𝑖𝑛 47,6633° 0 𝑐𝑜𝑠 47,6633° 0
0 0 0 1

) . 

(

𝑐𝑜𝑠 58,3301° −𝑠𝑖𝑛 58,3301° 0 0
𝑠𝑖𝑛 58,3301° 𝑐𝑜𝑠 58,3301° 0 0

0 0 1 0
0 0 0 1

) . 

(22) 

So, the product of the above matrices reads as follows: 

𝑅𝑋´𝑌´𝑍´ = 

(

0,3536 −0,5732 0,7392 0
0,6124 0,7392 0,2803 0
−0,7071 0,3536 0,6124 0

0 0 0 1

) . 
(23) 

Then we have the following: 

𝑅𝑋𝑌𝑍(30,45,60) =  
𝑅𝑋´𝑌´𝑍´(−24,5939; 47,6633; 58,3301) . 

(24) 

Assignments of signs 
 
   The formulas for calculating α´, β´, γ´ and α, β, γ must also be 
expressed from the resulting rotation matrix as their opposite 
permutation for the given rotation sequence. 
   Looking at the individual formulas, an elegant solution is 
offered, where certain symmetries are already visible at first 
glance between the individual formulas: 

 
- when changing the intrinsic and extrinsic rotations, where 
the arcsine function occurs, there is always a change of sign 
and at the same time an opposite change of the index of the 
element in the matrix (e.g. for the Z-X-Y permutation): 

𝑋(𝛼´) = +𝑎𝑟𝑐𝑠𝑖𝑛(𝐴32) => X(𝛼) = −𝑎𝑟𝑐𝑠𝑖𝑛(𝐴23). 
(25) 

- when changing the intrinsic and extrinsic rotations, 

where the arctangent function occurs, the sign also 
changes, and the opposite change in the index of the 
matrix element occurs only in the numerator: 

𝑌(𝛽´) = −𝑎𝑡𝑎𝑛 (
𝐴31

𝐴33
)   =>   𝑌(𝛽) = +𝑎𝑡𝑎𝑛 (

𝐴13

𝐴33
), 

 

Z(𝛾´) = −𝑎𝑡𝑎𝑛 (
𝐴12

𝐴22
)   =>   Z(𝛾) =  +𝑎𝑡𝑎𝑛 (

𝐴21

𝐴22
). 

(26) 

 
- for a given intrinsic or extrinsic rotation, the arcsine function 
always has the opposite sign than the other two arctangent 
functions : 

𝑋(𝛼´) = +𝑎𝑟𝑐𝑠𝑖𝑛(𝐴32), X(𝛼) = −𝑎𝑟𝑐𝑠𝑖𝑛(𝐴23), 

 

𝑌(𝛽´) = −𝑎𝑡𝑎𝑛 (
𝐴31

𝐴33
), 𝑌(𝛽) = +𝑎𝑡𝑎𝑛 (

𝐴13

𝐴33
), 

 

Z(𝛾´) = −𝑎𝑡𝑎𝑛 (
𝐴12

𝐴22
), Z(𝛾) =  +𝑎𝑡𝑎𝑛 (

𝐴21

𝐴22
). 

(27) 

 
   If the individual axes of rotation X, Y, and Z are marked with their 
numerical ordinal index 1, 2, 3 (when X = 1, Y = 2, and Z=3), then 
additional symmetry elements can be revealed in the relevant 
matrix. For example, for a given extrinsic rotation permutation Z-
X-Y, the middle element (here X, that is, angle α) can only be 
expressed in the overall matrix using the arcsine function: 

(
3 1 2
𝑍 𝑋 𝑌

)= 

(

 
 
c3
´ c2
´ + s1

´  s2
´  𝑠3

´ −c2
´  s3

´ + c3
´  s1

´  𝑠2
´ c1

´  s2
´ 0

c1
´  𝑠3

´ c1
´  c3

´ − s1
´ 0

c2
´  s1

´  s3
´ − c3

´  s2
´ c3

´  c2
´  s1

´ + s3
´  s2

´ c2
´  𝑐1

´ 0
0 0 0 1)

 
 

. 

(28) 

   The sign of the arcsine function can be determined using the 
determinant of the binary matrix that is constructed for the given 
rotation permutations. For a general matrix n x n, the 
determinant is given by the Leibniz equation [Brannon 2002]: 

det A = ∑ 𝑠𝑔𝑛(𝜎)𝜎∈𝑆𝑛
∏ 𝐴𝑖,𝜎(𝑖)
𝑛
𝑖=1 , (29) 

where the sum counts all permutations of the numbers σ {1, 2, 
...,n} and sgn(σ) denotes the function of the sign of the 
permutation. If σ > 0, it is an even permutation, if, on the other 
hand, σ < 0, it is an odd permutation. In this text, we deal mainly 
with 3x3 matrices, where the determinant can be determined 
using the Sarrus rule [Thonton 2004]. Individual axes of rotation 
are written vertically in the matrix, and index 1 indicates the given 
axis of rotation, when: 𝑅𝑋 = 100, 𝑅𝑌 = 010, 𝑅𝑍=001. As an 
example, we determine the sign for extrinsic rotation 𝑅𝑍𝑋𝑌: 

𝑑𝑒𝑡 𝑅𝑍𝑋𝑌 = |
0 1 0
0 0 1
1 0 0

| => 𝑑𝑒𝑡 𝑅𝑍𝑋𝑌 = 1 . (30) 

   If the determinant of the extrinsic rotation matrix for the given 
permutation is positive e.g. det 𝑅𝑍𝑋𝑌 = 1, then it is an even parity 
permutation and the arcsine function is also positive, if the 
determinant of the extrinsic rotation matrix for the given 
permutation is negative e.g. det 𝑅𝑌𝑋𝑍 = -1, then it is an odd parity 
permutation and the arcsine function is also negative [Ciarlet 
1996]. 



 

 

MM SCIENCE JOURNAL I 2024 I DECEMBER  

7831 

 

𝑑𝑒𝑡 𝑅𝑌𝑋𝑍 = |
0 1 0
1 0 0
0 0 1

|  => 𝑑𝑒𝑡 𝑅𝑍𝑋𝑌 = −1 (31) 

 

   For intrinsic rotations, the meaning of notation is the same, only 
the resulting determinants have the opposite meaning, i.e. a 
positive determinant means a negative arcsine function: 

   The entire method of formulating compounds can be expressed 
graphically; for a better understanding, see Figure 4. Method of 
formulas compounding. 
 
Additional rotations 
   There are cases where the coordinate system has already been 
rotated and it is necessary to apply an additional rotation to the 
existing one. The same rules as described above apply to these 
additional rotations: 
 

- with extrinsic rotations, the original matrix of the rotation is 
with an additional matrix multiplied from right to left 
 
- with intrinsic rotations, the original matrix of the rotation is 
with an additional matrix multiplied from left to right  

 
   The example can be explained by applying an additional intrinsic 
rotation around the X  and Y  axes to the original rotation (𝑅𝑂): 
The same example is given by applying an additional extrinsic 
rotation around the X and Y axes to the original rotation (𝑅𝑂): 

 

𝑅𝐶´ = 𝑅𝑌 . 𝑅𝑋 . 𝑅𝑂 . 

 

(33) 

Composite Transformation of the Space 
    
   With a composite transformation of the space from rotation 
and displacement, the resulting transformation matrix 𝑇𝑐 looks 
like this (an example for intrinsic rotation 𝑅𝑍´𝑌´𝑋´): 
 

𝑇𝑐 = 𝑅𝒁´𝒀´𝑿´  · 𝑃𝑐 . (34) 

 

  When rotating (in the plane) outside the origin of the basic 
coordinate system, it is necessary to move the body to the origin, 
then rotate around the given point and return to the original 
position. The transformation matrix looks like this: 

where: ∆𝑋, ∆𝑌, ∆𝑍 means displacement to the origin of the 
coordinate system and −∆𝑋, −∆𝑌, − ∆𝑍 means displacement 
back to the origin point. 

  

3 APPLICATION: CYCLE TO RECALCULATE ROTATIONS  

 

   When modern measurement methods with workpiece probes 
and standard supplied cycles are used, in some cases, an 
erroneous evaluation of the measurement results occurs. A 
typical example of such an incorrect evaluation of measurement 
results can be the machining of a wind turbine blade when the 
blade body is so long that the workpiece cannot be set parallel to 
the machine axes. The workpiece probe can measure A1-A2 and 
B1-B2 and determine rotations around the Y and X axes; see 
Figure 2. Wind turbine measurement. 

  However, the rotation angles obtained this way cannot be 
entered directly into the standard CYCLE800 cycle, as the angles 
are associated with rotation around the machine coordinate 
system. On the contrary, the angles related to rotation around the 
workpiece coordinate system are used to enter CYCLE800. 

det 𝑅𝑍´𝑋´𝑌´ = 1 =>  𝛼´ = −𝑎𝑟𝑐𝑠𝑖𝑛(𝐴32), 
 

det 𝑅𝑍𝑋𝑌 = 1 =>  𝛼 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝐴23). 

(32) 

𝑇𝑐 = (

1 0 0 ∆𝑋
0 1 0 ∆𝑌
0 0 1 ∆𝑍
0 0 0 1

) . 

(

 
 
c3
´ c2
´ −c1

´ s3
´ + c3

´  s2
´  𝑠1

´ s1
´  s3

´ + c1
´  c3

´  𝑠2
´ 0

c2
´  𝑠3

´ c1
´ c3
´ + s1

´  s2
´  𝑠3

´ −c3
´  𝑠1

´ + c1
´  s3
´  𝑠2

´ 0

−s2
´ c2

´  s1
´ c1

´  c2
´ 0

0 0 0 1)

 
 
 . 

(

1 0 0 −∆𝑋
0 1 0 −∆𝑌
0 0 1 −∆𝑍
0 0 0 1

), 

(35) 

Figure 4. Method of formulas compounding. 
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  Another reason may be that, when using the standard 
transformation cycle CYCLE800, the number of rotation axes of 
the kinematic chain is limited to one or, at most, two rotary axes. 
Therefore, this cannot be used for the standard configuration 
when the machine is equipped with a rotary or tilting rotary table 
and, simultaneously, an angular milling head with two axes of 
rotation, see Figure 5. Milling head IFVW207.  

 
For that reason, it was necessary to develop a new cycle, with the 
help of which the required transformation in the coordinate 
system and the physical rotation of the necessary axes will take 
place. Based on the relationships and formulas derived, a 
CYCLE600 cycle was created to recalculate the intrinsic and 
extrinsic rotations. 

   The basic prerequisite for the functionality of the CYCLE600 is 
that the zero point of the machine is identical to the center of the 
rotary table, which is in the zero position. That is, the X machine 
axis is equal to the center of the table, the Y machine axis is 
identical to the edge of the table clamping rotary plate, the Z 
machine axis is equal to the table rotation axis, see Figure 6.  
Definition of the zero points. 

 In the case of heavy horizontal machine tools where a quill, 
spindle, tilt table, and indexing head configuration with two 
rotation axes is used, the Z, V and W axes are parallel, and it is 
necessary to convert the zero point of the workpiece to the Z axis 
before using CYCLE600. 

The actual invocation of CYCLE600 looks like this: 

CYCLE600 (_INEXIN, _MIHEAD,  _SW_REC, _BIN_IN,  _POS_X,  
_POS_Y, _POS_Z, _ANG_1, _ANG_2, ANG_3,  _POS_X_R, 
_POS_Y_R, _POS_Z_R, _INEXOUT, _BIN_OUT, _ROT_AD, 
_ROT_INV, _RETR_Z) 

 

_INEXIN Bool 

_MIHEAD String 

_SW_REC Bool 

_BIN_IN Integer 

_POS_X Real 

_POS_Y Real 

_POS_Z Real 

_ANG_1 Real 

_ANG_2 Real 

_ANG_3 Real 

_POS_X_R Real 

_POS_Y_R Real 

_POS_Z_R Real 

_INEXTOUT Bool 

_BIN_OUT Integer 

_ROT_AD Bool 

_ROT_INV Bool 

_RETR_Z Bool 

 
Explanation of Local Parameters 

_INEXIN - Input choice of rotation: (1) intrinsic rotation; (0) 
extrinsic rotation 
_MIHEAD - Name of the selected technological accessory to 
be used in CYCLE600, for example, “IFVW207”. The selected 
accessory is checked against the currently used accessory on 
the machine, and at the same time, the parameters are read 
from the HEAD_DEF cycle. In the event of a mismatch (e.g., 
accessory is not defined), an error message is displayed 

_SW_REC - Choice of recalculation only (1), can be used after 
the restart of the machine or to load the calculated 
parameters in GUD (Global User Data); (0) rotation with the 
accessory or rotary table 
_BIN_IN - Input binary combination of coordinate system. A 
binary code is assigned to each axis (X=01, Y=10, Z=11), and 
the selection of the rotation permutation creates the 
corresponding rotation in decimal code. According to the 
parameter _INEXIN, the loading order is determined (from 
left to right for the intrinsic rotation or right to left for the 
extrinsic rotation). Extrinsic rotation: Z-X-Y =100111 = 39, X-
Y-Z = 111001 = 57, intrinsic rotation: Z´-X´-Y´ = 110110 = 57, 
X´-Y´-Z´ = 011011 = 39 
_POS_X - translation of the reference point in the X – axis 
before rotation 
_POS_Y - Translation of the reference point in the Y – axis 
before rotation 
 _POS_Z - translation of the reference point in the Z – axis 
before rotation  
_ANG_1 - Rotation around the first axis 
_ANG_2 - Rotation around the second axis 
_ANG_3 - Rotation around the third axis 
_POS_X_R - translation of the reference point in the X-axis 
after rotation. 
 _POS_Y_R - translation of the reference point in the Y – axis 
after rotation  
_POS_Z_R - Translation of the reference point in Z – axis after 
rotation  
_INEXOUT - Output choice of rotation: (1) intrinsic rotation; 
(0) extrinsic rotation 
_BIN_OUT - Output binary combination of coordinate system. 
A binary code is assigned to each axis (X=01, Y=10, Z=11), and 
the selection of the rotation permutation creates the 
corresponding rotation in decimal code. According to the 
parameter _INEXOUT, the loading order is determined (from 
left to right for the extrinsic rotation or from right to left for 
the intrinsic rotation). Extrinsic rotation: Z-X-Y = 111001 = 57, 
X-Y-Z = 100111 = 39, intrinsic rotation: Z´-X´-Y´ = 100111 = 39,  
X´-Y´-Z´ = 111001 = 57 
_ROT_AD - Choice of new output rotation (0) with the 
accessory or rotary table; (1) additive rotation to the last used 
one with the accessory or rotary table 
_ROT_INV – For accessories with two axes of rotation, the 
same position can be achieved by an inverse rotation of 180 
degrees in both axes. (0) to use the calculated position of the 
accessory; (1) to use the inverse position of the accessory 

Figure 5. Milling head IFVW207. 
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_RETR_Z – Retract with the tool prior to the rotation (1) with 
the accessory or rotary table; or (0) not to retract with the 
tool 

 
Explanation of Global Parameters 
   Passing parameters between different cycles happens via global 
variables, defined in the Sinumerik system as GUD. These 
parameters remain in the memory even after the machine is 
turned off. For these reasons, MGUD_CYC600.DEF was created 
for CYCLE600, where variables are defined that can then be used 
in other cycles.  
  An example would be to convert extrinsic rotation to intrinsic 
rotation and use these parameters to invoke the standard cycle 
CYCLE800.  

_MIHEAD _CYC600_1 

_ANG_1_OUT _CYC600_2 

_ANG_2_OUT _CYC600_3 

_ANG_3_OUT _CYC600_4 

_INEXTOUT _CYC600_5 

_BIN_OUT _CYC600_6 

 
Sub-cycle HEAD_DEF 
 
   The HEAD_DEF cycle defines individual technological 
accessories, including length and offset parameters. The rotary 
table is, in this case, meant as a technological accessory. 
 
Milling heads are defined in the HEAD_DEF cycle in this form: 
 

N830       TZ7: 
N840          _HEAD_NAME="IFVW207S" 
N850          _HEAD_ALLOWED=1 
N860          _DELTA_L1=540.735 _DELTA_L2=250.049  
N880          _DELTA_H1=200.007 
N880          _OFFS_L1_X=0.024 _OFFS_L1_Y=0.032 
N890          _OFFS_L2_X=0.011 _OFFS_L2_Y=-0.041 
N900          _OFFS_H1_X=0.335 _OFFS_H1_Z=0.247 
N910        GOTOF END. 

 
Example 3 

   The flange, see Fig. 2 Wind turbine measurement,  was 
measured with a workpiece measuring probe and calculated 
rotation of the coordinate system rot X = 30 degrees, rot Y = 45 
degrees, and rot Z = 60 degrees. In this case, it is a rotation of the 
machine's coordinate system, so it is an extrinsic rotation 𝑅𝑋𝑌𝑍. 
The UFK600 technological accessory was selected for the 
machining of this flange, and the rotation of the space in order Z-
X-Y was selected.  To reach the position, it is necessary to rotate 
the technological accessory around the workpiece coordinate 
system, so it is an intrinsic rotation 𝑅𝑍´𝑋´𝑌´.  

1 - the example could be to convert extrinsic rotations to 
intrinsic rotations and to use these parameters to invoke the 
standard cycle CYCLE800. 

 

_INEXIN 0 

_MIHEAD “UFK600” 

_SW_REC 1 

_BIN_IN 57 

_POS_X 0 

_POS_Y 0 

_POS_Z 0 

_ANG_1 30 

_ANG_2 45 

_ANG_3 60 

_POS_X_R 0 

_POS_Y_R 0 

_POS_Z_R 0 

_INEXTOUT 0 

_BIN_OUT 39 

_ROT_AD 0 

_ROT_INV 0 

_RETR_Z 0 

 

 N120 CYCLE600 (0, “UFK600“, 1, 57, 0, 0, 0, 30, 45, 60,  0, 
0, 0, 0, 1, 39, 0, 0, 0) 

N125 STOPRE 

Figure 6. Definition of the zero points. 
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N130 IF _CYC600_5==1 

N135  CYCLE800(0, _CYC600_1, 0, _CYC600_6, 0,0,0, 
_CYC600_2, _CYC600_3, _CYC600_4,0,0,0,-1) 

N140 ENDIF 

 

Invoking CYCLE600 saves the following results in 
M_GUD_CYC600: 

_CYC600_1 “UFK600” 

_CYC600_2 37.7923 

_CYC600_3 20.7048 

_CYC600_4 49.1066 

_CYC600_5 1 

_CYC600_6 39 

2 - the example could be to convert extrinsic rotations to 
other extrinsic rotations and using these parameters to 
invoke the standard cycle CYCLE800. 

 

_INEXIN 0 

_MIHEAD “UFK600” 

_SW_REC 1 

_BIN_IN 57 

_POS_X 0 

_POS_Y 0 

_POS_Z 0 

_ANG_1 30 

_ANG_2 45 

_ANG_3 60 

_POS_X_R 0 

_POS_Y_R 0 

_POS_Z_R 0 

_INEXTOUT 1 

_BIN_OUT 39 

_ROT_AD 0 

_ROT_INV 0 

_RETR_Z 0 

 

N120 CYCLE600 (0, “UFK600“, 1, 57, 0, 0, 0, 30, 45, 60,  0, 
0, 0, 0, 0, 39, 0, 0, 0) 

N125 STOPRE 

 

Invoking CYCLE600 saves the following results in 
M_GUD_CYC600: 

_CYC600_1 “UFK600” 

_CYC600_2 39.6392 

_CYC600_3 -16.2799 

_CYC600_4 50.3607 

_CYC600_5 1 

_CYC600_6 39 

 

4 CONCLUSIONS 

 

   The cycle described above was created primarily for easy 
recalculation of rotations that are measured by using a workpiece 

probe (extrinsic rotation) and subsequent rotation of the 
machining tool using a technological accessory (intrinsic 
rotation).  
   Without the use of the CYCLE600, the standard procedure was 
to measure the workpiece position in the working place, send the 
measured data to the post-processor, generate the program and 
start the actual machining process. Especially in serial production, 
it is possible to create only one program for a given type of 
workpiece and, by using the CYCLE600, call up the measured data 
as a parameter and use them in this program. In this way, there 
will be a significant reduction of secondary times when you do not 
have to wait for a new program to be generated, but you can 
immediately change the measuring probe for the machining tool 
and start the machining process.  
   If there is a demand for the use of the cycle by more customers, 
future work will focus on creating graphic support directly in the 
Sin840 base mask and overall user-friendliness. Additionally, 
create user documentation with a detailed description of 
individual parameters and graphic processing of specific 
examples of use.  
   All calculations described above were checked by using MATLAB 
software, and at the same time the freely available libraries were 
extended for this software to recalculate intrinsic and extrinsic 
rotations for different spin order permutations and are stored for 
free download at MATLAB Central under the tab “Evaluation of 
intrinsic rotations” or directly via the link: 
 
https://www.mathworks.com/matlabcentral/fileexchange/1332
87-evaluation-of-intrinsic-rotations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.mathworks.com/matlabcentral/fileexchange/133287-evaluation-of-intrinsic-rotations
https://www.mathworks.com/matlabcentral/fileexchange/133287-evaluation-of-intrinsic-rotations
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