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ABSTRACT 
This study presents the Piecewise Constant Curvature (PCC) 
kinematic model of a two-segment continuum robot, offering 
a clear and illustrative approach to deriving the kinematics of 
a soft manipulator. Analytical expressions are developed to 
relate the endpoint positions of the robot’s pneumatic arm 
segments to the lengths of its pneumatic muscles. The 
kinematic model has two contrasting features: it is general 
enough to be applicable for various continuum robot arms, yet 
it does not account for specific structural details, requiring 
adaptation for different soft robot designs. The step-by-step 
methodology, visual clarity, and extension of the PCC model to 
a two-segment robot distinguish this research from existing 
studies. This approach can be extended to multi-segment soft 
manipulators, offering a valuable framework for further 
exploration in the field. 
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1 INTRODUCTION 

Research and innovation have seen significant advancements in 
soft robotics in recent years, primarily due to enhanced 
flexibility and safer operations. Researchers have developed 
new materials, innovative manufacturing technologies, and 
advanced control methods for soft robots. Consequently, 
several commercial products, such as soft grippers, are now 
available on the market and are being utilized in fields such as 
agriculture, medicine, and engineering [Lin 2019]. 
Continuum robots, which offer a wide range of applications, are 
becoming increasingly valuable tools within the robotics 
community [Webster 2010] as they are more flexible and safer 
comparing to rigid robots [Tian 2016, Cheng 2020, Lin 2023]. 
This is mainly because their most valuable characteristics—such 
as agility in cluttered and unstructured environments and 
compliant, pliable interactions with objects—differ markedly 
from those of traditional robots, known for rigidity, precision, 
and suitability for highly structured environments. Therefore, 
these robots necessitate corresponding advancements in 
robotics theory [Webster 2010]. 
Soft robots are renowned for their ability to facilitate 
compatible and complex interactions between the robot and its 
environment. Specifically, soft robotic manipulators or slender 
robots with a continuum structure can leverage these 
interactions to provide new possibilities for exploration, 
manipulation, and safe human-robot interactions. 
 

Nevertheless, interactions or disturbances from external forces 
cause the soft structure to deform in space with an infinite 
degree of freedom (DOF) [Hosovsky 2016, Stella 2023]. 
A continuum robot can be defined as a type of robot 
characterized by an infinite degree of freedom and an elastic 
structure. However, the ability of these robots to deform with 
theoretically infinite degrees of freedom presents explicit 
challenges in modeling and control [Sarosi 2016, Pitel 2014, 
Tothova 2013 and 2014]. Due to the redundancy in degrees of 
freedom, continuum robots' perception, planning, and control 
are still subjects of ongoing research [Cheng 2020]. 
Furthermore, a continuum robot is typically described as 
a continuously bending robot with infinite freedom and an 
elastic structure [Webster 2010]. Continuum robots can assume 
various shapes due to their unique mechanical design and 
method of actuation, allowing them to create the desired 
motion trajectory. This new class of robots exhibits excellent 
flexibility and agility, thus enabling their application in narrow 
and unstructured environments [Tian 2016]. 
It is also important to note that continuum robots are related 
to hyper-redundant robots, which consist of a finite number of 
short rigid links but differ in several key aspects. The 
application of continuum robots in practical scenarios 
necessitates models that accurately describe the robot's shape 
and motion. These models must inevitably be more complex 
than traditional robots, which have a limited number of rigid 
links [Webster 2010]. 
One of the primary motivations for developing soft robots is to 
enhance dynamic movements and compliant interactions. 
However, rigid robots outperform their soft counterparts in 
these tasks [Della Santina 2020]. 
Model-based methods play a crucial role in achieving higher 
levels of control efficiency in both artificial and natural systems. 
This observation has led to the development of simplified 
models capable of describing the robot's behavior using a finite 
set of variables [Della Santina 2018]. 
As continuum robots deform, they take on shapes representing 
general curves in space, making precise control challenging. 
Due to the practical needs of engineering implementation, the 
structural design, perception, planning, and control of 
continuum robots must adhere to certain assumptions, among 
which the assumption of piecewise constant curvature is widely 
employed. However, due to the effects of friction and other 
factors, the motion of an actual continuum robot only 
approximates piecewise constant curvature [Cheng 2020]. 
Therefore, the aim of this paper is to propose an approach to 
describe the kinematics of motion of a continuum robot 
consisting of 2 segments. In order to achieve this aim, the 
motion model of the continuum robot has been described, and 
rotation angles and 3D space coordinates have been 
determined as a function of the lengths of the pneumatic 
muscles. 
This paper consists of 5 sections. The first section Introduction 
describes the features of the soft robot and its applications in 
different fields. The second section describes the approaches 
that exist in describing the motion of a continuum robot. The 
third section presents a model that allows describing the 
kinematics of the motion using a transformation matrix and 
geometric dependencies. The fourth section discusses the 
proposed method and the necessity that the development of 
models account for geometric assumptions, physical 
phenomena, natural and mechanical processes, material 
properties, etc. The fifth section Conclusion summarizes the 
kinematic model of the two-segment robot, showing its 
adequacy at a qualitative level. 
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2 LITERATURE REVIEW 

One of the fundamental challenges in the field is the accurate 
description of a continuum robot's shape, commonly achieved 
through the development of its kinematic model [Lin 2023]. In 
numerous studies, creating a kinematic model is merely the 
initial step towards developing other, more complex models. 
For instance, in [Della Santina 2018], the authors present 
a dynamic model of soft robots that relies on an underlying 
kinematic model based on the piecewise constant curvature 
(PCC) hypothesis. In another study [Wang 2022], a method is 
proposed for modelling a soft robot that can precisely describe 
the kinematics during dynamic movements or interactions with 
the environment. The proposed method facilitates dynamic 
modelling and control of a multi-segment soft manipulator in 
three-dimensional space. Additionally, in [Della Santina 2020], 
two novel algorithms are developed based on a kinematic 
model, enabling dynamic control of a soft robotic arm and its 
interaction with the environment. 
Over the past decades, many models have been developed, and 
this process remains active. Researchers frequently modify 
existing models or propose alternative versions to better suit 
their specific robotic designs. In most cases, researchers adopt 
existing models as a foundation and adapt them to their robots' 
unique features, making necessary modifications. 
For example, [Stella 2023] introduces a novel kinematic model 
based on three-dimensional piecewise affine curvature (PAC). 
Similarly, [Emet 2024] proposes an alternative method using 
the PCC approach, expanding the range of models applicable to 
specific robot designs. However, determining which model 
most accurately describes a particular robot remains 
challenging amidst this diversity of models [Gautreau 2022], 
[Nidhi 2024], [Zhang 2022].  
The primary motivation for developing new models is to reduce 
computational complexity while enhancing the accuracy of 
kinematic models compared to the classical models based on 
constant curvature geometry, as described in [Tian 2016]. For 
instance, [Emet 2024] proposes an alternative method utilizing 
the PCC approach, which requires less computational overhead 
yet yields satisfactory results. The authors in [Lin 2023] also 
argue that calculating direct kinematics is highly complex and 
computationally intensive, particularly based on geometric 
considerations. Conversely, [Tian 2016] asserts that a constant 
curvature kinematic model, grounded in geometric principles, is 
straightforward to implement and versatile enough to 
accommodate robots with varying actuation methods. 
A step-by-step description demonstrates the mathematical 
simplicity of using the PCC method to derive a kinematic model 
for a soft robot. Notably, most kinematic models for soft robots 
develop simulation and control strategies commonly employed 
in rigid robots but adapted for soft robotics. For example, 
[Cheng 2020] proposes a continuous robot kinematics model 
based on an approximate piecewise constant curvature 
equivalent to rigid robots' classical kinematics. 
Furthermore, [Della Santina 2018] introduces the concept of 
connecting a soft robot to an equivalent reinforced rigid robot 
constrained by a set of nonlinear integrable constraints. This 
approach ensures that the correspondence between the soft 
robot and its rigid counterpart is accurate within the general 
constant curvature hypothesis. The authors propose naming 
the state space of the equivalent rigid robot an extended 
representation of the states of a soft robot (PCC). 
Moreover, [Emet 2024] argues that representing the 
movement of soft robotic arms within these rigid body 
modeling environments necessitates a new modeling structure. 
This requirement arises due to the inadequacy of traditional 
rigid body modeling approaches. Consequently, this new 

simulation system must adhere to the same accuracy and 
computational efficiency standards as traditional solid-state 
robot models. 
According to [Della Santina 2020], such equivalence implicitly 
determines the relationship between a soft and rigid robot 
described through equivalent parameterization. From 
a kinematic perspective, any representation that satisfies the 
condition of matching the endpoints of each segment of the 
constant curvature (CC) with the corresponding reference 
points of the rigid robot is considered equivalent. Therefore, 
established rigid robot control and analysis knowledge is 
effectively transferred to soft robots [Wang 2022]. 
However, unlike the kinematics of traditional rigid-link robots, 
where the position of any point on the robot can be 
determined explicitly using link lengths and connection angles, 
continuum robots' internal compliance necessitates considering 
elasticity. To accurately determine the positions of points of 
interest on the robot, including its end-effector, it is essential to 
account for the forces and moments applied to the robot by its 
actuators and the external environment [Webster 2010]. 
Nonetheless, as [Emet 2024] suggests, the established 
modeling methods and control theories developed for 
traditional rigid robots are not directly applicable to soft robots. 
The challenges of kinematic and dynamic modeling of soft 
robots, which possess infinite degrees of freedom, demand the 
development of specialized modeling methods. 
The piecewise constant curvature (PCC) method is a specialized 
approach widely employed for simulating the kinematics of 
continuum robots [Lin 2023]. According to [Wang 2022] and 
[Della Santina 2018], the PCC method is favored in soft robotics 
due to its computational efficiency [Emet 2024]. As [Webster 
2010] observes, the widespread application of the PCC 
approach across various continuum robot mechanical 
architectures, combined with its analytical appeal, underscores 
its significance in the field. 
The PCC method simplifies the modeling of soft robotic arms by 
representing them as a finite set of mutually tangent arcs of 
constant curvature, defined by three parameters: the arc length 
(l), the bending angle (θ), and the angle of the plane containing 
the arc (α). This simplification significantly reduces the number 
of variables required for the model. Constant curvature is often 
regarded as a desirable characteristic for continuum robots due 
to its simplifications for kinematic modeling [Webster 2010]. 
In the PCC model, the infinite dimensionality of the soft robot's 
configuration is addressed by considering the robot's shape as 
comprising a fixed number of segments with CC combined to 
form a continuously differentiable curve [Della Santina 2020]. It 
is important to note that the PCC model guarantees the 
continuity of the form, ensuring that the final frame of one 
segment and the initial frame of the subsequent segment are 
seamlessly connected [Lin 2023]. 
Assuming the PCC model, the continuous robot is composed of 
constant curvatures, which may change over time, effectively 
reducing the complexity of the robot's application. However, 
due to factors such as friction, the actual motion of 
a continuum robot is often approximated by a piecewise 
constant curvature (APCC) [Cheng 2020]. 
In addition to the PCC kinematic model, the parametric 
modeling method using Denavit-Hartenberg (DH) parameters is 
gaining popularity for the mathematical description of soft 
robot motion [Lin 2019], [Webster 2010]. For instance, [Della 
Santina 2020] employs a kinematic model that can be 
reformulated using elementary DH transformations to 
construct a dynamic model. 
In conclusion, various modeling approaches converge on a 
typical outcome for the piecewise constant kinematics of 
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constant curvature, as reviewed in [Webster 2010]. The 
ongoing advancements in soft robotics continue to refine these 
models, enhancing their applicability and accuracy in diverse 
and challenging environments. 

3 RESEARCH METHODOLOGY 

This research introduces a methodology for developing 
a kinematic modeling system, based on an experimental setup 
depicted in Figure 1. This setup is a modified version of a soft 
planar robotic arm. The robot manipulator consists of two 
segments mounted on top of each other. Three artificial 
muscles control each segment through pressure changes, which 
also alter the position and orientation of the end-effector. The 
length of each muscle is 52.4 cm. In each segment, the 
pneumatic muscles are positioned at an angle of 120° relative 
to each other. The muscles of the upper and lower segments 
are offset by an angle of 60°. 
The kinematic model of constant curvature was employed 
based on geometric principles. Upon comparison with the 
modified Denavit-Hartenberg (DH) method and the finite 
element method, we determined that this modeling approach 
is more suitable for continuous robots and offers greater ease 
of implementation. The kinematic model is based on two 
fundamental assumptions: (1) the manipulator, when bent, can 
be approximated as an arc of a circle, and (2) gravitational 
effects are neglected in the kinematic modeling process.  
The position and orientation of the manipulator can be 
controlled by altering the length of the rods, and the constant 
curvature method, based on geometric principles, is employed 
to develop the kinematic model of the continuum robot. 
A mapping between the configuration space, manipulation 
space, and task space is obtained to facilitate the analysis of the 
kinematics. 

Muscle 1

Muscle 2

Muscle 5

Muscle 6

 

Figure 1. Experimental Setup 

Selecting coordinate axes 

Consider a kinematic model of a soft robot composed of two 
segments with piecewise constant curvature (PCC) (Figure 2). 
In the literature, there is a broad range of conventions, 
formalisms, and variants of coordinate systems for achieving 

direct kinematics [Tian 2016]. Some of these approaches will be 
utilized in this research. 
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Figure 2. Kinematic model of the robot  

The axes are chosen as follows. The origin of the coordinate 
system is located at the center of the base of the first segment, 
with the z0 axis aligned along the muscle and serving as the 
reference for the coordinate system. This point is denoted as 
p0. The x0 and y0 axes can be chosen arbitrarily, provided they 
are mutually perpendicular and perpendicular to the z0 axis. 
The y0 axis is oriented in the direction of the muscle’s bending, 
with the bending angle denoted by θ.  
The position of the x0 axis is determined by the right-hand rule 
with respect to the y0 and z0 axes. The angle of rotation of the 
muscle around the 𝑧0 axis is denoted by α. When α = 0, the 
direction of muscle bending by the angle θ lies within the y0–z0 
plane. The rotation of the muscle around the z0 axis by an angle 
α is described in the x0–y0 plane. 
The matrix of motion can be written in the following form:  

0 1

 
  

R p
T , (1) 

where R represents the rotation matrix; p is the translation 
vector. 

Determining the coordinate of the end of the first segment  

Consider the planar case where there is only bending of the 
segment without rotation, i.e. the angle α = 0. When α is zero, 
the arc lies entirely within the y-z plane, as depicted in Figure 3. 
In this scenario, the bending is described solely by the angle θ, 
which defines the curvature of the segment within the plane. 
The absence of rotation (α = 0) simplifies the transformation, 
restricting the motion to the y-z plane. 

z

y
(r;0)p0

r

θ 

p1

(r(1-cosθ); rsinθ )

 
Figure 3. Geometric representation of the arc of the pneumatic muscle 
in the y-z plane at α = 0 

The bending is considered to occur along an arc with a radius r 
and an angle θ. The coordinates of the lower point p0 and the 
upper point p1 of the cylinder in the spherical coordinate 
system are determined accordingly. As illustrated in Figure 3, 
the lower point p0 of the manipulator in the y-z plane is 
represented by the coordinates p(r,0), where r denotes the 
radius of the arc. To determine the coordinates of the upper 
point p1, geometric construction, as shown in Figure 4, is 
employed.  
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Figure 4. Determining the arc rotation angle θ 

The resulting triangle ABC is isosceles with the base AB, as 
AC = BC = r. Therefore, the angles ∠A and ∠B are equal and can 
be calculated by using formula (2) 

 180 / 2 90 / 2      . (2) 

The projection of point B (the endpoint of the segment) onto 
the y-axis can be expressed as follows. From Figure 5, it can be 
observed that y1 is equal to the subtraction between r and DC. 
On the other hand, DC is given by  Therefore, it can be 
written as the equation: 

 1       cos   1 cosy r r r      . (3) 

A

B

CD
r

z1

z

yy1

θ 

r

 
Figure 5. Determination of the coordinates of the endpoint p1 of the arc 
at α = 0 

The projection of the B on the z-axis can be written by the 
following expression: 

1     = = sinz BD r  . (4) 

Therefore, in two-dimensional space, the coordinates of the 
top point will be as follows: 

1(r (1 cos  ); r sin )p   . (5) 

Considering the rotation of the segment around the z-axis 
within the x-y plane by an angle α (as illustrated in Figure 6), 
the projection of the endpoint onto the x-axis can be expressed 
as, cosr  , while the projection onto the y-axis can be 

expressed as sinr  . 
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Figure 6. Determination of coordinates of point p1 of the arc at α ≠ 0 

Accordingly, the coordinates of the endpoint of the segment 
can be represented as: 

1 = (1 cos ) cosxp r   , (6) 

1 = (1 cos ) sinyp r   , (7) 

1 = sinzp r  . (8) 

The position of the end point in the 3-dimensional coordinate 
system will have the coordinates: 

1       ( (1 cos ) cos ; (1 cos ) sin ; sin )p r r r           . (9) 

Determining the rotation matrix 

At this stage, it is essential to determine the rotation matrices 
around the z and y axes. The rotation matrix around the z-axis, 
denoted as 𝑅z, is commonly referred to as the rotation matrix. 
This matrix describes the transformation from the initial 
coordinates x0,y0 to the new coordinates x1,y1, while the z-
coordinate remains unchanged. Consequently, the rotation of 
the x and y axes occurs by an angle α within the x-y plane, as 
depicted in Figure 7. 

α 
x0

y0

x1

y1  r

 
Figure 7. Determination of coordinates of point p1 of the arc at α ≠ 0 

The dependence between the x0,y0 and the x1,y1 coordinates 
can be written as a system of equations: 

1 11 0 12 0 13 0

1 21 0 22 0 23 0

1 31 0 32 0 33 0

 

x a x a y a z

y a x a y a z

z a x a y a z







     

     

     

  (10) 

Figure 7 shows that 
11 22 cosa a   , 

12 sina   , 
21 sina  . 

Since the projection of the z-axis onto x and y is a point, the 
coefficients 

13 23 0a a   and 
33 1a  , since the z0 and z1 axes 

are directed perpendicular to the plane of the figure and are 
completely coincident. As a result, we can write the following 
rotation matrix: 

 

cos -sin 0

sin cos  0

0       0    1

 

 

 
 
 
  

zR
.  (11) 

Similarly, the rotation matrix around the y-axis, denoted as Ry, 
is constructed. In this case, the same reasoning applied to the 
Rz matrix is used, with the substitution of z for y. As a result, the 
following matrix can be obtained as: 

 

cos     0    sin

0        1      0

-sin      0   cos

 

 

 
 
 
  

yR
. (12) 

The rotation matrix R can be determined by multiplying 
matrices Rz and Ry as follows: 
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cos -sin 0 cos     0    sin

sin cos  0 0        1      0

0       0    1 -sin      0   cos

   

 

 

   
   

     
      

z yR = R ×R

 

cos cos -sin cos sin

sin cos cos sin sin

-sin 0 cos

    

    

 

 
 
 
  

 

  
. (13) 

The transformation matrices for rotational R and translational P 
movements are combined. The resulting kinematic 
homogeneous transformation relationship can be expressed as 
follows: 

cos cos sin cos sin cos (1 cos )

sin cos cos sin sin sin (1 cos )
 

-sin 0 cos sin

0 0 0 1

r

r

r

      

      

  

 
 
 
 
 
 

     

    



T

.(14) 

It is important to note that the resulting transformation matrix 
is robot-independent, as it is applicable to all systems that can 
be approximated as piecewise-continuous arcs of constant 
curvature. This reasoning is supported by the works of other 
authors who describe kinematic models of soft robots 
[Gautreau 2022], [Nidhi 2024]. 

Determining the rotation matrix and coordinates of the end of 
the second segment  

Since the robot consists of two segments connected in series, 
this connection can be described by multiplying the 
transformation matrices that represent these segments. Let the 
coordinates r, θ, and α of the first and second segments be 
denoted by the indices 1 and 2, respectively. Additionally, it is 
important to account for the specific design feature of the 
robot, which involves a horizontal plane shift by an angle of 60° 
at the points where the two segments are connected. Thus, the 
kinematics of the robot can be determined by two 
homogeneous transformations T1 and T2, which map each 
reference frame to the subsequent one. Based on the above 
considerations, the transformation matrices for each of the 
segments can be expressed as follows: 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

cos cos -sin cos sin cos (1 cos )

sin cos cos sin sin sin (1 cos )

-sin 0 cos sin

0 0 0 1

r

r

r

      

      

  

    

    




 
 
 
 
 
 

1
T 

,  (15) 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2

2

π π π π
cos( ) cos -sin( ) cos( ) sin ( ) (1 cos )

3 3 3 3

π π π π
sin( ) cos cos( ) sin( ) sin sin( ) (1 cos )

3 3 3 3

-sin 0 cos sin

0 0 0 1

r

r

r

      

      

  

 
 
 
 
 
 
 
  

        

        



2T 

.(16) 

After multiplying the transformation matrices and performing 
the transposition operation, the expressions for the endpoint of 
the second segment p2 can be determined as follows: 

 2 14 2 1 2 1 2

π
cos cos( ) cos 1 cos

3
xp a r    

 
         

 
 

 2 1 2 2 1 1 2

π
sin sin 1 cos cos sin sin

3
r      

  
  

  
         (17) 

  2 24 2 1 2 1 2

π
sin cos( ) cos 1 cos

3
yp a r    

 
         

 

 

 2 1 2 2

π
cos sin 1 cos

3
r         
  

  
  

  (18) 

 2 1 1 2 1 1 1
sin sin sin sin (1 cos )r r            , 

 2 34 2 2 1 2 1 2cos sin 1 cos cos cos
3

zp a r


    
  

            
  

1 1sinr   . (19) 

Therefore, to determine the final position of the robot arm, it is 
necessary to know six parameters: the radii r1 and r2, and the 
angles α1, α2, θ1 and θ2. These parameters can be expressed in 
terms of the muscle lengths l1, l2, l3, l4, l5, l6. 

Determining of segment coordinates by muscle lengths 

The relationships between the model parameters and the 
dimensions of the robot will first be established for a single 
segment. The center of the manipulator and each of the 
muscles will have different radii of curvature. The relationship 
between them can be expressed based on Figure 8 and 
Figure 9. 

Top

Bottom

r
r1

θ 

α 

d x
z

y
 

Figure 8. Determination of radius and angles (side view) 

Here, r represents the radius of curvature of the manipulator, r1 

denotes the radius of curvature of the muscle, and d is the 
distance from the center of the base plane to the center of the 
flexible rod (as shown in Figure 8). The variable αi describes the 
angle between the direction of the manipulator's curvature and 
the position of the i-th rod. From Figure 8, it can be observed 
that: 

1
  = cos

i
dr r   . (20) 

The relationship between the radius r, the angle θ, and the arc 
length l is given by the following equation: 

i i
l r   .  (21) 

Thus, 

i

i
=

l
r


 (22) 

d
α1

α dcosα1

Muscle 2

Muscle 1

Muscle 3

x

y

 
Figure 9. Determination of radius and angles (top view) 

For the pair of muscles 1 and 2, the subtraction between the 
radii can be expressed as:  

 1 2
1 2 1 2  cos cos

l l
r r d  




     . (23) 

From this relationship, it can be derived that: 



 

 

MM SCIENCE JOURNAL I 2024 I DECEMBER 

8016 

 

1 2

1 2cos cos
 

l l
d

 


 


.  (24) 

Similarly, for the pair of muscles 1 and 3, the relationship can 
be expressed as follows: 

1 3

1 3

 
cos cos

l l
d

 


 


.  (25) 

Equating expressions (24) and (25) yields: 

1 31 2

1 2 1 3

 
cos cos cos cos

l ll l

   




 
.  (26) 

Since the muscles are positioned at an angle of 120° relative to 

each other, it can be assumed that 
1  , 

2

2π

3
   , 

2

2π

3
   . Therefore, expression (26) can be rewritten as 

follows: 

 1 2

2π
cos cos

3
l l  

  
   

  
      

 1 3

2π
cos cos

3
l l  

  
   

  
     . (27) 

According to trigonometric identities: 

2π 1 3
 cos cos sin

3 2 2
  
 

     
 

.  (28) 

Therefore, the expression can be reformulated as follows: 

1 2

1 3
 ( ) cos cos sin

2 2
l l   

  
           

  

1 3

1 3
( ) cos cos sin

2 2
l l   

  
           

  

, (29) 

   1 3 1 2 1 3 1 2

3 3
( ) ( ) cos ( ) ( ) sin

2 2
l l l l l l l l          . (30) 

Therefore, the tangent of the angle α can be expressed in terms 
of the muscle lengths as follows: 

 

 
2 3

2 3 1

3sin
tan

cos 3 2

l l

l l l






 
 

   

. (31) 

Utilizing the trigonometric identity 
 2

2

1
1 tan

cos



 

and equation (31), the expressions for the 

cosine and sine of the angle α can be written as functions of the 
muscle lengths as follows: 

2 3 1

2 2 2 2

1 2 3 1 2 2 3 1 3

21
cos

1 tan 2

l l l

l l l l l l l l l




  
 

         

,  (32) 

 2 3

2 2 2

1 2 3 1 2 2 3 1 3

3
sin tan cos

2

l l

l l l l l l l l l
  

 
  

        

. (33) 

From expression (31), it follows that: 

 2 31

2 3 1

3
tan

3 ( 2 )

l l

l l l
 

  
       

.  (34) 

Therefore, the rotation angle α of the muscle in the horizontal 
plane can be expressed as a function of the lengths li of each 
muscle in the segment. To express the radius of curvature r in 
terms of the muscle lengths, it is important to consider that: 

i

i

l l

r r
  

. (35) 

By substituting equation (20) into equation (35), the following 
expression can be obtained: 

cosi
i i

l r
r r d

l



    , (36) 

cosi
i

l l
r d

l



   . (37) 

From expression (37), the formula for the radius of curvature 
can be derived as follows: 

cos i

i

l d
r

l l

 




. (38) 

Since the muscles have equal lengths in the initial position, the 
length of the centerline l of the robot arm can be determined 
as the average value of the sum of the lengths of each muscle: 

1 2 3

3

l l l
l

 
 . (39) 

To calculate the radius r of the robot arm, the first muscle is 
selected, where 

i
   and 

1i
l l . Substituting equations (32) 

and (39) into equation (38) yields: 

 
 

1 2 3 2 3 1

2 2 2
1 1 2 3 1 1 2 3 1 2 2 3 1 3

2cos

3 2

l l l l l ll d
r d

l l l l l l l l l l l l l l l

      
    

             

1 2 3

2 2 2

1 2 3 1 2 2 3 1 3
2

l l l

l l l l l l l l l

 


        

. (40) 

Therefore, the radius of curvature r of the arm has been 
expressed in terms of the lengths li of each muscle within this 
segment. The angle θ can be determined by substituting 
equations (39) and (40) into equation (35). 

 
 

2 2 2

1 2 3 1 2 2 3 1 31 2 3

1 2 3

21

3

l l l l l l l l ll l l

r l l l d


         
   

  

2 2 2

1 2 3 1 2 2 3 1 3

2

3
l l l l l l l l l

d
         

. (41) 

A similar approach can be applied to the second segment by 
substituting the muscle lengths l1 ,l2 and l3 with l4, l5 and l6. To 
determine the position of the robot arm's endpoint along the X, 
Y, and Z axes, it is sufficient to substitute the obtained values of 
the angle α (from equation 34), the radius r (from equation 40), 
and the angle θ (from equation 41), which are dependent on 
the muscle lengths, into expressions (17) – (19). 

4 DISCUSSION 

Continuum robots are indisputably a significant and actively 
explored domain within the scientific community. This is 
substantiated by the extensive body of literature concerning 
their modeling, experimental investigations, the application of 
contemporary data processing technologies, and review articles 
that seek to identify common methodologies, phenomena, and 
patterns.  
One of the primary objectives in the operation of continuum 
robots is the precise control of their movement, which 
necessitates establishing a clear correlation between the 
control inputs and the coordinates of the end effector of the 
pneumatic arm. To determine such a relationship, a kinematic 
model is sufficient. In our case, the end of the pneumatic arm 
can be manipulated by varying the length of each pneumatic 
muscle, achieved by altering the air pressure within them 
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[Mizakova 2014]. Thus, our research is focused on deriving the 
kinematic model of the continuum robot. We posit that the 
approach to modeling should be grounded in theories that are 
universally applicable to any structure, such as those found in 
mathematics, geometry, and trigonometry. We firmly believe 
that all formulas must be either visually or analytically 
substantiated through mathematical operations. This does not 
preclude the use of software and computational tools for data 
acquisition and processing. Our research has aimed to describe 
the kinematic model of a soft robot (Figure 1), based on the 
PCC (Piecewise Constant Curvature) model, mathematical 
operations, and the properties of trigonometric functions. 
Despite the complexity of the PCC model and the significant 
computational resources it demands, as noted by authors 
[Emet 2024], [Lin 2023], [Wang 2022], we present a clear 
method for obtaining the kinematic model of a soft 
manipulator composed of two segments. Moreover, we do not 
concur with the assertion that the computation of 
trigonometric functions and multiplications entails "significant 
computational costs" given the current state of computational 
technology. The comprehensive sequence of operations, the 
ability to verify each step, and the extension of the PCC model 
to a two-segment robot are the distinguishing features of our 
research compared to existing studies. Naturally, we recognize 
that the development of models must account for geometric 
assumptions (e.g., deviations in robot curvature from 
a constant), physical phenomena (such as friction and 
hysteresis effects), changes in properties depending on 
environmental parameters (e.g., variations in size and 
elasticity), natural processes (e.g., aging, microcrack formation, 
changes in elasticity), mechanical processes, material 
properties, and the technical implementation of robots. 

5 CONCLUSION 

In this study, we have presented the kinematic analysis of 
a pneumatic arm of a generalized continuum robot, consisting 
of two segments. The proposed approach, however, is 
extendable to multi-segment soft manipulators. The kinematic 
model developed exhibits two distinct characteristics: it is, on 
one hand, sufficiently general to be applicable to various 
continuum robot arms, yet, on the other hand, it only partially 
incorporates specific structural features. Furthermore, the 
model does not account for physical phenomena such as 
thermal expansion and hysteresis, typically addressed by 
dynamic models. A comprehensive understanding of a robot's 
behavior necessitates the integration of the kinematic model, 
which defines the robot's shape, with both static and dynamic 
models.  
The kinematic model can demonstrate adequacy when 
evaluated qualitatively; however, its quantitative accuracy 
warrants experimental validation. The iterative process of 
experiment-model-experiment-model, and so on, facilitates the 
development of generalized models through experimental data 
obtained from specific continuum robot structures. This 
procedure will be the subject of our further research in this 
area. Then these models can be applied to the study and design 
of robots with different configurations. So, in our subsequent 
research, we will compare the simulation results with 
experimental data obtained from a soft planar robotic arm 
(Figure 1) and a methodology for model adaptation will be 
proposed. This methodology will offer a significant potential for 
advancing the study of the kinematics of various types of soft 
robots. 
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