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When a kinematic chain of a multiaxis machine centre is 
assembled by means of homogeneous matrices, it is possible to 
include the error representing matrices within and neglect the 
error terms which do not affect the prescribed accuracy. 
Classically, such error terms are identified and neglected 
according to the system of given identities after the matrix 
multiplication. In our approach, the matrices itself are designed 
to form a ring that respects the desired arithmetic of error terms, 
particularly the ring of matrices over the dual numbers. On the 
other hand, to make this algebraically possible, several negligible 
terms remain. 
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1 INTRODUCTION 
With increasing demands on manufacturing accuracy of machine 
tools, there is a proportional need to enhance the geometric and 
working accuracy. The resulting working accuracy of three-axis 
CNC machine tool is affected up to 70% by quasi-static errors 
[Ramesh 2000]. This category of quasi-static errors includes 
geometric errors, temperature errors and errors caused by 
deformation of the own weight of machine parts. For a five-axis 
machine tool, this percentage is even higher [Ibaraki 2012]. 
In order to enhance the geometric accuracy, new 
methodological approaches are constantly being developed to 
describe geometric deviations of the machine tool with the 
output for software compensations. Such demands are laid not 
only on the existing technologies of measurement, but also on 
the development of new measuring equipment and 
measurement procedures. Already calculated deviations are 
then implemented to the control systems of machine tools. 
Achievement of higher geometric accuracy requires growing 
demands on accuracy of measuring equipment, methodologies 
of measurement procedures, and quality of data processing and 
evaluation [Linares 2014]. However, this also increases the 
demands on computing equipment in the form of machine tool 
models to calculate deviations that are sufficiently accurate, fully 
defined and inexpensive in terms of hardware. 
A large part of authors deal with modelling of deviations in 
machining centres. Most of them then operate with the 
approach using the homogeneous transformation matrices 
(HTM) [Rahman 2000, Okafor 2000, Uddin 2009, Tian 2014]. The 
use of these homogeneous transformation matrices leads to 
appropriate simplifications. The author [Okafor 2000] e.g. uses 
the HTM method to calculate deviations, but the resulting 

relationships were supplemented with his own extensions which 
do not contain in the aforementioned HTM. 
A proper description of deviations in the workspace of the 
machine tool is necessary for subsequent processing of 
compensation data. These compensation data then can be used 
for single-axis compensation, dependent compensations of two 
axes or volumetric compensations. The aim of numeric 
compensations is to minimize the real deviation TCP (Tool Center 
Point) from the desired position of the machine. 
This article discusses the possibilities of streamlining the 
calculation of geometric deviations on three-axis machine tool 
by HTM using dual numbers [Holub 2015b]. Moreover, it 
compares the results of standard calculation by HTM and by 
HTM using dual numbers. 

2 GEOMETRIC DEVIATIONS OF THREE-AXIS MACHINE TOOLS 

2.1 Description of geometric deviation 
Description and the number of geometrical deviations of 
machine tools are generally based on the number of CNC 
controlled axes and the coordinate system and are defined 
according to ISO 841. Figure 1 shows the diagram of a three-axis 
vertical milling machine 21, including all 21 geometric 
deviations. These are errors of approaching the position in the 
axis EXX, EYY, EZZ, straightness errors EYX, EZX, EXY, EZY, EXZ, 
EYZ, angular errors EAX, EBX, ECX, EAY, EBY, ECY, EAZ, EBZ, ECZ 
and errors of angle A0Z, B0Z, C0Y. 

 

Figure 1. Geometric deviations of three-axis vertical machining centre 
[Holub 2015a] 

To identify the above mentioned deviations, various measuring 
devices and procedures are used; these can evaluate all 21 
geometric deviations simultaneously. These devices include self-
tracking laser interferometers LaserTRACER [Holub 2014] or 
Laser Tracker [Knobloch 2014]. To measure the workspace of the 
machine tool, these devices use a sequential multilateration 
principle. This provides a sufficient accuracy of measurement to 
assess the CNC machine tool. Another group consists of 
measuring devices which can identify only some of the 
abovementioned deviations and then it is necessary to use a 
combination of more than one measuring device and 
measurement procedures. These devices include single-axis 
laser interferometers [Marek 2009], digital spirit levels, 
collimators or control prisms and dial indicators. 

2.2 Measuring data  
All 21 parameters of errors obtained from the measurement 
with LaserTRACER are shown in the following Table 1. These 
deviations are then used for following calculations of volumetric 
errors.  
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Group  Parameter 
ISO Norm 

Parameter 
Calculation 

Deviation 
(range) 

P
o
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ti

o
n

 
[µ

m
] 

 EXX δxx 5.843679335 

 EYY δyy -7.929991163 

 EZZ δzz -0.071256382 

St
ra

ig
h

tn
e

ss
 

[µ
m

] 

 EYX δyx 2.559352218 

 EZX δzx 0.800863724 

 EXY δxy 1.549784038 

 EZY δzy  -0.099355403 

 EXZ δxz -1.966586041 

 EYZ δyz 1.260893805 

P
it

ch
 /

 Y
aw

 /
 R

o
ll 

[µ
ra

d
] 

 EAX εxx -8.998678 

 EBX εyx 9.180649 

 ECX εzx -9.258189 

 EAY εxy 12.041728 

 EBY εyy -5.934292 

 ECY εzy -3.52876 

 EAZ εxz 1.758333 

 EBZ εyz 48.368974 

 ECZ εzz -9.309235 

Sq
u

ar
en

e
ss

 
[µ

ra
d

] 

 C0Y αxy 27.950254 

 B0Z αxz -73.699513 

 A0Z αzy 32.473779 

Table 1. Measuring data  

3 MATHEMATICAL BACKROUND 

3.1 Preliminaries 
Classically, if the volumetric error is handled, the error matrices 
are used, e.g.  the matrix of the translation along the   axis error 
is of the form 
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(1) 

 
This can be derived using the Euler matrices expanded into the 
Taylor series once you neglect the terms in which two or more 
error terms are multiplied. Indeed, 
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(2) 

where ň stands for one of the symbols , ,xx zx yxň ň ň  and by   

we understand any symbol of the triple , ,xx zx yx   . 

Algebraically, if all functions within the matrices are considered 
in the form of the Taylor series, the result corresponds to the 
calculations within the Weyl algebra

2 2[ , , ] / , ,xx yx zx   ň ň ň ň ň . This structure is rather 

abstract and thus more convenient setting can be used. As 

algebraically the properties of , ,xx yx zxň ň ň  coincide we can 

consider these as the coefficient of one element only and thus 
we can work in the dual numbers algebra, see [Hrdina 2014]. 
Note that this simplification brings minor complications, 
particularly the number of remaining terms increases, but, on 
the other hand, the question of the geometric interpretation of 
these higher order error terms is also interesting. For instance, 
one can distinguish the rotation error w.r.t. the x  and y  axis 

while translating along the axis x .   

Let us recall the definition of the dual numbers. It is a set 

{ | , }a b a b  D  (3) 

endowed with the operations summation and multiplication 

1 1 2 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) .

a b a b a a b b

a b a b a a a b b a

  

  

      

     
 (4) 

satisfying the identity. Its elements can therefore be understood 
as the factorized polynomial ring   

2[ ] /x x   (5) 

Note that even higher order dual numbers can be considered, 
e.g. the second order dual numbers are defined as the set 

2

2 { | , , }a b c a b c    D  (6) 

endowed with the operations summation and multiplication   
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  (7) 

 
In the language of the factorized polynomial rings this 

corresponds to the set 
3[ ] /x x  . Further generalizations 

contain e.g. 3 4, ,D D . Further generalizations contain e.g. 

3 4, ,D D . 

For calculations, the matrix representation of these structures is 
quite interesting. Although these representations are not 
unique, there are some classical choices such as 

1 1
.

1 1


 
 
  

Indeed 
2 2

1 1 0 0

1 1 0 0

   
   

    

 and thus any dual 

number , ,a b a b  D  is represented as 2 2  

matrix .
a b b

b a b

 
 
  

 Even more common choice is the 

following   

0 1
.

0 0


 
 
 

 Indeed  

2 2
0 1 0 0

0 0 0 0

   
   

   

 and thus any dual 

number , ,a b a b  D  is represented as 2 2  

matrix 
0

a b

a

 
 
 

.  Note that the second order dual numbers 
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2a b c    can be represented e.g. by the matrix 

0 .

0 0

a b c

a b

a

 
 
 
 
 

  

As far as the accuracy questions are involved, if the terms of the 
micron--level are placed on the secondary diagonal, the by 

multiplication the term on the ternary diagonal is 
310

 micron-

-level. For a machine with 1 meter in diagonal, if the Abe 
principle is applied, the secondary diagonal contains millimetre-
-level terms and the ternary diagonal contains the micron-level 
terms. But this coincides with the classical approach meaning 

that no larger terms than 
310

 micron-level should be 

neglected. When considerably larger machines are studied, 
higher order dual numbers should be employed.     
 

3.2 Error matrices 
In the sequel, we use the matrices over second order dual 
numbers, i.e. the matrix elements will be of the form 

2a b c    and furthermore, we use the dual numbers 

matrix representation meaning that each element is 

represented as 3 3  matrix  

0

0 0

a b c

a b

a

 
 
 
 
 

. The proof that such representation is isomorphic to 

the second order dual numbers is rather straightforward. 
Consequently, e.g. the rotation matrix w.r.t. the x  axis while 

translating along the x  axis is of the form 
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 
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0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

1 0

0 1

0 1 0

0 1 0

0 1

0 0 1

0 0 1

xx

xx

xx

xx

xx

xx





 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

ň

ň

ň

ň

 

(8) 

Should the calculations follow the 2D  arithmetic precisely, even 

the error matrices must be recalculated. Then we obtain 
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(10) 

Note that this matrix differs from the classical one exactly in the 
second order error terms. Yet it is notable that the matrix 

multiplication in this case is not commutative, indeed when the 
order is changed the second order error terms are different: 
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(11) 

Nevertheless, this is only natural. Consequently the following 
error matrices are obtained: 
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(14) 

Note that if we set   the result corresponds to the classical error 
matrix. 
 

3.3 Three-axis machine kinematics 
We discuss the error kinematics of a three-axis machine by 
means of   arithmetic. The following matrices represent the 
errors of the tool actual position and orientation. 
The first matrix expresses the error of the translation w.r.t. the 
x  axis. 
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where 2 2,a b  and 2c  denotes the offset between the position 

2  and 1. Next the error of translation w.r.t. the y  axis is of 

the form  
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(16) 

and finally the translation w.r.t. the z  axis. 
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(17) 

4 CONCLUSION 
We proposed an algorithm on the volumetric deviation 

calculation, see the resulting matrices xE , yE  and zE

representing the translation errors. We stress that the 
innovation lies in the automated calculations within the matrix 
algebra. More precisely, we use the matrix multiplication only, 
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while classically after the evaluation some identities have to be 
applied to neglect the higher order error terms.  This is allowed 
by the dual numbers matrix representation which, consequently, 

leads to the kinematic chain assembled from 12 12  matrices. 
We applied the algorithm on the data obtained by the 
LaserTRACER measurement of the three-axis machine (MCV 754 
QUICK) and compared it to the results calculated classically. The 
results are the following: 

9,4, 12x yE E    and 11zE    

with classical homogeneous transformation matrices and  

9,4, 14x yE E    and 8zE    

by means of the transformation matrices over the dual numbers. 
The difference lies in the way how the squarness errors are 
treated. In our approach, the translational term 

3( 0 )zz xz A Zz b  ň  appears while classically 

30zz A Zz b    is obtained. The terms combining the xzň  

and 0A Z  errors are redundant and follow from the kinematic 

chain composition. Their interpretation and their contribution to 
the overall accuracy is the topic for further research.  
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