DISCONTINUOUS DRILLING OF INCONEL 718

Abstract

Inconel 718 as one of the most common nickel-base alloys is mainly characterized by its high-temperature strength. Thus, in particular drilling is subject to high tool wear due to high thermomechanical loads on the cutting edges. To reduce those effects an alternative process design of discontinuous drilling was developed which contains a periodical interruption of the machining process with the aim of a targeted wetting and cooling of the tool at regular intervals. Thus, a significant reduction of the thermal load on the tool should provide a benefit to the drilling process and extend the tool life. Numerical and experimental investigations were used to analyze the introduced process strategy modification.

Recommended articles

OPTIMAL POSITIONING METHODS OF INTEGRAL DEFORMATION SENSORS – EXPERT KNOWLEDGE VERSUS MATHEMATICAL OPTIMIZATION

Ch. Brecher, R. Herzog, A. Naumann, R. Spierling, F. Tzanetos
Keywords: thermal issues | Machine tool | optimal sensor positioning

EXAMINATION OF COOLING SYSTEMS IN MACHINE TOOLS REGARDING SYSTEM STRUCTURE AND CONTROL STRATEGIES

C. Steiert, Ju. Weber, J. Weber
Keywords: Machine tools | Fluid Cooling Systems | Thermal Behavior | Energy Efficiency | Closed Loop Control | Main Spindle | Experiment

IN-PROCESS MEASUREMENT AND NUMERICAL DETERMINATION OF THE TEMPERATURE IN THE CONTACT ZONE DURING SINGLE LIP DEEP HOLE DRILLING

R. Wegert, V. Guski, H.-C. Moehring, S. Schmauder
Keywords: Single lip deep hole drilling | monitoring | process temperature | in-process measurement | simulation methods

CHARACTERIZATION OF HEAT CONDUCTIVITY OF ECCENTRICALLY ROTATING HEAT PIPES USED FOR COOLING OF MOTOR SPINDLES

B. Denkena, B. Bergmann, K. Kono, R. Ishiguro, H. Klemme
Keywords: Heat pipe | Eccentric rotation | Spindle cooling | thermal conductivity