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Abstract 

Thermal effects are the most dominant source for displacements in machine tools and thus workpiece 
inaccuracies during the manufacturing process. A promising strategy to meet the ever-increasing accu-
racy requirements is the use of predictive models for, e.g., parameter and design optimizations or online 
correction of the thermally induced error at the tool center point (TCP) in the production process. However, 
these techniques require fast but precise simulations. The need for high model accuracy is in direct con-
trast to the desired real-time capabilities. Model order reduction (MOR) is an attractive tool to overcome 
this problem. A modeling toolchain, which is tailored for the effective construction of fast and accurate 
models is proposed and demonstrated, emphasizing the involved MOR step.  
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1 INTRODUCTION 

Model order reduction is a successful and mathematically 
well understood approach to overcome the runtime re-
striction of high-dimensional simulation models. The result-
ing low-dimensional models enable fast simulations while 
preserving the model accuracy. Due to often drastically re-
duced memory requirements, an implementation directly 
into the numerical control system of machine tools becomes 
a possibility. Real-time applications, like correction of the 
thermally induced TCP errors [Ihlenfeldt 2019] and online 
parameter estimation [Herzog 2016], come into considera-
tion. 

The proposed modeling toolchain, which allows for the con-
struction of detailed models in standard engineering soft-
ware, aims at high flexibility with respect to the applied tools 
and numerical methods. Consequently, we allow for several 
newly developed simulation methods as well as geometric 
and physical coupling approaches, which have strong ef-
fects on the structure of the state-space systems used for 
simulations.  

The efficiency of the new toolchain is shown for a thermal 
model of a demonstrator machine. In particular, several 
MOR methods are compared with regard to runtime and re-
duced model order. The advantages of these techniques 
are pointed out and concluding recommendations for differ-
ent use cases are given.  

The structure of the paper is shown in Fig. 1. Two coupling 
approaches, and therefore two structurally different input-

output (IO) models, will be introduced in Section 2. After-
wards, both models will be reduced by MOR methods, 
specified in Section 3. Finally the reduced models will be 
compared in Section 4. 

 

Fig. 1 : Structure of the paper divided into sections by 
model size and coupling approaches 

 

2 MACHINE TOOL MODEL 

2.1 FE Model Generation 

A sufficiently detailed CAD model of the physical object un-
der investigation is the basis of all modeling steps. After ap-
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plying necessary procedures to generate an efficient simu-
lation model, such as removal of unnecessary geometric 
details, or filling cavities, the geometry model is used to de-
fine a finite element model (FE model). For the FE model 
definition in this publication, ANSYS Mechanical is used. 

First, the geometry has to be structured into so called as-
semblies, which can move relative to each other. Each as-
sembly can consist of several subassemblies. Since every 
subassembly represents a single finite element mesh in an 
assembly, we also refer to them as parts. Every part itself 
can consist of multiple bodies. Material properties are as-
signed to every single body, i.e., one body consists of a sin-
gle material. Notice that this approach is restricted to piece-
wise constant material parameters like thermal conductivity 
and specific heat capacity. 

Boundary conditions, like fluxes are applied to the outer sur-
faces of the parts. Couplings of the thermal fields of differ-
ent parts can only exist between the outer surfaces of two 
parts and assemblies, respectively. 

To calculate the thermal field, the heat equation  

𝑐𝜌
𝜕𝑇(𝑡)

𝜕𝑡
− ∇⃗⃗ ∙ (𝜆∇⃗⃗ 𝑇(𝑡)) =  𝑞(𝑡) (1) 

has to be discretized in space using finite elements (FE) 
and approximated with a suitable time step integrator. 

The material coefficients are the specific heat 𝑐, the density 

𝜌 and the thermal conductivity 𝜆. The variable 𝑇 denotes the 

temperature at any given material point, 𝑞 represents a heat 

source and the variable 𝑡 signifies time. The application of 

the finite element method to equation (1) leads to the fol-
lowing system equation to calculate the discrete tempera-
ture vector 𝑻 at the finite element nodes, 

𝑬�̇�(𝑡) = 𝑫𝑻(𝑡) +  𝒒(𝑡), (2) 

with matrices 𝑬 (capacity matrix), 𝐷 ((negative) conductivity 

matrix) and the time-dependent load vector 𝒒. Moreover, �̇� 

denotes the time derivative of the temperature 𝑻. 

The Application Customization Toolkit (ACT) extension for 
ANSYS Mechanical allows to extend ANSYS with custom 
tools. We implemented the new toolchain with the ACT ex-
tension to define the model and generate a machine read-
able description of the continuous, coupled problem. This 
description is then fed into further tools to fulfill the tasks 
required, like generation of input-output (IO) models or sim-
ulation of the thermal field by a transient FE model simula-
tion. 

2.2 From FE to IO Model 

The state-space system (2) hides the coupling between the 
temperature fields in the conductivity matrix 𝑫 and the load 

vector 𝒒. Furthermore, the capacity and conductivity matri-

ces have block structure, where every block represents one 
part or, in other words, one subassembly. 

We wish to analyze the effect of different coupling strate-
gies on the efficiency of MOR methods. Hence we extend 
the standard state space system (1) to the block input-out-
put system 

𝑬𝑖  �̇�𝑖 = (𝑫𝑖 + 𝑵𝑖)𝑻𝑖 + 𝑴𝑖𝑗𝑻𝑗 + 𝑩𝑖𝒖𝑖(𝑡) + 𝑩𝑖,𝑦𝒖𝑖,𝑦(𝑦), 

𝒚𝑖 = 𝑪𝑖𝑻𝑖 , 
(3) 

where the vector 𝑻𝒊 represents the temperature field of the 

i-th subassembly. Most terms in this equation are quite 
standard. As before, the matrices 𝑬𝑖  and 𝑫𝑖  represent the 
block capacity and the block conductivity matrices, respec-
tively. 

The input matrix 𝑩𝑖 collects all inputs which do not depend 

on the solution temperature. These are the Neumann-type 
boundary conditions. Additionally, these matrices also con-
tain the spatial resolution of the external temperatures. For 
these columns, the inputs correspond to the external tem-
perature, scaled with the heat transfer coefficients. This in-
formation will be used in the MOR Section 3. 

The output matrix 𝑪𝒊 maps the state to the outputs, i.e. ob-

servations. These can consist of the temperature values in 
finite element degrees of freedom, average temperatures 
across sensor areas, or, as in our case, the temperature 
averages on coupling surfaces. 

The most uncommon terms are the input matrix 𝑩𝑖,𝑦 and the 

coupling coefficient matrices 𝑵𝑖 and 𝑴𝑖𝑗. These coefficients 

arise from the thermal flux coupling of the machine tools 
subassemblies. We will compare two coupling approaches 
and describe them in the following section. 

Please note that we can simplify the system into the stand-
ard block LTI (linear time-invariant) system form 

𝑬�̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡), 
𝒚(𝑡) = 𝑪𝒙(𝑡),  (4) 

where the vector 𝒙 represents the concatenation of all state 

vectors 𝑻𝑖 and the matrices 𝑬, 𝑨, 𝑩 and 𝑪 consequently are 

block matrices. Notice further that the matrix 𝑨 comprises 

the submatrices 𝑫𝑖 and 𝑵𝑖 on the diagonal blocks and the 

matrices 𝑴𝑖𝑗 in the off-diagonal blocks. The output depend-

ency is hidden in the new vector-valued input functions 
𝒖(𝑡). 

2.3 Coupling Approaches 

The coupling in the coupled system of heat equations is re-
alized by heat fluxes. The fluxes connect the temperature 
fields of the subassemblies. These fluxes in general depend 
on both temperature fields connected to the joint surface, 
which makes them time- and space-dependent. The tem-
perature field of every subassembly is defined only on the 
corresponding geometry, and particularly on the corre-
sponding mesh. Hence, these coupling fluxes require a 
coupling strategy.  

To simplify the notation, we will consider only linear cou-
pling fluxes of the form 𝒒𝑗 = 𝛼 ∗ (𝑻𝑖 − 𝑻𝑗) at a surface of the 

j-th subassembly, where the heat transfer coefficient 𝛼 is a 

constant. 

Output-Coupled IO Model 

The finite element model already contains outputs, which 
represent quantities of interest. Therefore, the simplest idea 
is to compute the average temperature at the coupling sur-
face and use that as an output. Furthermore we split the flux 
into 𝛼𝑻𝑖 and − 𝛼𝑻𝑗 . The second term leads to the standard 

surface mass matrix and constitutes the matrix 𝑵𝑖. The first 

term will use the corresponding output 𝑦𝑖 together with an 

input vector for the input matrix 𝑩𝑖,𝑦. 

We refer to this system, which uses the averaged surface 
temperature for the coupling, as the output-coupled system. 
Due to the output-coupling approach, we have at least as 
many outputs as there are coupling boundary conditions. 

FE-Coupled IO Model 

Our second coupling strategy uses the finite element ap-
proximation of the temperature fields and the mortar ap-
proach as implemented in [Bastian 2009]. 

Instead of approximating the temperature at the coupling 
surface, we treat one component as a master and the other 
one as the slave. Then we project the slave mesh onto the 
master mesh, together with the temperature field. This 
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leads to a common mesh, on which we compute the cou-

pling matrices 𝑵𝑖 and 𝑴𝑖𝑗 . 

We call the system with the FE-coupled coefficient matrices 
𝑴 and 𝑵 the FE-coupled system. Keep in mind that in this 

case we have only the desired outputs from the users, no 
additional ones. Please note, that we use the mortar ap-
proach only as a coupling approach between the tempera-
ture fields.  

Both approaches lead to differently structured LTI systems. 
The output-coupled system is block diagonal, since the cou-
pling terms are hidden in the inputs. It is this block diagonal 
structure, which gives rise to a serial time integration ap-
proach, where each block is solved at a time. 

By contrast, the FE-coupled system is a full block system, 
where the off-diagonal blocks stem from the coupling matri-
ces. That system is not solvable in a serial way and all sys-
tems have to be integrated in time at once. 

Furthermore, the heat equation belongs to the set of stand-
ard examples of stiff ordinary differential equations (ODE) 
see the third example in [Hairer 2010, Ch. IV]. And thus an 
implicit integrator has to be used. In turn, the diagonal block 
system looks advantageous. The advantage vanishes in 
case the coupling terms dominate. In that case, one has to 
reduce the time step size, or incorporate the coupling terms 
into the Jacobian matrix to retain stability. 

3 MOR FOR COUPLED MODELS 

During the process of model order reduction, an approxi-
mation of a high-dimensional simulation model is com-
puted. In direct consequence, this low-dimensional reduced 
order model (ROM) is used as a surrogate model in appli-
cations where either fast model evaluations are required or 
storage capacity is limited. Thereby, the essential infor-
mation of the dynamic behavior of the original system is 
preserved in the ROM, while redundancy is eliminated and 
so its matrix dimension is drastically reduced. For a general 
overview on MOR techniques for coupled problems see 
[Benner 2015a]. Here, we focus on those aspects relevant 
for the purpose of simulating machine tools. The value of 
MOR in this field is also presented in [Hernandes-Becerro 
2020]. 

3.1 Basic Principle 

As foundation of the system-theoretic MOR techniques 
used here, see e.g. [Antoulas 2005], [Baur 2014], an input-
output model (4) in generalized state space form is consid-
ered. The goal of projection based MOR is the identification 
of truncation matrices 𝑽,𝑾 ∈ ℝ𝑛×𝑟 to restrict the model to a 
low-dimensional subspace. The specific determination of 
𝑽 and 𝑾 is dependent on the MOR method in use. The re-

duced system of order 𝑟 ≪ 𝑛 is then obtained by 

 
𝑾𝑇𝑬𝑽�̇�𝑟(𝑡) =  𝑾𝑇𝑨𝑽𝒙𝑟(𝑡) + 𝑾𝑇𝑩𝒖(𝑡), 

𝒚𝑟(𝑡) = 𝑪𝑽𝒙𝑟(𝑡), 
(5) 

with the reduced state 𝒙𝑟 ∈ ℝ𝑟 and the output 𝒚𝑟 ≈ 𝒚 ∈ ℝ𝑝 

of the ROM. We require that the output error ‖𝒚(𝑡) − 𝒚𝑟(𝑡)‖ 

is small in a suitable norm and emphasize that the focus of 
our MOR approach lies on finding a good approximation of 
the model output 𝒚(𝑡). In turn, it does not necessarily pro-

vide an accurate approximation �̂�(𝑡) = 𝑽𝒙𝑟(𝑡) for the entire 

high dimensional state 𝒙(𝑡). 

The transfer function 𝑯(𝑠) ∈ ℂ𝑝×𝑚 with 

𝑯(𝑠) = 𝑪(𝑠𝑬 − 𝑨)−𝟏𝑩  (6) 

describes the relation between the output response 𝒀(𝑠) =
𝑯(𝑠)𝑼(s) and the input signal 𝑼(𝑠) of the system in fre-

quency domain, while assuming a zero initial state 𝒙(0) =
𝒙0 = 0. The representation in (6) is obtained by applying the 

Laplace transformation to (4) [Antoulas 2005, Ch. 5]. In the 
considered system theoretic MOR approach, the input-out-
put behavior of the reduced system is adjusted to that of the 
original model by an approximation of the transfer function 
(6).  

A second class of MOR methods should be mentioned at 
this point. In the simulation based MOR approach, repeated 
model evaluations, so called snap shots, are needed to es-
tablish the projection matrices. Well known training based 
techniques are, e.g. the Reduced Basis method and Proper 
Orthogonal Decomposition (POD), see e.g. Chapters 1-3 in 
[Benner 2017]. But these approaches show less flexibility 
towards changing load cases, compared to those used dur-
ing the reduction process, while the system theoretic MOR 
methods work independently of the concrete input 𝒖. 

Additionally, modal analysis is a widely available option in 
FE tools. While being rather successful in many mechanical 
applications, this approximation type is usually not a com-
petitive option for thermal problems, e.g. [Benner 2006]. 

In the following, a short description of two commonly used 
system theoretic MOR methods and their advantages is 
given. They differ in the way the truncation matrices 𝑽 and 

𝑾 are determined. 

Energy-Based Reduction via Balanced Truncation (BT) 

As its name implies, this method seeks to find a balanced 
realization of the system that allows the identification and 
truncation of states which are of little importance for the in-
put-output behavior of the underlying dynamical system. 
Balanced truncation is a popular reduction method due to 
some desirable features: first, the stability of the original 
model is preserved in the ROM and second, the method 
provides an a priori error bound, which can be used to de-
termine the required reduced order for a given tolerance on 
the approximation error, see (9). 

The system Gramians, see e.g. [Antoulas 2005, Ch.4], play 
an essential role in BT. They are related to the energy of 
the system: the smallest amount of energy needed to reach 

the state �̅� from a zero initial state is given by �̅�𝑷−1 �̅� and 

the expression �̅�𝑇𝑬𝑇𝑸𝑬 �̅� denotes the output energy ob-
served in a system with initial condition �̅� and no excitation. 

The states which require a large amount of energy to be 
reached and/or obtain a small amount of observation en-
ergy can be eliminated from the system. However, this con-
cept depends on the basis and therefore a basis in which 
these two concepts coincide is required. This is fulfilled in a 
balanced basis. Then the Gramians are equal and diagonal, 
and moreover, states which are hard to reach are simulta-
neously hard to observe.  

The reachability Gramian 𝑷 and the observability Gramian 

𝑬𝑇𝑸𝑬 can be determined using the following equalities  

𝑨𝑷𝑬𝑇 + 𝑬𝑷𝑨𝑇 + 𝑩𝑩𝑇 = 0, 

𝑨𝑇𝑸𝑬 + 𝑬𝑇𝑸𝑨 + 𝑪𝑪𝑇 = 0.  
(7) 

Then the states which shall be kept in the reduced model 
can be identified by the magnitude of the Hankel singular 
values (HSV) 𝝈𝑖, which are the square roots of the eigen-

values 𝝀𝑖 of the Gramians, see [Antoulas 2005, Ch. 7], 

given as 
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𝝈𝑖 = √𝝀𝑖(𝑷𝑬𝑇𝑸𝑬), 𝑖 = 1,… , 𝑛. (8) 

Note that for a balanced system realization, the HSV coin-
cide with the diagonal entries of the Gramians. It can be 
shown that the maximum of the frequency response (ℋ∞-

norm) of the error between the transfer functions of the full 
and the reduced order models is bounded above by twice 
the sum of the neglected HSVs 

‖𝑯 − 𝑯𝑟‖ℋ∞
≤ 2 ∑ 𝝈𝑘

𝑛

𝑘=𝑟+1

 . (9) 

An expression for the output error between the full and the 
ROM is obtained by 

‖𝒚 − 𝒚𝒓‖ℒ2
≤ ‖𝑯 − 𝑯𝑟‖ℋ∞

‖𝒖‖ℒ2
, (10) 

see, e.g. [Baur 2014]. Hence, we recommend to design the 
system such that the entries in the input 𝒖 stay moderately 

sized, i.e. not much bigger than one. For example, large 
constant heat conductivity coefficients should be included 
in the input matrix 𝑩. A scaling of the matrix 𝑩 according to 

the magnitude of the corresponding inputs for the reduction 
process is also an option for handling this instance. 

This reduction method is implemented for large sparse sys-
tems in the open source MATLAB® tool M-M.E.S.S. – the 
MATLAB Matrix Equation Sparse Solvers [Benner 2020].  

Moment Matching and Interpolation of the Transfer Func-
tion 

The goal of basic moment matching methods is the compu-
tation of a ROM whose transfer function interpolates that of 
the original model in some given complex interpolation 
points. More specifically, some of the coefficients of the 
Taylor expansion, the so called moments, at one or several 
expansion points 𝑠𝑖 ∈ ℂ, 𝑖 = 1,… 𝑘; of the transfer functions 

𝑯 and 𝑯𝒓 of the full and the reduced systems are matched. 

There are different variations of moment matching, which 
differ in the choice of the number and the location of the 
expansion points, as well as the number of moments to 
match. These MOR methods are based on Krylov sub-
spaces, which are typically computed via the Arnoldi and 
Lanczos algorithms (see, e.g. [Antoulas 2005]).  

A very effective algorithm, the Iterative Rational Krylov Al-
gorithm (IRKA), introduced in [Antoulas 2008] provides two 
valuable properties. The reduced transfer function 𝑯𝒓(𝑠) is 

a locally optimal approximation of 𝑯(𝑠) with respect to the 

ℋ2 norm among all reduced order systems having the same 

reduced order. IRKA iteratively and automatically adapts 
the expansion points within the reduction procedure and 
thus is easy to apply and suited for semi-automatic MOR. 
This algorithm is also implemented in M-M.E.S.S. 

In contrast to BT, there is no unconditional guarantee for 
the preservation of stability in the reduced system for the 
interpolation-based MOR approaches. Furthermore, for 
these MOR techniques no cheap to evaluate a priori error 
bound exists, which would allow for an easy adaptive com-
putation of the reduced order 𝑟. However a posteriori error 

bounds exist and the ℋ2 error can be computed with rea-

sonable effort. 

Parametric MOR 

To limit the size of this paper we restrict our considerations 
of MOR for coupled models to LTI systems. Nevertheless, 
there are several techniques to handle models with param-
eter dependent system matrices in the field of MOR, see 
e.g. [Benner 2015b], which can easily be combined with the 
methods for coupled models outlined in the next section. 
They enable the preservation of physical parameters, such 

as material-dependent heat conductivity coefficients, in the 
ROM. 

3.2 MOR for FE- and Output-Coupled Models 

The two coupling approaches outlined above have direct 
consequences on the reduction process and the dimension 
as well as the structure of the computed ROMs. In the fol-
lowing, the advantages and disadvantages of FE- and out-
put-coupled models are discussed with regard to MOR. 

Output-Coupled Model 

As the name already indicates, the coupling is established 
by contact information in the inputs and outputs of the indi-
vidual subassemblies. This approach has the advantage 
that the subassemblies can be considered as single models 
with additional internal inputs and outputs and thus can be 
reduced separately. Therefore, the ROM has the same net-
work structure as the full order model and single subassem-
bly models can be replaced separately, without the need to 
recompute the rest. Just the inputs and outputs of this sub-
stituted part have to coincide with that of the original subas-
sembly for proper contact information within the overall 
model. Furthermore, the method and parameters for the re-
duction process can be adapted to the actual requirements 
of every single subassembly. So, this approach proves to 
be very flexible. Also faster offline computation of the ROMs 
for the low-dimensional single subassemblies with dimen-

sions 𝑛𝑗 , 𝑗 = 1,… , 𝑘; compared with the reduction time for 

the whole system of dimension 𝑛 = ∑ 𝑛𝑗
𝑘
𝑗=1 , is achievable. 

However, in our experience a high number of inputs and 
outputs between subassemblies also leads to higher re-
duced orders of the separate and, consequently, the overall 
model. Thus, higher online simulation times and memory 
requirements of the reduced system have to be expected. 
This circumstance will be explained in more detail in the 
next paragraph. Moreover, the reduction process cannot 
take advantage of the relative importance of the single sub-
assemblies.  

FE-Coupled Model 

The coupling, which connects the subassemblies on the 
FE-level, is realized directly in the system matrix 𝑨 by cou-

pling blocks 𝑴𝒊𝒋, see (3). This results in the fact, that the 

subassemblies cannot be reduced separately anymore – 
rather, the overall model of the machine tool has to be re-
duced as a whole. Consequently, the computational effort 
for the reduction process is high (offline) and the subassem-
bly structure is lost in the ROM. In contrast to the output-
coupled models, the reduced subassemblies are not ex-
changeable. Therefore, a new reduction process of the en-
tire machine is required for every modification in the model 
structure. 

Due to the consideration of the internal inputs and outputs 
within the coupling blocks in 𝑨, just the external ones are 

left as model inputs and outputs. So, the total number of 
inputs and outputs of the model is much smaller than in the 
output-coupled case. This proves to be advantageous for 
the process of MOR, because the dimensions m of the input 

matrix 𝑩 and p of the output matrix 𝑪 directly influence the 
computational costs and the achievable reduced order 
within a given tolerance. This follows from two facts: first, 
the repeated solution of linear systems of equations (LSE) 
is an essential part of the reduction methods and the domi-
nant cost to solve the LSE is dependent on the number of 
model inputs and outputs. Second, the purpose of the sys-
tem theoretic MOR techniques used here has to be consid-
ered: the input-output behavior of the dynamical system is 
approximated. So, the smaller the number of inputs and 
outputs, the fewer pathways between them need to be pre-
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served in the ROM and thus the order of the reduced sys-
tem can be comparatively small. Consequently, less simu-
lation time (online) as well as less memory capacity is 
needed for the FE-coupled ROM. 

3.3 Inhomogeneous Initial Conditions 

An often neglected point in the application of system theo-
retic MOR techniques is the fact that these methods rely on 
the restrictive assumption of a zero initial condition 𝒙(0) =
𝒙𝟎 = 0. No transient system information, including the initial 

condition, is contained in the transfer function (6), which 
these MOR methods approximate. For instance, the com-
mon BT error bound (9) is assured only for systems with a 
homogeneous initial condition. The accuracy of the ROM, 
however, depends on a proper representation of the initial 
condition in the low-dimensional subspaces computed by 
the MOR routine. 

The intuitive idea to rewrite the system (4) in terms of a state 
vector �̃�(𝑡) = 𝒙(𝑡) − 𝒙0 shifted by the nonzero initial condi-

tion 𝒙0 for the reduction process, can be efficient for sys-

tems with a single a priori known initial value. However, var-
ious initial conditions may arise due to changes in the man-
ufacturing process of a machine tool. At this point it is, ob-
viously, economically not desirable to cool down the ma-
chine to the basic initial temperature at rest. If different initial 
conditions have to be considered, in a simulation with the 
ROM, other techniques should be employed. In the litera-
ture two leading methods to deal with this issue are sug-
gested.  

Augmented System 

This technique is described in [Antoulas 2011] and is based 
on an extension of the system (4) by an augmented input 
including the information on the initial condition in the sys-
tem to reduce. Following this idea, a matrix 𝑬𝑿𝟎 and a cor-

responding input 𝒖𝟎(𝑡) = 𝒛𝟎𝛿(𝑡), where 𝛿(𝑡) denotes the 

Dirac delta distribution, is added to (4). Hence, the system  

𝑬�̇�(𝑡) =  𝑨𝒙(𝑡) + [𝑩 𝑬𝑿0] [
𝒖(𝑡)

𝒖0(𝑡)
],      𝒙0 = 0, 

𝒚(𝑡) = 𝑪𝒙(𝑡) 
(11) 

is used for the computation of the ROM. It is assumed that 
the matrix 𝑿0 ∈  ℝ𝒏×𝒏𝟎 spans a subspace 𝕏 ⊂ ℝ𝑛 which in-

cludes all feasible initial values such that 𝒙0 = 𝑿0𝒛0 with 

𝒛0 ∈ ℝ𝒏𝟎. In the following, we call this approach BTX0. 

Additional System 

The idea of the augmented system is enhanced in [Beattie 
2017]. To reach more adaptability in the reduction process 
the auxiliary input is shifted to a separate system  

𝑬�̇�(𝑡) =  𝑨𝒘(𝑡) +  𝑬𝑿0𝒖0(𝑡),       𝒘(0) = 𝒘0 = 0, 

𝒚𝑥0
(𝑡) = 𝑪𝒘(𝑡). 

(12) 

As result of this splitting into two models, the systems (4) 
and (12) can be reduced individually using appropriate 
MOR settings according to the particular model require-
ments. Due to the linearity of the systems the output 𝒚𝑟(𝑡) 
of the reduced linear system (5) with initial condition 𝒙0 ≠ 0 

is a superposition of the outputs of (5) with zero initial con-
dition 𝑥0 = 0 and (12) with input 𝒖0(𝑡) = 𝒛0𝛿(𝑡). This ap-

proach is more flexible, and shows better approximation 
properties at the cost of more effort for the ROM computa-
tion and simulation due to a second ROM required for an 
appropriate consideration of the influence of the initial con-
dition to the dynamical behavior of the system. In our nu-
merical investigations in Section 4, we refer to this ap-
proach as 2Phase. 

A new variant of BT for systems with inhomogeneous initial 
conditions, which incorporates the two methods outlined 
above, can be found in [Schroeder 2020]. 

Notice that it is desirable to keep the dimension 𝑛0 of 𝑿𝟎 

small. Otherwise special MOR techniques for systems with 
many inputs, e.g. [Benner 2013], may be required, introduc-
ing an additional outer approximation step, and conse-
quently additional approximation errors. 

4 THERMAL MODEL OF A DEMONSTRATOR 
MACHINE 

4.1 Model Description 

An application of the toolchain for a simplified test machine 
can be found in [Beitelschmidt 2020]. 

To demonstrate the usage and benefits of the proposed 
methods for large, complex systems, a model of an experi-
mental machine tool, called MAX, is used. The geometric 
model with all significant assemblies is shown in Fig. 2. 
Special characteristics of MAX are its light-weight construc-
tion and sledges consisting of aluminium plates, resulting in 
potentially large thermal deformations and a displacement 
of the workpiece relative to the spindle by the movement of 
the sledges.  

After applying all necessary geometric simplifications, the 
finite element model, shown in Fig. 3, is created. It consists 
of 4 assemblies with 50 subassemblies comprising 
970 bodies, 24 materials and approximately 47 000 outer 
subassembly faces. The 4 assemblies are the machine 
frame and the three sledges. The FE mesh has 1 256 497 
nodes and 5 094 132 elements in total. The model itself is 
parametrized by about 400 functions (constants, lookup-ta-
bles, e.g.), 180 thermal boundary condition definitions and 
109 thermal contacts between subassembly faces.  

This results in an output-coupled IO model with a total num-
ber of 287 inputs and 225 outputs for all subassemblies and 
an FE-coupled IO model with 69 inputs and 11 outputs. 

 

 

 

Fig. 2 : MAX CAD model. 

spindle 

machine frame 

Y-sledge 

machine table 

X-sledge 

Z-sledge 
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Fig. 3 : The four colored assemblies of the model. The 
bright white part of the column shows an excerpt of the 

mesh. 

4.2 Comparison of the ROMs with the Full-Order 
Model 

We applied the two MOR approaches for inhomogeneous 
initial conditions explained in Section 3.3 to the output-cou-
pled as well as FE-coupled system of the thermal model of 
the demonstrator machine MAX. We used a constant initial 
temperature of 295.15 K for all nodes. The MOR method in 
use here for all model types, is Balanced Truncation. We 
computed reduced models with different truncation toler-

ances from 10−5 to 10−2 to provide an overview of the rela-

tion between reduced order and relative error in the outputs 
𝒚.  

The full- and the reduced-order IO systems were solved 
with the second-order Rosenbrock method from [Blom 
1999] with a constant time step size. Due to the constant 
coefficient matrix 𝑨, we reused the LU-decompositions over 

several time steps. 

In the following, we examine the performance of the differ-
ent reduced model types for one component 𝑦1 of the out-

puts 𝒚 by a comparison of the resulting temperature to that 

computed with the full models. Therefore, all models are 
driven by the same input function 𝒖(𝑡). The corresponding 

output face is shown in Fig. 4. 

 

Fig. 4 : Detail view on subassembly contact investigated in 

output temperature comparison of 𝑦1.  

The relative error between the reduced and the full model 
for the different truncation tolerances and reduction ap-
proaches is shown in Fig. 5 and 6, respectively. The asso-
ciated temperature profile for a fixed truncation tolerance is 

examined in Fig. 7. In addition, Tab. 1 includes the corre-
sponding maximal relative error for all outputs 𝒚, as well as 

the order of the ROMs. Notice that we chose the output 𝑦1 

which shows the largest error between ROM and full-order 
model for a detailed analysis. The error in the other output 
components is comparable or even smaller. 

 

Fig. 5: Relative error between the reduced and the full out-
put-coupled model in the first output 𝑦1. Please see Fig. 7 
for the temperature increase of the same output in time. 

 

Fig. 6: Error between the FE-coupled full model and the 
FE-coupled reduced order model in the first output 𝑦1. 

 

Fig. 7: Temperature increase with time step size 28.125 
seconds for all combinations of both coupling strategies and 
initial value approaches, but one fixed truncation tolerance. 

exchanged 
heatflux 

output face 
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While the depicted temperature increase over time with 
BTX0 is visually indistinguishable from the full solution, we 
see a slight difference using the 2Phase approach. Please 
also note the large deviation at the very beginning of the 
simulation. This deviation stems from the initial value ap-
proximation with an impulse. Therefore, the initial phase in 
the reduced models was simulated with a much finer step 
size than in the transient phase. That error in the initial 
phase seems to dominate the whole simulation and over-
lays the truncation tolerance. But using even more steps in 
the initial phase would increase the simulation time even 
more and reduce the benefit from the order reduction. 

Tab. 1 : Order of the reduced and the full models for both 
coupling strategies. Furthermore, we show the maximal 

relative error with respect to the solution of the full system. 

   2Phase BTX0 

 tol size max rel. err. size max rel. err. 

o
u

tp
u

t-
c

o
u

p
. 

1e-2 2308 1.44 1965 7.67e-02 

1e-3 3005 1.70 2515 1.57e-02 

1e-4 3707 1.73 3084 8.86e-03 

1e-5 4399 1.73 3669 8.57e-03 

F
E

-c
o

u
p

le
d

 1e-2 156 2.61e-02 138 1.18e-02 

1e-3 196 9.01e-03 174 8.85e-03 

1e-4 243 8.86e-03 216 8.80e-03 

1e-5 295 8.68e-03 262 8.70e-03 

 

In the FE-coupled case the two approaches BTX0 and 
2Phase show a comparable error behavior. Keep in mind, 
that the 2Phase system consists effectively of two reduced 
models, one with zero initial conditions and the inhomoge-
neous inputs (4) with 𝒙0 = 0 and the second for the inho-

mogeneous initial conditions (12), which explains the differ-
ences in size. However, in the output-coupled case we ob-
serve a much better performance for the BTX0 approach. 

Please note the drastic reduction in size for the FE-coupled 
approach. The storage needed for the system matrices of 

the BTX0 reduced FE-coupled model for tolerance 10−3 is 

just about 1MB. 

Furthermore, we wish to investigate the performance of the 
ROMs according to the simulation time while considering 
the effort of the reduction process. We show the total 
runtime of the time integration in Tab. 2 including the times 
for the application and decomposition of the Jacobian ma-
trix. Interestingly, the solution of the full models is domi-
nated by the applications of the decomposed Jacobian, 
whereas the reduced models are dominated by the decom-
position itself. Furthermore, the strong coupling between 
the subassemblies forced us to integrate the systems of all 
subassemblies together in the output-coupled case. 

Tab. 3 contains the necessary offline computation time for 
the generation of the various ROM types. Note that the dif-
ferent truncation tolerances have a negligible effect on the 
reduction time for BT. We see that for the output-coupled 
case and using BTX0, the combined offline and simulation 
time is shorter than only one simulation of the full model. In 
the other cases, MOR gains when at least 3 to 4 model sim-
ulations are needed. 

The runtimes for the reduced order models in combination 
with the FE-coupled model, shown in Tab. 2, are not a 

measurement error but emphasize the value of model order 
reduction.  

Tab. 2: Total wall clock time for the simulation in seconds. 
The column tol represents the magnitude of the BT toler-

ance. 

 tol full 2Phase BTX0 

o
u

tp
u

t-
c

o
u

p
le

d
 exact 7279.39 - - 

1e-2 - 517.04 348.24 

1e-3 - 946.13 619.57 

1e-4 - 1573.69 1077.72 

1e-5 - 2700.51 1693.94 

F
E

-c
o

u
p

le
d

 

exact 6600.72 - - 

1e-2 - 2.65 2.23 

1e-3 - 3.91 3.12 

1e-4 - 5.48 4.39 

1e-5 - 7.44 6.06 

 

Tab. 3: Offline computation time in seconds of the ROMs 
for the different model types. 

 2Phase BTX0 

output-coupled 7017 6464 

FE-coupled 23379 16804 

 

The observations in Section 3.2 in conjunction with the re-
sults given in Tab.1-3 clearly illustrate the importance of a 
conscious choice of the coupling strategy according to the 
intended use of the resulting ROM. It can be seen, that it is 
advisable to use a hybrid approach, which combines the 
benefits from both coupling approaches. Especially in the 
case of a relative movement between some parts of the 
model, output-coupling is recommended between these 
parts to avoid a parameter dependence in the system ma-
trix 𝑨, or the necessity for switching models. For a faster 

reduction and simulation process, it is recommended to 
consider the movement either in the input matrix 𝑩 or the 

inputs 𝒖(𝑡). For more information on the modeling and 

treatment of moving loads in the field of model order reduc-
tion see [Benner 2014]. An approach of BT for linear time-
varying systems can be found in [Lang 2016]. 

On the other hand, FE-coupling is suggested to merge sub-
assemblies with contact without relative movement to en-
sure a reasonable size of the reduced model. 

5 SUMMARY AND OUTLOOK 

The proposed methods along with the example simulation 
of a large, complex machine tool show the potential of the 
usage of MOR methods to reduce the simulation times and 
required storage capacity while preserving model accuracy. 
Especially the results for the reduced FE-coupled models 
are noteworthy. 

The proposed workflow is not only applicable to machine 
tool models, but also appropriate for a wide range of ther-
mal system simulations. Furthermore, the extension to 
more physical domains like elasticity is possible. Most im-
portantly, the workflow allows the description of multi-phys-
ics problems. The description of thermo-elastic problems is 
already possible and published in [Beitelschmidt 2020]. 
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The next steps include the incorporation of the elastic be-
havior into the simulation workflow to allow the online cal-
culation of machine deformations. 

The 2Phase method leads to an additional ODE for the in-
homogeneous initial values. Our simulation results suggest 
that this block should be treated in a special manner. Par-
ticularly methods of higher order might be favorable in that 
framework.  
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