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Abstract 

Up to 75 % of the overall work piece error can be caused by the thermo-elastic behavior of the machine 
tool. Therefore, correction methods based on machine-integrated sensors were intensively researched 
during the last years, in order to determine the error of the Tool Center Point (TCP) parallel to the process. 
One of these methods includes the integral deformation sensor (IDS), which detects the deformation 
along the length of a structural component of the machine. The error of the TCP is modelled based on 
the measured structural deformations, a mechanical model of the structural parts and a kinematic model 
of the machine tool. 
Currently, the sensor setup for specific machines is usually defined by an expert with the help of his or 
her domain knowledge. There are existing mathematical methods for optimal sensor positioning. The aim 
of this work is the evaluation of the expert positioning versus the mathematical methods. The parameters 
to be varied are the lengths and positions of the IDS. Criteria for the evaluation are the achievable 
accuracy of the TCP error prediction and the sensitivity to small variations of the optimal position, as they 
might occur during the installation. 
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1 INTRODUCTION

The majority of research and industry has focused on 
temperature sensors as input variables for thermal error 
compensation in machine tools. Although some 
approaches make use of Fiber-Bragg strain sensor 
networks, CNC-internal data like motor currents or even 
gather additional intermittent measurements of the TCP 
error, optimal sensor positioning methods have been 
researched only for temperature sensors. The diversity of 
physical and phenomenological modeling methods has 
led to an analogous diversity of optimal sensor positioning 
methods.  
Predominantly, experimental data and experience from 
trial-and-error have been the base of sensor positioning 
methods, both in industry and in research. This 
information is then fed into statistical and 
phenomenological models that strive to find the optimal 
correlation between TCP error and temperature sensors. 
In their simplest form, such methods include regression 
analysis [Liu 2020]. More complex and sophisticated 
phenomenological methods include fuzzy clustering and 
grey correlation modeling [Wei 2018], density peaks 
clustering [Zhou 2019] or nature-inspired optimization like 
the binary bat algorithm [Tan 2020]. As a result, all 

methods are dependent on the effort invested to run as 
many and as diverse loading cases as possible.  
In industry, only large (in business size) machine tool 
manufacturers have been able to run experimental 
investigations for the purpose of identifying the optimal 
temperature sensor positioning. On the other hand, 
smaller manufacturers rely on experienced machine tool 
designers and simplified thermo-mechanical FEM 
simulations based on the power specifications of the drive 
components. 
The integral deformation sensors (IDS) can significantly 
contribute to the determination of the thermo-elastic 
behavior of machine tools and subsequently the precision 
of the manufactured parts. A physical model, based on 
mechanical modelling and the kinematics of the machine 
tool, calculates the Tool Center Point (TCP) error in real-
time parallel to the machining process [Brecher 2018].  
The determination of the optimal sensor positioning can 
reduce the amount of sensors needed to reach the same 
prediction accuracy. This work concentrates on the 
reduction of the uncertainty propagation from the 
measurement uncertainty of the IDS data to the predicted 
TCP error. The sensor measurement can be seen as an 
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experiment. Hence, the optimal sensor positioning is an 
example of an optimal experimental design (OED). The 
review [Atkinson 1996] showed, that the OED methods 
are quite successful in several disciplines. 

There are two possible applications for the IDS system. 
Either the system is applied to a machine in the context of 
a new design where there are extensive degrees of 
freedom to enable an optimal positioning of the system. 
Or the IDS system is retrofitted to an existing machine. In 
this case, the choice of possible mounting surfaces is 
limited by the existing construction. This work introduces 
the mathematical fundamentals for both cases, but 
focusses on the retrofit in the measurement results 
section. 

The performance of the system with regard to the 
correction of thermo-elastic errors is optimized here with 
respect to two factors. These are the prediction accuracy 
of the model and the measurement uncertainty of the 
errors. Both factors are significantly influenced by the 
positioning of the sensors. 

Therefore, the aim of this paper is to compare different 
optimization methods for IDS positioning. In section 2 the 
TCP error prediction based on IDS is presented and an 
experience-based optimization method is compared with 
a mathematical black-box optimization method. The 
mathematical approach developed in [Brecher 2020] was 
extended for this purpose to enable the evaluation of the 
error in the work space. Results are presented for a 
design phase implementation of IDS and a retrofit of IDS. 
Chapter 3 presents a first experimental validation of 
different calculated measurement setups. The summary 
and the outlook in chapter 4 conclude this work. 

2 METHODOLOGY 

Where to place a sensor, and what quantities should be 
measured are important questions to directly observe the 
machine behavior. In general the direct measurement of 
the TCP error is not feasible, therefore the measurement 
of displacements or other quantities is suitable, as every 
measurement requires a model using the measured 
values as inputs in order to approximate the TCP error. 

Every model is based on assumptions. In this case the 
simplification of the machine structure and homogeneous 
material properties for all components are assumed. 
These assumptions are the main source of model errors. 
Consequently, the computed TCP error is always slightly 
perturbed, even in the case of hypothetically exact 
measurements. 

Every model also contains parameters. These may 
include material parameters, or assumptions on them, 
and in our case, the sensor positions are also part of the 
model parameters. 

At the same time a sensor is also not perfect. As a result, 
the actual model input is always a superposition of the 
nominally measured value and a measurement error. 
These measurement errors are part of the model 
calculations, hence it is a property of the model whether 
these measurement errors are amplified, damped or stay 
in the same in magnitude. 

The paragraph 2.1 explains the modelling of the TCP 
error based on the IDS inputs. This is the so called 
prediction model. The subsequent paragraphs 2.2 and 2.3 
explain two approaches to obtain the optimal sensor 
positioning in two different scenarios. First the positioning 
based on expert knowledge is discussed. Second 

approach uses mathematical tools to classify and 
optimize the positioning. 

Both approaches can be applied to new machine designs 
and retrofit of an existing machine. 

2.1 Integral deformation sensors and modeling of 
the thermally induced TCP error 

The measuring principle of the IDS for the detection of 
thermally induced TCP errors in machine tools relies on 
reference rods made of carbon-fiber reinforced plastic 
(CFRP) that are mounted on the surfaces of the passive 
machine tool structure. Since a machine tool performs a 
relative motion between tool and work piece, components 
can be categorized as active components performing 
such motions, e. g. guides and driving systems, and 
passive components, such as a machine bed and a 
moving column, whose purpose is to withstand the loads 
during the manufacturing process. Using an appropriate 
displacement transducer, the relative elongation in the 
direction of the reference rod can be measured. Taking 
into account that CFRP features a very low thermal 
expansion coefficient of down to ­0.1 μm/m/K, depending 
on the direction of the carbon fibers, the detected 
elongation is characteristic for the deformation of the 
machine tool structure in the direction of the reference 
rod.  

With a sufficient number of well-positioned IDS and with 
a suitable deformation model, it is possible to determine 
the displacement field of the machine tool structure. An 
example to explain the combination of several IDS is a 
two-dimensional beam, supported on one side. In case of 
bending due to thermal load, the beam fibers on the one 
side of the neutral fiber will expand, while the beam fibers 
on the other side will contract. An IDS on the expanding 
beam fibers and an IDS on the contracting beam fibers 
can thus identify the bending inclination and deflection of 
the beam. 

In detail, assuming linear material properties, a machine 
component expands proportionally to the temperature 
difference in the longitudinal direction. The change in the 
x dimension ∆𝑙𝑥 is dependent on the time t, the coordinate 

x, the coefficient of linear thermal expansion 𝛼, the 

temperature change in x ∆𝑇𝑥 and the initial length 𝑙0, see 

Eq. 1 and Fig. 1. 

∆𝑙𝑥(𝑡, 𝑥) = 𝑙𝑥(𝑡, 𝑥) − 𝑙𝑥(𝑡 = 0, 𝑥) = 𝛼 ∙ ∆𝑇𝑥(𝑡, 𝑥) ∙ 𝑙0          (1) 

The proportionality factor depends on the initial length 𝑙0 

and the thermal expansion coefficient 𝛼 of the material of 

the machine tool structure, which is usually mineral 
casting or cement concrete based composite 
(11 μm/(m•K)). It is evident here, that the CFRP reference 
rod mounted in the direction of elongation expands less 
than the machine tool structure. However, the 
temperature gradient can also show a linear, quadratic or 
arbitrary behavior, so the temperature profile is integrated 
over the component length 𝑙0, see Eq. 2. 

∆𝑙𝑥(𝑡, 𝑥) = 𝛼 ∙ ∫ ∆𝑇𝑥𝑑𝑥
𝑙0

0
  

              = 𝛼 ∙ ∫ (𝑇(𝑡, 𝑥) − 𝑇(𝑡 = 0, 𝑥))𝑑𝑥
𝑙0

0
                (2) 

 

Fig. 1: A simple example of linear expansion due to a 
longitudinal temperature profile 

y

l0
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Consequently, the IDS hence measure directly the left 
side of the aforementioned equation, which is defined by 
the authors as integral deformation. 

In addition, a temperature profile along the cross section 
of a machine tool component ΔTy leads to two further 

deformations. The bending inclination 𝜃(𝑥) and the 
bending deflection Δy. Both values depend on the height 
of the cross-section H, see Eq. 3 and 4 as well as Fig. 2. 

∆𝑦(𝑥) = ∫ 𝜃(𝑥)𝑑𝑥
𝑙0

0
= 𝛼 ∙ ∬

𝑇(𝑦2)−𝑇(𝑦1)

𝑦2−𝑦1
𝑑𝑥2𝑙0

0
  

          = 𝛼 ∙
∆𝑇𝑦

𝐻
∙

𝑙0
2

2
                   (3) 

 

𝜃(𝑥) = ∫ 𝑑𝜃(𝑥)𝑑𝑥
𝑙0

0
= ∫

𝑑𝑙𝑥(𝑦2)−𝑑𝑙𝑥(𝑦1)

𝑦2−𝑦1
𝑑𝑥

𝑙0

0
  

        = 𝛼 ∙ ∫
𝑇(𝑦2)−𝑇(𝑦1)

𝑦2−𝑦1
𝑑𝑥 

𝑙0

0
= 𝛼 ∙ ∫

∆𝑇𝑦

𝐻
𝑑𝑥

𝑙0

0
= 𝛼 ∙

∆𝑇𝑦∙𝑙𝑥

𝐻
     (4) 

If two IDS are positioned on both sides of the neutral fiber 
of the beam as described above, such deformations can 
also be mapped. In this case, the height of the cross-
section H influences the proportionality factor, i.e. the 

higher the cross-section, the smaller is the bending for a 
given temperature profile.  

 

Fig. 2: A simple example of bending due to a cross-
sectional temperature profile 

Therefore, each additional IDS, depending on the overall 
sensor positioning, can measure directly or determine 
indirectly an additional degree of freedom for the total 
deformation of the machine tool component. For example, 
with IDS arranged in parallel, structures that allow the 
assumptions of the Euler-Bernoulli beam theory can be 
mapped with a one-dimensional beam model, for which 
all further degrees of freedom can be neglected. Most of 
the machine components in milling, turning and drilling 
machining centers meet these assumptions because they 
have one significantly longer dimension. 

Positioning additional IDS perpendicular to those for an 
Euler-Bernoulli beam in one additional direction, two-
dimensional plate models according to the Love-Kirchhoff 
assumptions can map the deformation field of the 
machine tool component accurately. Another use of 
additional perpendicular IDS is the detection of shear 
deformations in case that only the Timoshenko 
assumptions can be met for a beam or the Mindlin-
Reissner assumptions for a plate. 

Nevertheless, it is very important to note that the accurate 
application of such models also requires a reliable 
definition of the mechanical boundary conditions of the 
machine tool components. For example, the same IDS 
measurements can lead to a different deformation field for 
a beam supported on one side in comparison to a 
cantilever beam. This however is also the reason why the 
deflection along the beam is partly known before taking 
the IDS into consideration. The mechanical boundary 
conditions allow only a pre-defined set of deflection 

curves, which vary depending on how the thermal load 
influences the structure. Consequently, the task for the 
IDS and their positioning is closely related to the 
mechanical boundary conditions, such as the fixation 
(clamped beam or simply supported beam) and free 
stress, of each machine tool component. 

2.2 Experience based optimal positioning 

The combined measurement uncertainty of the IDS 
amounts 1,3 μm/m [Brecher, 2018]. It is important to note 
that the measurement uncertainty is dependent on the 
length of the IDS, since it is partly determined by the true 
thermal expansion of the used CFRP reference rod. The 
first guideline is therefore to keep the IDS length as low 
as possible.  

On the other hand, the measurement principle described 
in section 2.1 stipulates that the IDS measure the integral 
deformation along their length. This means that the IDS 
signal contains information about the integral of the 
temperature profile between its two mounting points. The 
deformation outside of this area is thus determined 
indirectly, based on the overall deflection curve permitted 
by the mechanical boundary conditions. Therefore, the 
second guideline dictates that the indirectly determined 
part of the deflection curve should be also kept at 
minimum.  

It is hence evident that the experience based optimal 
positioning constitutes a compromise between these two 
guidelines. However, the main goal of this approach is a 
reliable prediction accuracy. The second guideline is 
therefore prioritized in this approach, as it improves the 
model robustness. 

A simple example can illustrate the reasoning behind this 
priority setting. It is common in conventional, middle-sized 
machine tools to have axes longer than 1 m. In order to 
gather information through the entire travel length of the 
machine axes, at least one of the IDS should be longer 
than 1 m. This automatically leads to at least one input of 
the prediction model having a measurement uncertainty 
of more than 1.3 μm. 

Previous theoretical investigations have shown, that the 
propagation of this uncertainty to the TCP error can be 
amplified significantly through the lever arms of the 
rotational error component of the machine tool axes 
[Riedel 2017]. However, the uncertainty propagation 
through the translational error components, such as the 
positioning error or the straightness error, has shown no 
significant amplification in several machine tool 
kinematics. Depending on the machine tool size and 
kinematics, the 2σ combined uncertainty of the TCP error 
prediction from translational error components was 
smaller than 5-10 μm. 

As a result, the experience based optimal positioning can 
lead to a fast and reliable prediction accuracy based on 
the given constraints of the available installation space on 
the machine tool structure, the mechanical boundary 
conditions of each component and the amplifying lever 
arms of the machine tool kinematics. However, a fast 
estimation of the optimal sensor positioning requires 
experience with the commissioning and modeling of the 
IDS and a reliable definition of the mechanical boundary 
conditions of the machine tool components.  

These two conditions often contradict each other, since 
information about the mechanical boundary conditions of 
the machines are not always available. It is common to 
have little information about the true mechanical 
constraints of the real structure, which in turn limits the full 
potential of the IDS. Since both positioning approaches 

y ϴ(x)
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are based on the prediction model, this fact limits them as 
well. 

2.3 Mathematical approach for optimal positioning 

The mathematical approach developed in [Brecher 2020] 
was extended here to enable the evaluation of the error in 
the work space. The mathematical approach is based 
completely on the model properties and the machine 
geometry. Therefore the model is briefly described and 
the optimization criteria is derived from a statistical point 
of view. 
The model approximates the component deformation in 
local coordinates and combines the local deformations 
through a kinematic chain to the global displacements. 
The model is the linear equation, see Eq. 5. 
𝑈{𝑇𝐶𝑃}(𝑥𝐼) = 𝑨𝒊 ∗ 𝑠,                  (5) 

where 𝑈{𝑇𝐶𝑃}(𝑥𝐼) represents the approximated TCP error 

in the point 𝑥𝐼. The matrix 𝑨𝒊 is the coefficient matrix of 
the linear system and contains all model parameters. 
These coefficients depend particularly on the machine 
pose as well as the sensor positions. From a statistical 
point of view, independent normally distributed sensor 
values are considered, see Eq. 6. 
𝑠 = 𝑁(�̅�, Σ)                    (6) 

with mean �̅� and diagonal covariance matrix Σ. 

Furthermore the sensors’ covariance depends linearly on 
the sensor lengths. Thus the covariance of the TCP error 
depends indirectly on the sensor lengths via the model 
coefficients 𝐴𝑖 and additionally the sensor covariance 

matrix Σ, see Eq. 7. 

𝐶𝑇𝐶𝑃(𝑥𝑖) = 𝐴𝑖
𝑇Σ𝐴𝑖                  (7) 

The point 𝑥𝑖 is fixed. The covariance matrix 𝐶𝑇𝐶𝑃 defines 

the shape of confidence ellipsoids. Thus the roots of the 
eigenvalues 𝜆𝑖,1 of 𝐶𝑇𝐶𝑃(𝑥𝑖) describe the lengths of the 

confidence ellipsoid’s semi-axes, and the eigenvectors 
determine the axes’ directions. In analogy to 
[Atkinson 2007] the three optimality criteria are defined 

1. The A-criterion considers the average squared axis 
length, see Eq. 8. 
1

3
(𝜆𝑖,1 + 𝜆𝑖,2 + 𝜆𝑖,3)                 (8) 

2. The D-criterion uses the determinant and it can be 
interpreted as a measure for the confidence 
ellipsoid’s volume, see Eq. 9. 
det(𝐶𝑇𝐶𝑃(𝑥𝑖)) =  𝜆𝑖,1𝜆𝑖,2𝜆𝑖,3                 (9) 

3. The E-criterion uses the maximal (squared) axis 

length, see Eq. 10. 

max( 𝜆𝑖,1, 𝜆𝑖,2, 𝜆𝑖,3)               (10) 

Please note that the A- and D-criterion define a 
differentiable function, whereas the E-criterion is not 
differentiable when two axes have the same length. 
Nevertheless the E-criterion is chosen to minimize the 
maximal amplification of the measurement errors. 

At this point, a criterion for the optimal sensor positioning 
for one point 𝑥𝑖 in the work space is defined. The next step 

includes the whole work space, which renders the 
optimized positioning robust against movements of the 
TCP. For the presented case this means that all possible 
positions of the TCP are minimized concerning the worst 
result. The work space is therefore approximated with ten 
points for all coordinates. Afterwards the eigenvalues 𝜆𝑖,1 

…𝜆𝑖,3 are stacked in one 103 * 3 sized vector. The 

optimization aims at minimizing the maximum of all 
eigenvalues. 

The optimal sensor positioning is a constrained 
optimization problem, where the maximum of the 
eigenvalues is the objective function. The constraints of 

the optimization problem are the allowed lengths and 
positions of the sensors. This work focusses on the case, 
where all sensors are placed at the machine’s surface.  

The next two sections describe the different constraints 
from the scenarios and the consequences for the 
optimization approach. Both scenarios were implemented 
in the optimization toolbox IpOpt [Wächter 2002]. The 

gradients of the eigenvalues were approximated with a 
second order finite difference stencil and the Hessian was 
approximated using the limited memory hessian 
approximation formula BFGS (Broyden-Fletcher-
Goldfarb-Shanno) [Fletcher 2013]. 

2.4 Positioning during the design phase 

In the machine’s design phase, the designer defines the 
accessible parts of the machine surface. Several load 
cases, and their consequences for the work space, can 
be considered with numerical simulations. These load 
cases determine the model accuracy and therefore the 
efficiency of the sensor measurement. 
The previous section explained the cost function of the 
sensor optimization problem. This section extends the 
optimization problem by the constraints.  
Clearly, the maximal length of the sensor must not exceed 
the machine component’s length, and it must not fall 
below the lower bound 𝑙𝑓𝐿𝐶, which is a small multiple of 

the component length 𝐿𝐶. This lower bound prevents a 

high model error due to the loss of information for non-
captured machine tool regimes. 
Besides the sensor lengths, the possible sensor positions 
is constrained to the machine surface. During the design 
phase, it is allowed to place the sensor everywhere. 
Therefore the best possible positioning from that 
consideration is expected. 
Afterwards the sensors are (virtually) placed at the 
expert’s position to start at a useful initial value. Other 
useful starting values are the centers of the surfaces, or 
even solutions from previous positioning. Keep in mind 
that numerical methods often depend on the initial values 
to obtain a fast convergence. This time the initial values 
correspond to the initial positioning, see Figure 3. 
Whereas the optimization criterion is the maximal squared 

axis length, the figures depict 𝑆 =  √max (𝜆𝑖,1, 𝜆𝑖,2, 𝜆𝑖,3)  the 

length of the longest axis in every point in the work space. 

 

Fig. 3: Initial expert sensor positioning in design phase. 
Every sphere represents one point in the workspace. 

Afterwards the optimization is performed with the 

component length factors 𝑙𝑓 = 0.3 and 𝑙𝑓 = 0.7 to obtain 

the maximal roots of the eigenvalues as depicted in the 
Figures 4 and 5 respectively. Interestingly, the 
optimization always led to the minimal possible sensor 

S
 [

µ
m

]



 

MM Science Journal | 2021 | Special Issue on ICTIMT2021 

4632 

length for all rods. The fixed sensor length are used to 
prevent a minimization of the model error by reducing the 
length-dependent sensor uncertainty. 

 

Fig. 4: Robust optimal sensor positioning with lf = 0.3 
with mathematical approach  

All three figures use the same color scale for easier visual 
comparison. Clearly the initial positioning has the largest 
domain with red spheres. This indicates a quite large 
optimization criterion and can be interpreted as the 
longest covariance ellipsoid axes respectively TCP 
uncertainty. Furthermore the smaller sensor length leads 
to the (theoretically) smallest covariance ellipsoids, hence 
to the most accurate prediction of the TCP error. 

As the uncertainty of the prediction model is dependent 
on the IDS length, the authors assume the optimization 
method minimizes the IDS length in order to reduce the 
prediction uncertainty. 

 

Fig. 5: Robust optimal sensor positioning with lf = 0.7 
with mathematical approach 

2.5 Retrofitting the IDS to the surface 

This section focusses the retrofit of the IDS. In this case 
suitable and accessible mounting positions are needed. 
This adds several constraints: 

 Parts of the surface are not accessible at all. 

 Parts of the surface have no direct connection to the 
machine structure and therefore are not useful for direct 
displacement measurement (e. g. hoods). 

 Some surfaces of the machine are occupied by cables, 
piping and other equipment. Mounting the sensors there 
is not possible or too time consuming. 

These additional constraints have to be incorporated into 
the optimization strategy. Furthermore the positioning of 
the sensors is limited to the surface of the machine which 

implies geometric constraints. The correct identification of 
the available surfaces is additionally restricted by the 
accessibility of the surfaces. It can be limited by e. g. 
hoods or mounting points cannot be accessed with the 
necessary tools. The limited installation space, especially 
in the lower parts of the machine tool are depicted in 
Fig. 6. The available surfaces are colored. 

 

Fig 6: Limited installation space (colored) 

3 RESULTS AND COMPARISON 

In this section, the thermally induced TCP error is 
predicted based on the experience-based sensor 
positioning and the mathematical-based optimal sensor 
positioning for a specific thermal axis load. The results are 
then compared with the measured TCP error. All other 
parameters of the prediction model remained constant for 
both predictions, so the difference arises from the sensor 
positioning only.  

For this purpose, IDS for both positioning methods were 
installed on the machine tool demonstrator, which is a 
horizontal-spindle machining center with a tCYXbZBw 
kinematic according to ISO10791-6 [ISO 1998]. To enable 
the parallel installation minor modifications were made for 
both placments. The resulting covariances respectively 
uncertainties of the installed setups are depicted in Fig. 7. 

 

Fig. 7: Results for the retrofit of the IDS of the 
demonstrator machine 

The advantage of the mathematical placement of lower 
covariances respectively uncertainties is not given for this 
case of a retrofit. The authors attribute this to the very little 
installation space limiting the freedom of the optimization. 
In addition, the definition of the accessible surfaces was 
highly iterative and the installation process was quite 
difficult, as many surfaces were not available. 

An exemplary photo of the parallel installation is depictet 
in Fig. 8 together with an assignment of the location of 
installation.  

S
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µ
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Fig. 8: Exemplary IDS installation 

The linear motion of its X-axis was selected as thermal 
load, as axis loads cause relevant TCP errors. Further 
thermal loads will be investigated in the future. The test 
cycle consists of two periods of time: 24 hours of axis 
cycling with a feed rate of 17.500 mm / min and 24 hours 
of cooling down due to standstill. As designated in the 
[ISO 2007] norms, the machine’s dives control remained 
enabled for more than 24 hours before the experiment, 
giving sufficient time to the structure to reach a steady 
state before the load cycle started. 

A static R­test equipment was used for the continuous 
recording of the TCP error during the experiment 
[Weikert 2004]. The relative displacement between the 
measurement head of the R­test equipment and the 
reference ball mounted on the load unit on top of the work 
piece table could be measured in parallel to the axes of 
travel of the machine, see Fig. 9. As a result, the tilt and 
the rotation around the X and Y could not be estimated. 
In practical terms, this allows to evaluate the effect on the 
prediction of the positioning accuracy. Measurements of 
translational errors of several points in the work space 
where conducted. The most significant results are 
presented here. A further step, including the tilt and 
rotation errors is part of ongoing work. The position of the 
measurement setup is at X -141 Y 609 Z 500 mm in 
machine coordinates. The setup is depicted in Fig. 9. 

 

Fig. 9: R-test Measurement setup 

The machine door was closed during the experiment, in 
order to isolate the R-test equipment from the ambient 
conditions of the workshop. Despite of its relatively large 
size (850 x 700 x 800 mm), the demonstrator machine tool 

is closed by covers from all sides, even from the top. As 
a result, this machine tool needs significantly more time 
to heat up or cool down or get affected by the ambient in 
comparison to most modern middle-sized machine tools, 
which are often not covered up on top. 

As recommended in Annex D in the ISO 230-3 norms, a 
low-pass filter was applied on the signals of the TCP error 
measurement. In addition, other mechanical and thermal 
effects with a higher frequency, such as the effect of 
opening the machine door for a few minutes, are not of 
interest for these investigations. Hence, a first order 
Butterworth filter with a cutoff-frequency corresponding to 
a period of 2 minutes was applied on the raw signal with 
a sampling rate of 1 second.  

In order to estimate the measurement uncertainty of the 
applied R-test procedure in the described experiment, the 
following influences are considered:  

a) uncertainty of gauging a reference ball up,  
b) influence of temperature changes on the 

measurement equipment ut and  
c) influence of temperature changes on the reference 

ball and its holder during the measurement ub.  

The uncertainty budget of the TCP error measurement is 
listed in Table 1. The first part up has been determined by 
the manufacturer with 0.5 μm. The second term ut is also 
given by the manufacturer with a thermal expansion 
coefficient of 0.01%/K. Finally, the third part can be 
calculated using the thermal expansion coefficient of the 
work piece table material (cast iron – 11 μm/m/K), the 
load unit material (steel – 11 μm/m/K) and the reference 
ball holder material (invar steel – 1.2 μm/m/K) and the 
total length of 400 mm. A temperature change of 1 K 
during the experiments can thus provoke up to 4.8 μm of 
distance change. Considering the recommended divisors 
in [ISO/IEC 2008], the combined uncertainty is therefore 
4,70 μm. The IDS uncertainty for the expert / optimized 
positioning is 2,9 μm / 2,7 μm (Z), 2,6 μm / 8,94 μm (Y) 
respectively 3,8 μm / 6,0 μm (Z) for 95% confidence 
interval of the results of this chapter. 

Tab. 1: Contributions to measurement uncertainty. 

Source  Probing Device Ball Combined 

Value  1 μm 0.0004 μm 8,1 μm - 

Distribution 
 

Normal 
Rectangula

r 
Rectangul

ar 
- 

Divisor (k)  2 √3 √3 - 

Sensitivity  1 1 1 - 

Uncertainty  0.5 μm 0.00023 μm 4.67 μm 4.70 μm 

Symbol  up ut ub uc 

Method  measured estimated estimated estimated 

The work piece table (not depicted in the figures) was also 
taken into account in this estimation, because this 
machine component was not included in the sensor 
positioning. The purpose of these experimental 
investigations is to compare the measured TCP error with 
the prediction based on two sensor positionings. Since 
none of them contains any information about the work 
piece table, it is suitable to include this component’s 
behavior as part of the measurement uncertainty. This 
way, the estimated measurement uncertainty contains all 
effects that the prediction cannot take into account. The 
combined measurement uncertainty is not depicted in Fig. 
10 and Fig. 11, in order to keep the clarity of the diagrams 
intact. Since the measurement uncertainty of the IDS is 

expert IDS

optimal IDS

R-test

table

load

unit
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dependent on the true thermal expansion coefficient of 
the used CFRP rods, a longer IDS is automatically related 
to a higher measurement uncertainty. The mathematical-
based sensor positioning contains IDS with a length of 
715 mm, while the experienced based sensor positioning 
includes IDS with lengths ranging from 968 mm to 1.936 
mm. The method used to derive the prediction uncertainty 
of the model due to uncertainty propagation from the IDS 
is explained in [Riedel 2017]. 

The prediction of the experience based sensor positioning 
Pe is compared with the measured TCP error in Fig. 10. 
The prediction with the mathematical based sensor 
positioning Pm is compared with the measured TCP error 
in Fig. 11. The shaded area between the measured and 
the predicted TCP error is drawn to facilitate the 
comparison. It is evident that the prediction Pm follows the 
trend of the measured TCP error in Z­direction more 
consistently than the prediction Pe, although not so 
consistently in X-direction.  

 

Fig. 10: Comparison of measured TCP error with the 
TCP error predicted by the experience-based sensor 

positioning, as depicted in Figure 3. 

 

Fig. 11: Comparison of measured TCP error with the 
TCP error predicted by mathematical-based optimal 

sensor positioning, as depicted in Figure 5 

A more detailed investigation of the predicted axis error 
components that leads to the prediction of the overall TCP 
error indicated that the discrepancies of both methods 
originate from angular errors. 

In summary, a worse prediction of the overall TCP error 
was not by either of the two sensor positioning methods 
was not a result of missing information, but one of false 
interpretation. It is also evident that Pe was better at the 
prediction of the X-axis, located at the rear side of the 
machine base, while Pm was better at the prediction of the 

Y-axis, located at the moving column. As a consequence, 
the mathematical-based optimal sensor positioning has 
led to better results and the expected smaller 
uncertainties of the prediction model, but not for all 
components of the demonstrator machine tool 
investigated in this paper. 

Another significant factor to consider is that this test was 
executed only on one point in working space. Since the 
expected improvement of the mathematical sensor 
positioning is also dependent on the working space 
location, a repetition of the presented experiment with 
measurement that comprises angular errors as well can 
provide more insights to compare the two sensor 
positioning methodologies. 

4 SUMMARY AND OUTLOOK 

In conclusion, the proposed sensor positioning 
methodologies exhibit the following properties:  

a) The full potential of the mathematical approach to 
improve the prediction accuracy can be used during the 
design phase of a machine tool. In this case, the 
moderate effort required for the mathematical approach 
well fits the time frame of the design process.  

b) The use of this method for a retrofit cannot be 
recommended with respect to the presented 
demonstrator machine. According to the authors opinion 
applications with larger available installation space could  
lead to an improvement in comparison to experience 
based sensor positioning, if they do not necessitate an 
iterative installation procedure to apply the optimal 
positioning..  

c) The expert based approach is mainly focused on fast, 
but reliable results under the given installation conditions 
of the machine tool.  

However, using shorter IDS has shown a good potential 
for some configurations presented in this paper. The 
reduction of the TCP uncertainty due to shorter IDS length 
poses the question what IDS length can be considered 
the optimal length. 

Further investigations, especially including local heating 
effects, have to be performed, in order to get reliable 
results that validate the robustness of the prediction 
model under the most challenging conditions. The most 
difficult stress-test for any sensor positioning and 
prediction model based on IDS is a local heating of an 
axis, which is also the case for many manufacturing 
processes, in which one machine axis moves rapidly 
within a short stroke. Any local deformation is directly 
correlated with the rest of the deformation field, but the 
principle of the IDS is to measure the integral deformation 
throughout a specific length. Hence, local effects are the 
most difficult to derive. This topic is part of the ongoing 
IDS research. 
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