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Abstract 

Thermal errors are one of the major contributors towards positioning discrepancies in machine tools in 
precision machining. Along with friction and waste heat generated from production processes and internal 
heat sources, environmental influences around the machine tool create considerable thermal gradients 
followed by non-linear structural deformations. Efficient quantification of these three contributing sources 
of thermal errors are required in order to formulate a reliable thermal-error compensation system. The 
creation of all possible thermal configurations, which a machine tool could be subjected to, is 
experimentally infeasible and requires complex and time-consuming coupled flow and thermo-structural 
simulations. This paper presents a new approach in thermal error prediction by using CFD and finite 
element (FE) simulations to train a three-level interconnected neural network system. The first level 
essentially decouples flow simulations from thermo-structural simulations using optimal FE node points 
found using a Genetic Algorithm (GA), which significantly reduces the required training data. The 
boundary convection data obtained from this level is used in the second level to predict possible thermal 
configurations of the machine tool, after careful consideration of parameters related to internal heat 
sources and production processes. The third level maps these thermal configurations onto displacements 
on the machine tool. 
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1 INTRODUCTION 

The three main sources of thermal errors in machine tools 
involve the actual machining/production process, internal 
heat sources caused mainly through heat dissipation or 
power loss from components and finally, environmental 
influences. These three error sources along with other 
smaller sources contribute to around 70% of the total 
machining errors [Bryan 1990]. Even though, all the three 
main sources are considered equally important to thermal 
errors [Bräunig 2018], environmental influences are 
neglected by most researchers/manufactures due to the 
experimental and numerical difficulties involved in 
measuring and testing them. Environmental testing on 
machine tools requires specialized climate chambers and a 
wide range of metrological equipment, which makes 
experimental investigation infeasible for most researchers. 
Numerical investigation in the form of Computational Fluid 
Dynamics (CFD) simulations can be used to effectively 
estimate the thermal behaviour between the machine tool 
and its surrounding air [Glänzel 2016]. For the study of 
forced convection, environmental parameters such as air 
inlet temperature, velocity and flow directions can be used 
as input variables and heat transfer coefficients (HTCs) can 

be obtained along the machine-air interface using CFD 
simulations. These HTCs serve as boundary convection 
data for structural simulations. After definition of other 
boundary conditions which define internal heat sources and 
production processes, thermo-structural (finite element 
method - FEM) simulations can be used to compute the tool 
centre point (TCP) displacements of the machine tool. This 
two-step coupled (CFD-FEM) simulation procedure is 
extremely time-consuming when new boundary conditions 
have to be investigated or complex geometries are 
involved. The fluid, thermal and structural simulations have 
to re-run again based on the changes made to the 
simulation model. 

Decoupling of CFD simulations from thermo-structural 
simulations have been successfully performed using 
Characteristic Diagrams (CDs) in [Glänzel 2016]. CDs are 
one of the tools most commonly used by engineers in order 
to approximate real valued functions that depend on one or 
more input variables. The CDs discussed in this paper are 
based on smoothed grid regression technique as 
suggested in [Naumann 2012] and have been improved to 
high dimensional CDs which are able to approximate 
thermo-elastic deformations in machine tools. CDs map a 
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set of input variables onto a single output variable 
continuously. They consist of a grid of support points along 
with kernel functions (1D or 2D) which describe the 
interpolation in between, refer [Naumann 2016].  

Using data obtained from a limited number of CFD 
simulations run in advance, the CDs are trained for different 
combinations of environmental parameters (e.g. air 
temperature, air flow velocity, flow directions). They map 
the corresponding HTCs at the positions of FE-nodes at the 
interface between machine tool surface and surrounding 
air. The trained CDs are then used to predict HTCs for any 
environmental load case. However, for complex geometries 
and moving components, extensive training data is 
required. This data volume can be significantly reduced 
using a clustering technique which involves Genetic 
Algorithm (GA) [Kumar 2019]. This approach finds optimal 
subsets of FE node points at the machine-air-interface, for 
which CDs are formulated and trained. Thereby, the training 
process/data is reduced to a selected number of FE-node 
points. This approach was validated with a coupled 
simulation system in [Kumar 2019]. The results were 
encouraging with deviations in temperature and total mesh 
displacement at a selected point representing the TCP (tool 
centre point) by values of 0.5% and 4% respectively. The 
decoupling approach was experimentally validated in 
[Kumar 2020]. Temperature and displacement 
measurements were performed in the climate chamber of 
the Fraunhofer Institute for Machine Tools and Forming 
Technology (IWU) in Chemnitz and used to validate the 
simulations. In the best set of results, the difference in 
temperature and displacement reading at different sensor 
positions were found to be +/-1 °C and +/-7 µm respectively.  

This paper attempts to further enhance the thermal error 
prediction method by replacing the CDs with Artificial 
Neural Networks (ANNs).  ANNs have been adopted by 
serval researchers all around world for thermal error 
compensation in machine tools. Among the existing 
learning algorithms, neural networks are proposedly best 
suited when highly non-linear input-output relationships are 
involved. ANNs more efficiently handle huge amounts of 
training data and variables. Being an inherently parallel 
architecture, the updating and prediction processes are 
expected to be faster. However, most of the studies 
address the problem only partially.  For example, in [Jian 
2019] regression neural networks are used to predict 

thermal displacements in CNC-lathe spindle for variations 
in spindle speeds.  [Wang 2019] proposed a method to 
compensate thermal error in CNC grinding machines using 
a hybrid convolutional neural network system in order to 
mapping the temperature change against the thermal 
response of the machine tool. In an earlier research by 
[Chen 1996], they used both a multiple regression analysis 
(MRA) model and an artificial neural network (ANN) model 
for thermal error compensation of a horizontal machining 
centre. In all the above mentioned and similar researches, 
it could be observed that the methods were tested for very 
limited error sources, operating conditions or for any 
particular direction of spindle feed. Being dependent on 
experimental data for training, they were proven effective 
within the training data range, but were expected to fail to 
extrapolate to unknown conditions. In a recent research 
[Santos 2018], FEM simulations are used to train neural 
networks to predict thermal errors in a five-axis CNC 
machine tool. However, environmental influences (forced 
convection and HTC contours) which play a major role (upto 
40% in large machines [Bräunig 2018]) in thermal errors 
were only approximated using analytical calculations in the 
FE–model. When many papers show that a reduction of the 
thermal error to about 10% is possible, others state that this 
is only possible when the ANN is applied to the training data 
and that on independent data sets the reduction is to about 
20%. This proves that,the training data has to cover the 
whole expected range of the operating conditions. 
However, the process of obtaining such data can take 
several days for internal heating tests and several weeks or 
more for the environmental tests [Longstaff 2003]. 

In this paper, a three-level interconnected neural network 
structure (section 4) is introduced which is expected to 
overcome the above mentioned shortcomings in training of 
the neural networks. Being completely CFD-FE simulation 
based, any environmental, internal and production sources 
of thermal errors can be effectively incorporated and used 
for training the ANNs. For example, a machine operating in 
Germany (cold and dry) has completely different 
environmental conditions as compared to in Vietnam (hot 
and humid). The  factory measurement based training data 
obtained from Germany could prove ineffective in Vietnam. 
The simulation based training can mitigate this problem by 
instantaneously performing CFD simulations and adding 
them to the online ANN system for new thermal 
configurations on the machine tool. 

Fig. 1: Decoupling of CFD-Thermo-structural simulations 
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2 ANN-BASED DECOUPLING 

This section discusses the fundamental process structure 
of the decoupling approach using ANNs. This process is an 
intermediate step in the creation of the 3-level ANN 
structure described in section 4. ANN-based decoupling of 
fluid and thermo-structural simulations is similar in 
approach to the decoupling using CDs ([Glänzel 2016] and 
[Kumar 2019]).  

Fig. 1 shows the decoupling approach using a series of 
similar neural networks trained using CFD simulations. A 
CFD simulation model of the machine tool geometry within 
a fluid domain is set up and HTC values are exported as 
CSV-files (comma separated values) at the machine-air 
interface under varying environmental load cases. These 
load cases, which are combinations of air flow temperature, 
velocity and flow directions, represent the different ambient 
conditions a particular machine tool can be subjected to. 
The mapping between these load cases and the HTC 
values obtained at the machine-air interfaces through CFD 
simulations serve as the training data for ANNs. 

To reduce the data needed to train the ANNs, a clustering 
technique is developed. It incorporates optimal subset 
search of surface FE nodes using an optimization technique 
(genetic algorithm-GA) and subsequent interpolation of 
HTC values using radial basis functions (RBF). Both 
operations are performed using MATLAB scripts. As shown 
in Fig. 1, GA finds the best set of FE node points on the 
machine surface which gives the least interpolation error 
between the CFD-simulated and RBF-interpolated HTCs 
for each face under any particular load case. The training 
data for ANNs are based only on these optimal subsets, 
whereby its amount is reduced drastically. For illustration, 
in [Kumar 2019], 144 optimal node points were determined 
by GA from a machine-air interface consisting of 
approximately 100,000 node points which enabled a 
reduction in the number of FE-nodes which required 
training by 99.8 %.   

Once trained, ANNs formulated at each optimal node point 
are capable of predicting HTC values for any user-defined 
load case. The predicted HTC values at the optimal subsets 
serve as RBF points to interpolate the HTCs at the 
machine-air interface, which is used as the boundary 
(convection) data for thermo-structural simulations.  

The trained neural networks remove the dependency of 
thermo-structural simulations on CFD simulations for 
boundary convection data. Any thermal configuration and 
corresponding convection data can be attained at the 
optimal node points and interpolated over the entire 
machine-air interface. Thus, the decoupling of simulations 
is attained. 

3 OPTIMAL SUBSET SEARCH USING A 
GENETIC ALGORITHM 

3.1 Optimal Subset Problem 

Clustering is the process of grouping a set of objects in such 
a way that objects in the same group, called a cluster, are 
more similar (based on the objective) to each other than to 
those in other groups. Many algorithms have been 
developed to tackle clustering problems in a variety of 
application domains, including the hierarchical 
agglomerative CA, k-means, and self-organizing maps. The 
most popular algorithms are probably the fuzzy c-means 
and the k-means algorithms. All of these algorithms rely on 
Euclidean distances from cluster centroids as the criterion 
function. Therefore, they are limited to detecting spherical 

clusters and do not work well with non–Gaussian data. In 
simple words, the solution gets confined to local minima.  

The search for a universal or at least more generic search 
algorithm led to the discussion on GAs. The GA attempts to 
find the most optimal solution to the problem by genetically 
breeding a population of individuals over a series of 
generations and effectively overcomes local minima on 
basis of the ‘Darwinian principle of reproduction and 
survival of the fittest’ in analogy to naturally occurring 
genetic operations such as crossover and mutation (refer 
[Koza 1995] and [Koenig 2001]). 

As discussed in the previous section, the purpose of 
clustering in the decoupling approach is the reduction in the 
number of FE nodes and corresponding HTC values used 
for training neural networks. Maintaining accuracy in 
interpolation even after reduction of nodes is important. 
This is attained by finding optimal subsets of FE-nodes on 
the machine tool surface, which will be used to build an 
RBF-based interpolation function. The GA addresses the 
‘Optimal Subset Problem’ [Glänzel 2016] by minimizing the 

weighting function  f  as in Eq. 1. 

 

min
𝑆⊂𝑉

|𝑆|=𝑚

𝑓(𝑆)      (1) 

 

In this context V defines the whole set of nodes on the 

machine surface (machine-air interface), corresponding to 

the N nodes 𝑥1, 𝑥2, . … 𝑥𝑁  of the finite element mesh.  fs     in 

Eq. 2. corresponds to the radial basis interpolation function 
[Glänzel 2016]. CFD-simulated HTC values are 
represented by 𝑤1, 𝑤2, . … 𝑤𝑁  corresponding to each node. 
In the decoupling approach a subset S with cardinal number 
m is selected from V and the objective function f calculates 

the interpolation error between CFD-simulated HTC values 
and GA-interpolated ones over an entire machine face. Eq. 
2 formulates this point-wise, whereby f(S) becomes zero if 
m=N and becomes greater than zero otherwise. 

 
 

𝑓(𝑆) = max
i=1…N

|𝑓𝑆(𝑥𝑖) − 𝑤𝑖|     (2) 

Fig. 2: GA working principle 
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3.2 Genetic Algorithm implementation 

The working principle of GA adopted for clustering is shown 
in Fig. 2. GA begins its search from a random initial 
population of solutions. For optimal subset search, the 
random FE node numbers (genes) on a particular machine 
surface face will constitute the population. A fitness value is 
assigned for each set (chromosomes) of FE node points 
based on the objective/fitness function (1), which finds the 
norm error between actual HTC values (obtained from 
simulation) and RBF interpolated HTC values using a 
particular chromosome. The chromosomes are sorted 
based on the lowest fitness values i.e. the least error. If the 
termination condition is satisfied, the GA process will stop.  
The termination condition could be a maximum number of 
generations or best (lowest) permissible fitness. If the 
termination criterion is not satisfied, then changes are made 
to the population using genetic operators - selection, 
crossover and mutation. In general, the exploitation of the 
accumulated information resulting from GA search is done 
by the selection and crossover mechanism [Koza 1995] 
while the exploration to new regions of the search space is 
accounted for by mutation as discussed in [Soni 2014]. 

4 INTERCONNECTED ANN STRUCTURE  

4.1 Principle of ANN for Thermal Error Prediction 

An ANN consists of two fundamental components - artificial 
neurons which process the input data and the network 
which connects these neurons [Abdulshahed 2013]. The 
architecture of an artificial neuron used in the 
implementation of the three-level network in this paper is 
shown in Fig. 3. The neuron receives a set of input variables 

(xi) and they are multiplied by a corresponding weight (wi). 
The weighted inputs are processed by the summation 
function (S) followed by an activation function [Nagata 
2003], which transforms the summation into a more desired 
output. The summation function essentially performs the 
matrix multiplication of the weight vectors and the input 
values.  

There are a lot of different activation functions used in 
neural networks. Here, a sigmoid function (Eq. 3), also 
known as the logistic function is used in the neural networks 
to transform outputs into a specified range, i.e. between 0 
and 1.  

 

𝜎(𝑆) =
1

1+𝑒−𝑆       (3) 

 

There are several types of neural networks based on the 
specific application. In this paper, multi-layer feed-forward 
neural networks are utilized to connect the neurons. In this 
network, the data is transferred in only the forward direction, 
from the input neurons, through hidden neurons and to the 
output neurons, as shown in Fig 4. Each neuron in one layer 
has direct connections to the neurons of the subsequent 
layer. 

For training the network, the back-propagation (BP) 
algorithm, as described in [Rumelhart 1986] is adopted.  
BP-based ANN modelling has proved to be a suitable non-
linear modelling method in a number of research studies 
[Abdulshahed 2013]. Initially, random values between 0 and 

1 are assigned to the weights (wi) [Nasr 2013]. The feed-

forward step starts by assigning data to the input layer. The 
input-output mapping information obtained from the 
sigmoid function at the inner neurons are transferred 
forward up to the output layer. Here, the output at each 

neuron (y) are compared with the desired data (D) and the 

resulting error (e) is used to adjust the corresponding 
weights, as shown in Fig. 3. This process is known as back-
propagation. A feed-forward step along with a back-
propagation comprises a cycle of training. The training ends 
when the error in the termination cycle reaches a specified 
threshold. 

As mentioned in section 1, all three sources of thermal 
errors will be parametrized through a wide range of 
variables like temperature, air flow velocity, generated heat 
per volume, natural/forced convection, radiation etc. These 
features are on significantly different scales.  Problems can 
arise in the neural network when the back-propagation 
assign weights based on a prominent variable instead of a 
sensible variable. Therefore, normalization of input 
variables is absolutely necessary. In this approach, ‘Min-
Max’ normalization is utilized to transform the input values 
into a decimal between 0 and 1. 

4.2 Implementation of ANN Approach 

One of the most relevant advantages of ANNs in thermal 
research is the efficient handling of highly non-linear 
relationships in data. In several studies, it has been shown 
that thermal errors can be successfully predicted using 
ANNs [Abdulshahed 2013] [Guo 2010]. ANNs do not 
require detailed knowledge of the physical phenomena 
describing the system under analysis. 

The idea being proposed in this paper is a three-level 
interconnected ANN based thermal error compensation 
system/module (Fig. 5), which is trained completely from 
simulations. The first level consists of a series of similar 
neural networks which are completely trained by CFD  
simulations.  The methodology used to parameterize and 
estimate the environmental influences associated with the 
machine tool makes this ANN system unique. As mentioned 
in section 2 and 3, optimal subsets of FE nodes are found 
on the machine tool surface using GA. Each optimal node 
point will have its own independent neural network. 
Therefore, the number of neural networks in the first level 
is equal to the number of optimal FE node points. Using 

Fig. 3 : Artificial neuron architecture along with back-
propagation algorithm (used in this paper)   

Fig. 4 : A four-layer feed forward ANN structure   
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data from CFD simulations, environmental influences 
(ambient temperature, inlet flow velocity, air flow directions) 
are mapped onto HTC values only at these optimal nodes, 
whereby the amount of training data for neural networks is 
incredibly reduced without a significant loss of accuracy. 
The number of associated degrees of freedom is also 
reduced which makes the system more stable.  After 
strategic training, each neural network predicts the HTC 
value for any environmental load case at the corresponding 
optimal node points. This predicted data can be interpolated 
over the complete machine tool surface, which is later used 
as the boundary convection data in thermo-structural 
simulations.  

The second level consists of a single neural network, which 
is trained using transient thermal simulations. In this 
simulation model, the series of neural networks in the first 
level provide the boundary convection data, which 
represents the environmental influences on the machine 
tool.  Along with this, other parameters which represent the 
internal heat sources (such as heat generated at various 
components, heat input on the surfaces etc.) and 
production processes (machining, influence of coolant, 
chips etc.) constitute the boundary parameters used in this 
thermal simulation model. Different thermal configurations 
possible on the machine tool are created using these 
simulations. Temperature probes are defined at the surface 
nodes which represent the temperature sensor positions.  
Therefore, as expected, the different boundary parameters 
are mapped onto certain temperature values in this neural 
network. The input and output neurons associated with this 

level can be seen in Fig. 5. After training, any thermal 
configuration associated with the machine tool can be 
generated using the neural network system (level 2). 

Once the different thermal configurations are simulated, the 
corresponding static displacements on the machine tool 
can be obtained. The third level which consists of a single 
neural network which maps these simulated temperature 
fields onto corresponding simulated displacements at 
specified positions on the machine tool. The third neural 
network is designed in such a way that it can also be trained 
using experimental readings obtained directly from the 
machine tool along with the simulations. The mapping 
obtained from this neural network will be 
utilized/incorporated by the NC-Program for the machine 
tool in thermal error compensation. 

The most important prerequisites of simulation based ANN 
thermal error compensation system are the validated and 
accurate fluid and thermo-structural simulation models of 
the machine tool. Environmental testing for validation of 
fluid simulations is possible within the retrofitted climate 
chamber [Kumar 2020]. Similarly, the thermo-structural 
simulations can also be validated using the wide range of 
metrological equipment available at the institute. 

5 CASE STUDIES 

5.1 Comparison of results with and without clustering 

Clustering of FE node points, in order to represent certain 
sections of the machine tool-air interface provides 
significant benefits irrespective of the training algorithm 

Fig. 5 : Three-level interconnected neural network structure   

Fig. 6 : (a) HTC-plot from ANSYS-CFX (b) HTC-interpolated using 100 ONPs for same environmental 
boundary conditions 
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(Characteristic Diagrams or Artificial Neural Networks). For 
a compensation system to be able to act/predict according 
to the real-life environmental/thermal behaviour of the 
machine tools, a huge amount of training data is required. 
A typical 5-axis machining unit involves numerous 
components and sub-components, dynamic parts and 
changing boundary conditions. A fine FE mesh is also 
required to effectively extract the heat transfer properties on 
the machine surface.  Clustering, as explained in section 3, 
helps in extensively reducing the complexity of such models 
by finding optimal FE nodes, which effectively represents 
the convection behaviour of all the surface nodes.  

For the current comparison, the mapping of environmental 
influences is considered. Without optimal node points, the 
mapping would have the structure as shown in Eq. 4. Seven 
variables (flow temperature, velocity, FE-node coordinates 
and flow directions-azimuth and elevation) have to be 
mapped onto the HTCs at each FE node point on the 
machine-air interface. The higher the number of variables 
involved, the less stable an approximation strategy 
becomes. To make it stable, more training data (load cases/ 
simulations) would be required, [Juba 2018].  
 

( 𝑇, |𝑣|, �̃�, �̃�, �̃�, 𝑎𝑧, 𝑒𝑙) →  𝛼(𝑥, 𝑦, 𝑧)      (4)  
 
Optimal subsets solve this problem by modifying the 
mapping structure, Eq. 5. At each pre-determined and load 
independent optimal node point, the environmental 
influences are mapped onto HTCs. The reduction of 
variables improves the stability of the system and 
substantially reduces the amount of training data 
(simulations) required. 
 

( 𝑇, |𝑣|, 𝑎𝑧, 𝑒𝑙) →  𝛼(𝑂𝑁𝑃)      (5) 

 
For simple illustration, an inlet air flow facing 2D surface of 
a three-axis milling machine Auerbach ACW 630 is used. 
As tabulated in [Glänzel 2018], without optimal node points, 
more than 160 simulations were required to reduce the 
relative error for a test case to 11.4%. For these 
simulations, six input variables were involved, as shown in 
Tab. 1. With 100 optimal node points, 18 simulations were 
enough to reduce the same relative error to 13.2%. This 
tremendous reduction in number of simulations and training 
data without greatly compensating in accuracy shows the 
promising potential of this approach. The HTC plots 
obtained for an environmental test case from ANSYS-CFX 
and the one interpolated using 100 optimal node points 
(plotted in MATLAB) can be seen in Fig. 6. 
 

5.2 Simulation-based validation of ANN-based 
correction method 

A complex and experimentally verifiable simulation model 
is used for the implementation of CD-based 
parameterization. The geometry chosen for this 
investigation is the 5-axis machining centre ‘DMU 80’ from 

DMG Mori. The machining centre comes with a housing 
which reduces the environmental impacts on the main 
machining region and other components. The CFD 
simulation model of the DMU 80 in the climate chamber can 
be seen in Fig. 7(a). The HTC contour obtained for a 
particular environmental load case along with the flow 
streamline can be seen in Fig. 7(b).  

The CD-based decoupling approach, as mentioned in 
section 1, was already adopted [Kumar 2019] and 
experimentally validated [Kumar 2020] for a 3-axis machine 
tool, Auerbach ACW 630. The only training data used in 
these papers were CFD simulations in order to train the 

Tab. 1 : Comparison- with and without ONPs 

 

 

Fig. 7 : (a) CFD-simulation model (b) HTC-contour and 
flow streamlines 

  

Method Without ONPs With ONPs 

Mapping 
( 𝑇, |𝑣|, �̃�, �̃�, 𝑎𝑧, 𝑒𝑙)
→  𝛼(𝑥, 𝑦) 

( 𝑇, |𝑣|, 𝑎𝑧, 𝑒𝑙)
→  𝛼(𝑂𝑁𝑃) 

Number of 
simulations 

>160 18 

Relative 
Error in 
HTCs 

11.4 % 13.2 % 

 

 

Load 

Case 

Ta - Air 

temperature 

(°C) 

Vin - Inlet 

flow 

velocity 

(m/s) 

az - 

azimuth 

angle of 

inlet 

flow (°) 

el- 

elevation 

angle of 

inlet flow 

(°) 

1 20 1 0 0 

2 30 1 180 0 

3 20 5 180 0 

4 30 5 0 0 

 

Tab. 2 : Training load cases- Level 1 

 

Analysis 

Time (s) 

Ti – Initial temperature 

of machine tool (°C) 

Heat generated 

at Spindle 

(W/m³) 

1000 60 10000 

1000 50 15000 

1000 50 10000 

1000 60 15000 

3000 60 10000 

3000 50 15000 

3000 50 10000 

3000 60 15000 

5000 60 10000 

5000 50 15000 

5000 50 10000 

5000 60 15000 

 

Tab. 3 : Training load cases- Level 2 
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CDs. Therefore, only the environmental influences as 
mentioned in section 2 were considered in these papers. 

In this paper, the attempt is to create a holistic thermal error 
prediction system by gathering training data, not only from 
CFD simulations, but also from thermal and structural 
simulations, which represent internal heat sources and 
production processes. Instead of CDs, the three-level 
interconnected neural network structure (Fig. 5) is utilized. 

For the current investigation, the coupled fluid-thermal-
structural simulations in ANSYS Workbench will be used to 
validate the ANN-based approach. Tab. 2 and 3 show the 
load cases used for training neural networks in Levels 1 and 
2 respectively. The aim of these two levels are to predict 
any thermal configuration possible on the machine tool. In 
level 1, four load cases will be mapped onto HTCs at each 
ONP. The flow directions are varied with azimuth angles at 
0° and 180° as shown in Fig. 7 (a). Further, transient 
thermal simulations will be carried out in order to train the 
neural network in level 2. Different combinations of analysis 
time, initial temperature of the machine and heat generated 
at the spindle are used to perform simulations under each 
boundary convection data obtained from ANNs in level 1. 
These thermal simulation parameters (Level 2) along with 
the environmental parameters (used to train in Level 1) are 
mapped onto the temperature values (temperature field) at 
specific points on the machine tool. This mapping serves as 
the training data for the ANN in level 2. 

Once the different temperature fields are simulated, the 
corresponding static displacements can be obtained. Here 
specific points on the machine tool are selected to record 
the displacements in different directions. The mapping 
between temperature points and displacement serves as 
the training data for ANN in level 3. 

For validation of ANN-based approach, two test load cases 
as shown in Tab. 4 are used. These are a combination of 
load parameters in levels 1 and 2, and they lie within the 
training boundaries. For comparison, certain points are 
selected on the machine tool as shown in Fig. 8. The 
temperature and displacement reading obtained at these 
points will be validated with those obtained from the three-
level ANN structure. 

For the test load case in Table 4, the results as shown in 
Fig. 9 were obtained. At the selected temperature points, 

the average of the relative error between the numerical 
experiment and the ANN-based approach was found to be 
a very small value of 3.4%. On comparison between 
displacements in X, Y and Z directions, the biggest 
deviations were observed in the X-direction. The average 
of the relative error at the displacement points was 
observed to be 21%. The major contributors to this error are 
D6 and D8 which are extreme points on the machine bed. 
A better temperature field estimation in these regions could 
improve the displacement values. For this, better training of 
ANNs especially in level 1 is required. The average of errors 
in Y and Z directions were 15 % and 19% respectively. 

A similar trend was observed for test load case 2 as well. 
The average of relative error at the temperature points was 
2.7%. The displacements had average deviations of 20%, 
17% and 17% in X, Y and Z directions respectively (Fig. 10). 

6 CONCLUSION AND OUTLOOK 

This paper introduces a thermal error prediction method 
using a three-level interconnected neural network structure 
which can be completely trained by CFD and thermo-elastic 
simulations. The ANN system is prepared to operate in two 
modes- (i) addition of new simulations and prediction (ii) 

Tab. 4 : Test load cases 

 
 

Load Case 

Ta - Air 

temperature 

(°C) 

Vin - Inlet flow 

velocity 

(m/s) 

az - azimuth 

angle of inlet 

flow (°) 

el- elevation 

angle of inlet 

flow (°) 

Analysis 

Time (s) 

Ti- initial 

temperature 

of machine 

tool (°C) 

Heat 

generated at 

Spindle 

(W/m³) 

1 23 3 0 0 1500 57 12000 

2 27 2 180 0 3900 53 14000 

 

Tab. 4 : Test load cases 

 

Fig. 8 (a) Temperature points and (b) Displacement 
points for validations 

Fig. 9: Test Case 1 -Numerical Experiment vs ANN 
(a) temperature readings (b) displacement readings 

Fig. 10 : Test Case 2 -Numerical Experiment vs ANN 
(a) temperature readings (b) displacement readings 
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prediction using existing data. The case studies mentioned 
in section 5 is performed in mode (ii)-prediction using 
existing data. Once a precise CFD-FE simulation model of 
the machine is established, any possible environmental, 
internal or production conditions on/in the machine tool can 
be instantly simulated and used for training. In comparison 
with existing thermal error correction systems, this method 
provides the flexibility to users to choose/add/update the 
training data based on any operating condition and 
removes the dependency on tedious and time-consuming 
experimental measurement data extraction for training 
purposes. 

More simulations can potentially radically improve the 
prediction accuracy of this architecture. A comparison study 
with other prediction algorithms such as gradient boost or 
random forest is also planned in the near future.  Parallel 
computing has already been implemented for fast 
extraction of simulation data [Kumar 2020], especially for 
ANN level 1. With ever-improving computational 
capabilities and reduced simulation models like model order 
reduction (MOR), this approach can be utilized as a holistic 
thermal error prediction system for the years to come. As a 
next step, the ANN method introduced in this paper will be 
validated experimentally in actual operating conditions of 
the machine tool, i.e. dry machining, with coolant and chips, 
and cool-down phases. After initial training, the ANN-
system can be incorporated as an error compensation 
module in any CNC operated machine tool. The training 
data can be updated online based on any new operational 
conditions of the machine tool through simulations. 
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