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Abstract 

Temporally and spatially unstable thermal conditions lead to transient or inhomogeneous thermo-elastic 
behavior of workpieces during manufacturing or geometric inspection. Temperature monitoring by means 
of sensors consign transient temperature fields, but do not yield information about the heat flow acting as 
thermal boundary condition, which is a relevant input parameter for nearly any thermal simulation. 
Addressing the need for efficient methods, the authors propose an approach to solve inverse heat transfer 
problems in complex geometries. In the presented study, locally acting heat loads are experimentally 
investigated based on virtual demonstrators running in FEM. The conducted method shows high potential 
for transient heat flow modelling in terms of accuracy and computational efficiency. 
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1 INTRODUCTION 

Temperature is a major impact on production engineering 
processes, highly influencing process design with respect 
to lead times, tool wear and final workpiece quality. Thus, 
the investigation of thermal behavior of machine tools, 
workpieces, manufacturing environment and their mutual 
interdependencies have been subject to research for years. 
According to past research, the thermal state of  the 
machine tool and workpiece together account for up to 75% 
percent of part deviation from ideal geometry [Ess 2012; Li 
2017]. In this context, most studies and modelling 
approaches solely focus on errors of the machine tool itself, 
whereby effects originating from the workpiece are often 
neglected. Further strengthened by increasing precision 
requirements, the explicit error modelling of the workpiece 
and its overall error contribution with special respect to 
geometric inspection is shifting more into focus of relevant 
research. [Yang 2017; Ross-Pinnock 2018; Ohlenforst 
2019] 

While most industrial established compensation 
approaches make use of tempering techniques, meaning 
not to counteract against, but to mitigate the effects of 
temperature at the expense of costly acclimatization or 
scheduled downtimes, the economic inefficiency of these 
methods is prevailing. Seeking for alternative solutions to 
account for thermo-elastic workpiece effects not just for 
high precision measurements, but also manufacturing or 
assembly the utilization of model-based compensation 
techniques is auspicious. A review of industrial practice 
reveals though, that thermal influences of the workpiece are 
approximated very conservatively in many instances – 
applying, if any, Newton´s Law of cooling (1) or linear 
thermal expansion models (2).  

𝑑𝑄

𝑑𝑡
=   − ℎ ∙ 𝐴 ∙ (𝑇𝑜𝑏𝑗(𝑡) − 𝑇𝑒𝑛𝑣)  (1) 

∆𝐿

𝐿
=  𝛼 ∙  ∆𝑇    (2) 

The underlying assumptions of consistent single materials, 
constant heat transfer coefficients over the whole geometry 
and known homogenous temperature distributions do not 
reflect real-world conditions though. FEM, as commonly 
used numerical approach to perform multi-physics 
simulations, is a suitable tool to predict thermally induced 
workpiece deformations, offering the opportunity to 
consider multiple varying temperature loads, such as heat 
flux from the manufacturing process, heat conduction 
between clamping surfaces or variable ambient 
temperatures. Although it is possible to simulate and 
numerically solve virtually any process, the efficient 
application often suffers from defining correct initial (IC) and 
boundary conditions (BC), since they have to be known and 
set up in the simulation model in advance. Not to mention 
the high computational effort, making the method infeasible 
for many cases, especially large workpieces. Workpieces in 
production environment are considered as open, transient 
thermodynamic systems in continuous interaction with its 
variable environment. Hence, it is necessary to keep track 
of the influencing variables, such as transient ambient 
temperatures, surface temperature distributions or heat 
fluxes and feed them back into simulation models. 
Therefore, the importance of cyber physical production 
systems (CPPS), which is used as the representative term 
for the fusion of virtual systems (e.g. digital twin in FEM) 
with physical systems (sensor data) was already pointed 
out as key technology for thermal error correction 
[Ohlenforst 2019]. 
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While monitoring ambient and surface temperatures using 
temperature sensors is a straightforward task, capturing 
heat fluxes is more challenging, which requires more 
advanced modelling techniques. At this point, the need for 
methods to solve inverse heat transfer problems (IHTP) 
arises. In this context, inverse posed problems address 
heat fluxes, which are the cause of a temperature 
distribution and can be quantified by temperature 
measurements. Most commonly information about heat 
fluxes are heuristically estimated, which represent an 
uncertainty for common forward transient simulation 
methods, such as FEM – thus, the determination of heat 
fluxes is a valuable asset, acting as additional boundary 
condition. In fact, inverse calculations belong to 
optimization problems. Providing additional observation 
data besides a partial differential equation system (PDE), it 
aims to derive the unknown parameter 𝜃⋆, representing 

heat flux in the course of this study: 

𝜃⋆ = argmin(�̂� − 𝑇𝑜𝑏) (3) 

�̂� denotes the temperature derived from calculation and 𝑇𝑜𝑏 

is the observed temperature. In order to solve inverse 
problems, the Conjugate Gradient Method (CGM) is a 
commonly used approach to retrieve unknown parameters 
through minimizing the discrepancy between observations 
and the solution of PDEs. CGM is a computationally 
intensive procedure, seeking for an iterative solution for the 
direct problem using the current assumption of unknown 
parameters. Additionally, it involves the effort to calculate 
the gradient in conjugated direction and to formulate and 
solve the adjoint problem. Therefore, CGM has limited 
scope to carry out real-time prediction and diagnosis, 
especially as it comes to complex or even large workpieces. 
[Huang 2009,Burghold 2017] 

Besides above discussed methods, the application of 
neural networks in performing multi-physics simulations is 
an emerging branch of research. The traditional data-driven 
way faces intractable problems though. To obtain high 
accuracy and generalizability, the training requires large 
amounts of labeled data. The process of obtaining data, by 
either virtual simulations or field experiments, is time and 
cost consuming. Furthermore, recent works realizing such 
methods are likely to break physical laws, even if they have 
achieved low overall errors [Karpatne 2018]. Neural 
networks usually conduct regression on a given data set, 
but learn nothing about the implicit physical rules. This 
affects the liability for implementation. 

To combine the benefits of analytical methods with the 
advantages of machine learning techniques, Physics-
Guided Neural Networks (PGNN) were introduced recently 
[Alexandre 2018], [Holl 2018], [Zhu 2019]. The basic idea is 
to apply physical laws into a neural network, whereby the 
most common approach is to add certain physical laws into 
the loss function in order to force the neural network to 
comply with them [Karpatne 2018], [Kim 2019]. A given 
thermal transfer problem has the following form: 

𝒟(𝐱, 𝑡,  𝑇) = 0 𝐱 ∈ 𝛺 (4) 

ℬ(𝐱, 𝑡,  𝑇) = 0 𝐱 ∈ ∂𝛺 (5) 

Where 𝓓 denotes all differential operator in the thermal 

Poisson equation (6) and 𝓑 describes the BCs. 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝜆 (

𝜕2𝑇

𝜕𝐱2
) 𝐱 ∈ 𝛺 (6) 

In (6) 𝛌 denotes thermal conductivity coefficient and 𝛒, 𝐜 are 

the density and specific heat capacity of the workpiece 

respectively. The quantity 𝐱 represents 3D spatial 

coordinates, t is time and T is the solution of the problem, 

pursuant to the temperature depending on 𝐱 and t. The 

domain is specified by the geometry 𝛺 and ∂𝛺 boundary, 

namely surface of the workpiece. 

𝒟(𝐱, 𝑡, 𝒩(θ)) = 0 𝐱 ∈ 𝛺     (7) 

ℬ(𝐱, 𝑡, 𝒩(θ)) = 0 𝐱 ∈ ∂𝛺 (8) 

To solve above equations by means of PGNNs, a neural 
network is designed with the network output 𝒩(θ) being the 

surrogated solution, which replaces the real solution in the 
equation system. θ are weights and biases of the neural 

network. If equation (4) and (5) hold, 𝒩(θ) approximates 

the original solution 𝑇 in the given spatiotemporal domain. 

Therefore, the loss function ℒ of the neural network can be 

formulated as the following:  

ℒ = 𝒟 + ℬ 
 

(9) 

The learning process aims to minimize 𝓛 to 0. For a PGNN, 

solving IHTP is no more difficult than its direct counterpart. 
By specifying the unknown BC as parameter θ∗ and 

enclosing additional data in terms of observed temperature 
distributions 𝑇𝑜𝑏, the direct problem can be transferred into 

an inverse one: 

ℒ𝑖𝑛𝑣 = 𝒟(𝒩(𝜃)) + ℬ(𝜃∗, 𝒩(𝜃))

+ ||𝒩(𝜃) − 𝑇𝑜𝑏|| 

(10) 

When loss is minimized, it means the surrogated solution 
has satisfied the PDE, the BCs and the observation. 
Afterwards, the unknown parameter 𝜃∗ can be obtained 

using machine learning. Most common neural network 
frameworks, such as TensorFlow, can optimize these 
parameters the same way as all other parameters (𝜃) within 

the network [Martín 2016]. Compared to the large amount 
of 𝜃, the computational resource for several 𝜃∗is almost 

ignorable. Therefore, PGNNs can be theoretically 
considered to be more efficient than traditional numerical 
methods to solve IHTP. 

2 EXPERIMENTAL SETUP AND METHOD 

At first, this chapter preludes an overview to the workflow of 
conducted analysis with a subsequent presentation of the 
objects under investigation (2.1). In section (2.2) the design 
of experiments with respective parameter definition is 
described. Following, the software infrastructure is 
introduced in 2.3. The main challenge during training of the 
neural network, the hyperparameter tuning is discussed in 
2.4.  

2.1 Workflow and Objects of Investigation 

Presenting the basic procedure, Fig.1 introduces an 
overview of the general workflow of experiments, breaking 
down demonstrators, individual processing steps and 
necessary data flows.  
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Fig. 1: Workflow of experiments with corresponding inputs 
and outputs 

Firstly, to implement the approach of using PGNNs to build 
an inverse heat transfer model, five different basic shapes 
were investigated. Externally designed in CAD, they cover 
plate, cylinder, solid half cylinder (SHC), hollow half cylinder 
(HHC) and sphere (Fig. 2). The created data set serves as 
virtual sensor data, which was utilized to tune the model 
and validate the performance for defined geometries. To 
feed the neural network with temperature gradients, the 
virtual sensors were chosen within pre-defined areas, as 
depicted in red. Then, transient thermal FEM models were 
created, using these geometries (virtual demonstrators) for 
predefined physical conditions (Table. 1).  

Plate Cylinder 

SHC HHC 

Sphere  

 

 

2.2 Design of Experiments (DOE) 

The presented series of experiments aims to verify the 
capacity of PGNN at an early stage and serve as 
preparation for more complex tasks. For all experiments 
identical BCs are applied, namely: 
Dirichlet BC (Initial temperature) 

T = F(𝐱, 𝑡) 𝐱 ∈ 𝛺 
 (11) 

 

Neumann BC (heat flux): 

∂T

∂𝐧
= −

1

λ
q(𝐱，𝑡) 𝐱 ∈ ∂𝛺 

(12) 

 

and Robin BC (natural convection): 

∂T

∂𝐧
=

1

λ
h(𝑇𝑎𝑚 − 𝑇) 𝐱 ∈ ∂𝛺 (13) 

Property Magnitude Location 

Heat Flux 5000 W/m2 400 mm < z < 600 mm 

Convection HTC 5W/(m2°C) All Surfaces (Heated area excluded) 

Initial Temperature 25°C Whole Body 

Ambient Temperature 25°C  

Material Cast Iron -- 

Timeframe 600 s  -- 

Table. 1: DOE overview 

Fig. 2: Virtual demonstrators and sensor applying 
area (red). 

 

Software 

Design of Virtual 
Demonstrators  

Design of Physical 
Demonstrator  
(future work) 

- Geometry Data 
- Simulated 
Temperatures from FEM 

- Geometry Data 
- Temperatures from 
Field Measurements 

PGNN Input 

Training 

- Point 
Coordinates 

- Time 
temperature 

PDE 

BC 

Hyper 
Parameters 

Processing 
Step 

Data Flow 

Pretrained 

Model 

 Predicted Heat Transfer 

 Overall Temperature Distribution 

Output 
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F(∗) is the function describing the temperature distribution 

at spatiotemporal points (𝐱，𝑡), λ represents the thermal 

conductivity coefficient, 𝐧 denotes the boundary normals, q 

is the function of heat flux, h the heat transfer coefficient 

and 𝑇𝑎𝑚 the ambient temperature around the workpiece. 

The testing conditions and corresponding magnitudes for 
the virtual demonstrators are chosen with respect to the 
estimated conditions based on technical specifications of a 
physical demonstrator, which will be investigated in future. 
In the inverse problem, the unknown heat flux, which is 
caused e.g. by induced thermal energy from a machining 
process, is aimed to be estimated by the PGNN. To 
constraint the degree of freedom for the system, surface 
temperature data is provided by the demonstrators by 
virtual sensors coming from FEM. 

2.3  Software infrastructure 

The developed software tool (Fig. 3) uses an open source 
python package named DeepXDE [Lu 2020]. 

  

Fig. 3: Software infrastructure. 

DeepXDE provides a deep learning library for solving 
differential equations, hence providing the core framework 
to conduct the workflow of using PGNNs. While DeepXDE 
entails the modules for building basic geometries, assigning 
physical conditions (PDE, BC, IC) and training of the neural 
network, additional interfaces must be developed to 
overcome limitations regarding the input of complex 
geometries and sensor integration, which was necessary 
for the conducted study.  

By means of the package integrated tool named 
Constructive Solid Geometry (CSG), with which the 

geometry is limited to basic components, like cuboid, 
cylinder, etc. and their combinations, the capabilities of 
defining complex geometries from engineering data are 
very limited though. Since the long term goal of this early 
stage study is to implement the procedure in field tests for 
more complex geometries, requiring the software to receive 
and interpret standard file formats, like VTK or STL, the 
authors developed an interface. The interface enables the 
extraction of point coordinates as well as boundary normals 
from external geometry files and aggregate them with 
temperature data in a PGNN interpretable pattern. 

There is a major difference in geometry handling between 
FEM and PGNN. While FEM calculates through all nodes 
in the mesh at all timesteps and, thus, involves tedious work 
to balance the calculation efficiency and accuracy through 
careful design of mesh, PGNN only needs a part of the 
pointset at every timestep. That is because DeepXDE 
considers timestamps as nothing else than an additional 
dimension accompanying the 3D coordinates of spatial 
points and samples training data in the whole 4D domain 
instead of running through all points step by step. Such a 
scheme enables to use geometries with fine granularity 
accompanied by only little increase in time consumption.  

Besides and without the constraints of common meshing, a 
flexible sensor integration is achieved. Compared to FEM, 
where adding extra points in meshing requires rebuilding 
the mesh and consequentially costs extra time, it turned out 
that the developed framework allows to directly integrate 
any number of sensors into the “meshless” solver, since 
there is no geometrical interaction among spatial points. For 
further understanding about the solver, the authors refer to 
[Lu 2020]. Additionally, adding extra sensor data even after 
the training has started makes the approach flexible. In 
order to integrate sensors for PGNN calculation, the 
coordinates and boundary normals of the surface are 
mandatory. Corresponding boundary normals are directly 
passed by the STL files. The described infrastructure 
results in almost no extra calculation for model preparation 
and thus entails significant potential for increase of 
efficiency in comparison to alternative simulation tools. 

2.4 Hyperparameter Tuning 

After setting up the initial model, specifying the geometry, 
ICs and BCs, it is necessary to specify the hyperparameters 
for training. Hyperparameters are parameters that can 
usually not be trained through the neural network 
[Goodfellow 2016] and thus must be assigned through 
empirical or heuristic knowledge. The selection of these 
hyperparameters influences the output of neural networks 
in a fundamental way. In this study, all investigated use-
cases must comply with the same PDE. Therefore, most 
hyperparameters can remain, once they were determined 
for one case. However, the following four factors: Neural 
Network Architecture, Loss Weights, Point Sampling 
Scheme and Initial value of unknown BC, which are 
significantly influenced by the geometrical characteristics, 
need to be specified case by case. They are described in 
the following. 

Neural Network Architecture 

As a starting point, the presented study adopted a basic 
feed forward neural network (FNN) as neural network 
architecture. The layers in FNN are fully connected, which 
means any neuron from one layer is connected with all 
neurons in the next layer and vice versa. Besides FNN, a 
Resblock, which adds extra connections for every two 
layers, was adopted (Fig. 4). The scale of network in terms 
of layers and neurons depends on the complexity of the 
problem. Besides input and output layers, a Resblock 
(consisting of 2 layers) with 50 neurons in every layer is 
adopted. 

 

Fig. 4 : FNN (left) and Residual Neural Network (right). 

Loss Weights 

For implementation, the magnitude of BCs may vary a lot. 
In the course of this study, the heat flux from the outer 
source is much larger than that from convection. If they are 
summed up naively and implemented into the loss function, 
the optimizer will be likely to ignore the gradient from 
convection and therefore may only find local optima. Hence, 
Loss weights are elementary to balance all terms in the loss 
function, maintaining their weighted magnitude within a 
similar range. 
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ℒ𝓌ℯ𝒾ℊ𝒽𝓉 = 𝑾 ∙ ℒ                                                                    (14) 

In this study, the loss weight is set manually to make sure 
all BCs in loss lie within a span of 100~102 and the weight 
of PDE term is always 1. Besides, Loss weights also serve 
to balance the training difficulty in different BCs [Guo 2018]. 
In the presented work, experiments indicated that Neumann 
(12) and Robin (13) BCs are harder to learn than Dirichlet 
BCs (11). Fig. 5 shows a training process only balancing 
the magnitude but ignoring the training difficulty of different 
BCs. The y-axis represents the loss/initial loss ratio at 
epoch 0 in logarithm scale. As illustrated, the Dirichlet 
condition, namely the initial temperature and observation 
decreases to a lower level than other terms in the whole 
training process.  

 

Fig. 5 : Loss of PDE and different BCs. 

In order to overcome the training difficulty in specific BCs, 
larger loss weights can be assigned to force the optimizer 
to conduct gradient descent faster on difficult BCs and 
accelerate overall training efficiency.  

Point sampling scheme 

Meshing is a crucial factor using the example of FEM, 
especially for complex geometries with subtle structures. In 
contrast, the conducted experiments with PGNNs revealed, 
that the neural network is less sensitive to the shape and 
the geometrical interaction among points of the model. 
Randomly distributed points within the complete 
spatiotemporal domain are a good foundation of sampling, 
whereby the gradient of output will influence the neural 
network a lot. Within the study, it could be observed that it 
is relatively hard for the neural network to learn high 
gradients. This is indicated, as it tends to give out blurred 
results, when temperature changes fast. Residual adaptive 
refinement (RAR), proposed by the original developers of 
the utilized software library DeepXDE, can improve results 

in this case. It iteratively samples new points, which have 
the largest residual against the PDE to increase accuracy. 
Since this method involves additional iteration, it will 
increase training time though. Therefore, a more 
straightforward way of sampling, which is manually adding 
more points at areas of interest (points with expected high 
gradients) for training, was applied within the presented 
work. Thus and unlike RAR, the performance of the neural 
network could be increased, by maintaining same training 
time. 

Initial value of inverse problem 

Before starting to calculate the inverse problem, it is 
necessary to specify the initial value of unknown BCs. One 
needs to specify the initial value based on a priori 
knowledge. Fig. 6 shows the approximation of unknown 
heat flux on a HHC with different initial values. As 
illustrated, it can be observed that the accuracy of initial 

assumption does not necessarily influence the 
convergency of heat flux, which means the neural network 
is less sensitive to erroneous assumptions of the initial 
value. This is evident especially for overestimations, 
because the optimizer tends to decrease the unknown 
parameter on an almost constant speed at the early stage 
of the training. If the initial estimation is lower than the 
ground truth, the training time seems to increase with a 
tendency of underestimation of final prediction though. 
Therefore, it is recommended to set initial values over the 
expected heat flux based on a priori knowledge. Such 
phenomenon also applies to other geometries. Because 
other geometries are even simpler, the PGNN can recover 
much faster even if the initial value is low. 

 

Fig. 6 : Inverse results with different initial assumption. 

3 RESULTS 

At first, this section presents achieved inverse results for 
presented virtual use-cases (3.1). Subsequently, the 
temperature distribution reconstructed with the BC from 
inverse calculation is presented (3.2).  

3.1  Inverse prediction of unknown BC 

Fig. 7 demonstrates the evolution of estimation of unknown 
heat flux with increasing training epochs (the number of 
iterations of the neural network running through the whole 
dataset) on different geometries. 

Fig. 7: Inverse results for different geometries. 

The chosen stop criterion is the sum of absolute change in 
approximated heat flux < 25 W/m2 /2000 epochs. The 
reason for considering the sum of a period instead of 
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change between individual epochs is to avoid training stop 
at turning points, where the estimation shifts from 
decreasing to increasing. It is noticed that the estimation of 
HHC is much more elaborate than other geometries, with 
the neural network converging after much longer epochs. 
For comparison, the training epoch of all other geometries 
has been prolonged to the same as of HHC.  

For the inverse problem, the amount and positioning of 
sensors is of vital importance regarding the accuracy of 
results. For some geometries like full cylinder, sphere and 
SHC an underestimation for determination of heat flux could 
be observed. This is influenced by the fact, that the 
simulated timeframe is relatively short and the thermal 
information inside the geometries has not been captured. 
During testing, it could be observed, that if additional data 
near the heated area and inside the geometry is given, this 
underestimation can be alleviated. For further research, this 
problem might affect especially workpieces of thick solid 
bodies. In contrast, the results for plate and HHC are more 
accurate, since they are thin in the direction of heat flux. 

3.2 Rebuilt temperature distribution 

To determine the unknown BCs, the overall temperature 
distribution is directly calculated, which is depicted in Fig. 8.  

 

Fig. 8: Temperature distribution of HHC for inverse 
solution. 

It represents the output of neural network in a qualitative 
way, where temperature gradients are successfully 
constructed for the HHC, in which the medium front area is 
heated up while non-heated areas remain at ambient 
temperature, due to convection. This could be observed for 
all geometries, but is only demonstrated for the HHC due to 
lack of space. 

For analysis, the temperature derived from PGNN for 
inverse calculation is compared to the results coming from 
FEM, where the heat flux was set up in advance using 
Ansys® FEM software. However, it is noticeable that points 
with deviations (ranging between +5°C and -2°C) could be 
observed for all use-cases. Those extreme points represent 
a clear minority though, which allows the conclusion that the 
general approach is feasible for the intended purpose (Fig. 
9). Currently smoothing these points with their neighbors 
seems to be an approach, whereat further investigations 
are necessary.  
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The relative error (L2) and mean absolute percentage error 
(MAPE) between derived temperature from PGNN and 
FEM are shown in Fig. 10. Although only a subset of the 
geometry experiences a heat flux, the authors still apply 
statistic metrics to the whole body. That is due to the 
following two reasons: 1) During heating convection acts on 
the whole surface as continuous BC; 2) Any division to 
extract sections, where temperature change is significant 
involves subjective judgement because the temperature 
distribution is continuous on the geometry. For the inverse 
problem magnitudes of lower than 2.5% could be achieved 
in all cases. Results show relatively lower errors for the 
plate and SHC. A presumption is that the boundary normal 
on the flat surface of these geometries is homogenous, and 
thus makes it easier for the neural network to approximate. 

4 CONCLUSION AND OUTLOOK 

This paper presents a prototype for efficient direct and 
inverse thermal simulation based on physics guided neural 
networks (PGNN), providing convenient sensor integration 
and remarkable accuracy. Despite significant progress in 
transient thermal modeling in the context of production 
engineering, reviewing the state of the art reveals 
weaknesses of entrenched methods, especially related to 
the efficient inverse heat transfer modelling of complex 
geometries and flexible sensor integration, which was the 
motivation for the study. The challenge of the presented 
work was to develop a tool, aiming to bypass the drawbacks 
of existing methods by fusing machine learning, analytical 
knowledge and virtual measurements into one prototype. 

The first task was to take up a deep learning library for 
solving differential equations and modify setting levers to 
solve inverse heat transfer problems according to 

presented use-cases. In the course of that, a geometry 
interface was developed, enabling to connect complex 
geometries from external file formats with the software. 
Besides, a flexible sensor integration was implemented 
within the geometry interface. After defining the physical 
problem in terms of PDE and BCs, the neural network 
architecture was designed. Subsequently, the performance 
of PGNN was tested virtually for five different geometries in 
transient-thermal FEM analyses. The achieved results 
show that the approach of using PGNNs can achieve low 
overall error with both MAPE and L2 error below 2.5% 
regarding basic geometries. However, locally thermal errors 
of higher than 5°C could be observed, which must be further 
investigated in the future.  

Pushing the work closer to real scenarios and improve the 
performance of PGNN, physical testing will be in the focus 
of future research. Therefore, a physical test bench is 
designed. A turbine housing, which is a modified cast blank 
standing in the shop floor of the research facility of 
Production Metrology and Quality Management of WZL 
RWTH Aachen serves as physical demonstrator. To 
introduce defined heat fluxes on dedicated positions, the 
housing is equipped with heat pads on the surface, which 
can be controlled remotely. Furthermore, various 
temperature sensors comprised of PT1000 elements and a 
thermography camera ensure a holistic temperature 
monitoring during the testing.  

Additionally, the neural network accuracy, which could only 
be validated for short simulation timeframes so far (600s), 
should be tested for larger timeframes. One way is to 
separate a long time frame into several smaller frames and 
calculate them in series or even parallel on different GPUs 
[Meng 2020]. Currently the PGNN is only able to calculate 
constant parameters in the inverse problem, the interaction 
among parameters in time-varying BCs will undermine the 
approximation. To get better output in more realistic 
scenario, adopting new network architectures, such as a 
graph neural network GNN [Sanchez-Gonzalez 2020] is a 
potential strategy. Although this study demonstrates, that 
already one PGNN design is capable of solving similar 
thermal simulations for different geometries within same 
network, the influence of architecture and hyperparameters 
should be evaluated in terms of further generalization. 
Meta-learning [Finn 2017] might be a potential way to 
automate the hyperparameter selection and generalize the 
representative ability of the neural network in the future. 

5  ACKNOWLEDGMENTS 

The authors would like to thank Prof. Walter Reichert and 
Prof. Hans-Jürgen Raatschen from the University of 
Applied Sciences Aachen for the supervision of student 
theses, decisively contributing to the presented research.  

6 REFERENCE 

[Huang 2009] Huang, Chenghung; Chaing, Mengting. A 
three-dimensional inverse geometry problem in identifying 
irregular boundary configurations. International Journal of 
Thermal Sciences, 2009, Vol.48, No.3, pp 502513. ISSN 
12900729. 

[Kim 2019] Kim, Byungsoo, et al. Deep Fluids: A 
Generative Network for Parameterized Fluid Simulations. 
Computer Graphics Forum (Proc. Eurographics), 2019, 
Vol.38, No.2, pp 5970. 

[Goodfellow 2016] Ian Goodfellow, et al. Deep Learning, 
MIT Press, 2016, ISBN 978-0262035613. 

Fig. 10 : Metrics for PGNN output. 

Fig. 9 : Distribution of absolute thermal errors against 
FEM. 

 



 

MM Science Journal | 2021 | Special Issue on ICTIMT2021 

4547 

[Lu 2020] Lu, Lu, et al. DeepXDE: A deep learning library 
for solving differential equations. 1907.04502. arXiv, 2020. 

[Ess 2012] Ess, Markus, et al. Dynamic Loads and 
Thermal Errors on Machine Tools, 2012. 

[Guo 2018] Guo, et al,. Dynamic Task Prioritization for 
Multitask Learning. In: Ferrari, Hebert et al., ed. European 
Conference on Computer Vision. cham: Springer 
International Publishing, ISBN ISBN 978-3-030-01270-0. 

[Alexandre 2018] Alexandre, M. Tartakovsky, et al. 
Learning Parameters and Constitutive Relationships with 
Physics Informed Deep Neural Networks. arXiv, 2018. 

[Holl 2018] Holl, Philipp, et al. Learning to Control PDEs 
with Differentiable Physics. 2001.07457. arXiv, 2018. 

[Sanchez-Gonzalez 2020] Sanchez-Gonzalez, Alvaro, et 
al. Learning to Simulate Complex Physics with Graph 
Networks. 2002.09405. arXiv, 2020. 

[Finn 2017] Finn, Chelsea, et al. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. 
1703.03400. arXiv, 2017. 

[Ohlenforst 2019] Ohlenforst, Markus. Model-based 
thermoelastic state evaluation of large workpieces for 
geometric inspection. Aachen, ISBN 3863597524. 

[Zhu 2019] Zhu, Yinhao, et al. Physics-constrained deep 
learning for high-dimensional surrogate modeling and 
uncertainty quantification without labeled data, 2019, 
Vol.394, pp 5681. 

[Karpatne 2018] Karpatne, Anuj, et al. Physics-guided 
Neural Networks (PGNN): An Application in Lake 
Temperature Modeling. arXiv, 2018. 

[Meng 2020] Meng, Xuhui, et al. PPINN: Parareal physics-
informed neural network for time-dependent PDEs. 
Computer Methods in Applied Mechanics and 
Engineering, 2020, Vol.370, pp 113250. ISSN 0045-7825. 

[Martín 2016] Martín, A., et al. TensorFlow: A System for 
Large-Scale Machine Learning. In: Martín Abadi, ed. 
Proceedings of the 12th USENIX Symposium on 
Operating Systems Design. Savannah, GA, USA. 2-4 
November, ISBN ISBN 9781931971331. 

[Yang 2017] Yang, Bingru, et al. Thermal compensation 
for large volume metrology and structures. International 
Journal of Metrology and Quality Engineering, 2017, Vol.8, 
pp 21. ISSN 2107-6847. 

[Ross-Pinnock 2018] Ross-Pinnock, David; Mullineux, 
Glen. Thermal compensation using the hybrid metrology 
approach compared to traditional scaling. Proceedings of 
the Institution of Mechanical Engineers, Part B: Journal of 
Engineering Manufacture, 2018, Vol.232, No.13, pp 
23642374. ISSN 0954-4054. 

[Li 2017] Li, Tiemin. Thermal error modeling and 
compensation of a heavy gantry-type machine tool and its 
verification in machining. The International Journal of 
Advanced Manufacturing Technology, 2017pp 120. ISSN 
1433-3015. 

[Burghold 2017] Burghold, E. M., et al. Transient contact 
heat transfer measurements based on high-speed IR-
thermography. International Journal of Thermal Sciences, 
2017, Vol.115, pp 169175. ISSN 12900729. 

 

 

 

 


