
MM SCIENCE JOURNAL I 2018 I JUNE

2367

THE GENERATION OF

ROBOT EFFECTOR

TRAJECTORY AVOIDING

OBSTACLES

MARTIN KOMAK, MARIAN KRALIK, VLADIMIR JERZ

Slovak University of Technology in Bratislava,

Faculty of Mechanical Engineering,

Institute of manufacturing systems, environmental

technology and quality management,

Bratislava, Slovak Republic

DOI: 10.17973/MMSJ.2018_06_201764

e-mail: martin.komak@stuba.sk

This paper discusses the problem of trajectory

planning for robotic manipulators at minimal cost. The

paper deals with problems of obstacle avoidance during

the manipulation and technological activities of the

industrial robot. A system has been designed to find a

trajectory that is both collision-free and of minimal

distance. The goal is to reduce workplace costs with the

robot and thus increase the efficiency of the robotized

production cell. The work is mainly focused on the

optimization of trajectory by planning the shortest path

between robot targets. Also, when a trajectory is

generated, the dynamic effects on the industrial robot are

taken into account. Task solving is universal and is

designed for several types of robot kinematic structures.

The task comes under off-line robot programming.

KEYWORDS

obstacle avoiding, trajectory planning, industrial robot,

optimization, robot effector

1 INTRODUCTION

The appropriate application of robots to

industrial processes is essential, and currently firms are

under pressure to make production more efficient. Two

problems must be solved when trajectories are planned.

Firstly, a path must be found between targets. This

requires a geometric solution resulting from the

geometry of the workspace. The result will be a

description of the trajectory in space - the robot effector

path. There are many approaches and methods to plan

the shortest paths in a space with obstacles. The second

level of solution is to control the robot along this path. In

this case, it is about generating a trajectory in terms of the

dynamic effects on the robot. If optimal trajectory

solutions from the point of view of minimizing electricity

consumption are sought, it is necessary to plan the

trajectory so that both levels of solution are taken into

account simultaneously [Carbone 2015]

The methodology of optimizing robot

trajectories began to emerge in the 1970s, but the

greatest increase in solutions has been in the past 20

years. The main task remains to find an optimal and non-

colliding trajectory from the start position to the target

position of the robot effector. Another task in the case of

multiple goals is to effectively determine their sequence.

It is clear from the findings that the planning of a

trajectory focuses on three optimization criteria: the

minimum duration of the operation, minimal energy

consumption and minimization of undesirable dynamic

effects on the robot construction. [Ata 2007] These

criteria are interconnected. For example, by decreasing

the acceleration of its movement on a path, the dynamic

effects on the construction of the industrial robot will be

reduced; but it is also assumed that the time required to

complete the planned path will increase. Movement

efficiency can be increased by using good process models,

which are always associated with the research.

To find the optimal trajectory it is necessary to

create a path in the space in which the robot effector will

move. A number of path-planning methods in 2D and 3D

space can be found in specialist literature. Many of the

methods that have been used spring from the

development of computer games. These methods seek

not only to find the desired path between points in the

space but also to determine the path so that it is optimal

in terms of distance. Path representation can be achieved

in several ways. One of the simplest algorithms that

solves this problem is called a Bug Algorithm. The

principle is that the robot avoids the obstacle in a

clockwise direction until no more obstruction is

encountered. Another approach is the Road Map method,

which maps collision-free interconnection of a space

based on a one-dimensional curve system in the C-space,

without evaluating these paths. [Carbone 2015] Another

kind of planning algorithm is based on Voronoi diagrams,

which are defined as a way to divide space into sections

that have specified characteristics. [Voronoiov 2015] The

most common method is the creation of a graph where

the nodes represent the achieved positions in the space

[Saha 2006, Henrich 1998]. One example is the Visibility

Chart, which generates the edges between obstacle peaks

and target positions; these allow the use, for example, of

the Dijkstrom algorithm to obtain the minimum distance.

The workspace may also be divided into a grid by using

the Grid Lattice method and working from that. Other

algorithms that can be used to solve the path search are

Gradient Descent Path Optimizer, Shortcutting,

Probabilistic road map – RRT and Randomly Exploring

Randomized Trees, which has several variants: RRT*,

RRTConnect, T-RRT, Constrained RRT, Kinodynamic RRT,

Discrete RRT, DARRT and others. [Klingensmith 2013]

The projection of a non-colliding path is

becoming the basis for determining the trajectory for the

file:///C:/Users/Maťo/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/martin.komak@stuba.sk

MM SCIENCE JOURNAL I 2018 I JUNE

2368

robot effector. Several approaches for planning the

trajectory can be found in specialist literature, and these

play a major role in the overall design of a robotized

workstation, as well as in the application of the robot. In

one approach, a Genetic algorithm (GA) was created,

which was used to find the optimal solution [Zha 2002,

Tian 2004, Toyoda 2004]. This optimization method is

based on a model based on functional analysis and

dynamic planning. The trajectory is approximated and the

whole trajectory represents polynomials. The “linear

time-invariant” (LTI) system can be used to optimize

energy consumption [Wang 2012]. The aim is to optimize

the “Point-to-Point” (PTP) movement from the energy

point of view, taking into account the movement time. In

literature [Leng 1997], the problem is formulated as a

non-linear mathematical programmable model. This

method takes into account the dynamics of the robot, the

singular configuration and the constraints on the non-

colliding path. Innovative trajectory planning models also

include the generation of trajectories using neural

networks [Koleda 2012]. Many researchers use so-called

spline curves [D.Luca 1991], which enable dynamic effects

on the robot construction to be taken into account. We

can also use the so-called "cost function" in order to

determine the trajectory, which evaluates the generated

trajectory [Chettibi 2004] according to monitored input

parameters. The approaches that take into account

dynamic limitations of robots can be found in the relevant

literature [Fang 2012, Saramago 2000, Vaz 2004,

Saramago 1998, Valero 2006, Saramago 1999].

When we addressed the minimization of the time

that the robot needs to perform a programmed

operation, we focused on two ways. The aim was to find

the shortest path between the objectives of the robot and

design it in such a way that it can move at maximum

speed.

2 PROBLEM STATEMENT

Let us consider a n-axes industrial robot. Each axis

has its articulated movement restrictions, limitation of

speed, torque, acceleration and jerk, which is the extent

of acceleration in time [Tian 2004]. Optimization consists

of decreasing or increasing one or more of these

parameters. At the same time, the trajectory that the

robot passes through must be free of obstacles. To find a

non-colliding trajectory, we must first define in some way

an obstacle in the robot's workspace. Our solution is

based on avoiding the obstacles that are in STL format

(STereoLithography). STL files only describe the surface

geometry of a three-dimensional object without any

representation of the color, texture, or other attributes

common to CAD models. They describe an unstructured

surface consisting of a triangle network described by

normal lines and cusps using a three-dimensional

Cartesian coordinate system. [Wikipedia 2017] The

system designed by us loads this triangle network and

continues to work with it. The user includes the input data

into the system through the dialog window. This window

contains input values for the start and end positions of the

robot in the space - they are represented by three

coordinates (X,Y and Z) in the 3D space. In this manner we

generate the first targets for the robot control system.

Next, a security zone is defined to ensure that the

trajectory is located at a set distance (offset) from the

obstacle ; a trajectory smoothing zone is also defined.

Finally, the parameters of the output images - height,

width, scaling factor and the angle of rotation of the

cross-sections are entered. From the set values a

configuration file is generated with which the system

continues to work.

3 ALGORITHM SOLUTION

In the first step of the solution, we load an STL file

into the memory. This file describes an obstacle in the

robot's workspace. From this file we will use mainly the

coordinates of particular triangles. After loading the

entire file, a model of the avoided object – obstacle is

obtained. This model is constructed from a network of

triangles - Fig. 5. In the next step, the system retrieves the

starting and target positions of the robot from the

configuration file. Between these positions we draw a

straight line, thus obtaining the shortest path between

these positions. An algorithm was created to determine

the intersection between the triangles and the straight

line to see if the straight line intersects at least one

triangle from the loaded model of the object - obstacle. If

no intersection occurs, this straight line is found to be the

shortest path between positions. On the other hand, the

shortest possible non-colliding path for the robot to avoid

the model of the obstacle will be found. If the axis

representing the shortest path between the starting and

the target position passes through the object, it is called

a cross-sectional axis. With the help of this cross-sectional

axis, cross-sectional planes can be defined. These are

planes that will intersect the object and rotate around the

cross-sectional axis as shown in Fig. 1.

Figure 1. Imaging of cross-sectional planes

MM SCIENCE JOURNAL I 2018 I JUNE

2369

The angle of tilting of the cross-sectional planes

 is entered by the user and determines the angle

between the cross-sectional planes. These cross-sectional

planes are generated from 0° to 359°. The generation of

cross-sectional planes is as follows. It is known that each

plane is defined by at least 3 points. All cross-sectional

planes will contain the starting and ending positions. We

transform the starting point by the T1 transformation to

the beginning of the coordinate system and shift the

target position according to this transformation. A third

point in the space will be chosen. The first cross-sectional

plane is given by the cross-sectional axis and the third

point in the space. The third point is rotated according to

the rotation matrix around the cross-section axis by the

angle α and thus we obtain the other cross-sectional

planes. The points generated by rotation of the third point

lie on an imaginary circle whose center is on the cross-

sectional axis, and the vector passing from the center of

the circle through that point is perpendicular to the cross-

sectional axis. The points are then converted back to the

space by the inverse transformation to T1. In this way we

obtain n cross-section planes (n = 359°/), which are

needed to generate trajectories.

First of all, the normal line is calculated from

these three points determining the cross-sectional plane,

and a general formulation of the cross-sectional plane is

obtained. After that, all sides of the triangles of the

obstacle model are replaced by lines and we express them

parametrically of three equations (x, y, z). These

expressions will be inserted into the general cross-

sectional equation to obtain the t parameter by which the

line crosses the plane. Now we have one equation of one

unknown. We also get t parameters for the marginal

points of abscissas representing the sides of the triangles.

If the parameter of the intersection between the line and

the plane lies between the parameters of the marginal

points, it follows that the point of intersection is in the

triangle area and we have the exact point of intersection.

Otherwise, the triangle is outside the cross-sectional

plane. The generated points of intersection represent the

corner points of an object's contour in a given cross-

sectional plane. Trajectories can be generated around this

contour. Two trajectories can be created from each cross-

sectional plane as shown below.

Figure 2. Trajectories with object in the cross-sectional plane

The figure shows the cross-section of the object

and the two generated trajectories around the object in

the cross-sectional plane. In order to obtain these

trajectories, we proceed as follows: First, we express the

cross-sectional plane by the general equation of the

plane. By inserting the lines representing the sides of the

triangles into this equation, we will obtain the positions in

which the intersection occurs. After verifying all straight

lines from all triangles from the network, we will gain the

intersection positions in the given cross-sectional plane.

By connecting these points, we will obtain a curve that

represents the boundary of an object in a given cross-

sectional plane. Now we want to determine how to avoid

these boundaries of the object.

We can generate the straight lines s1, s2, ..., sn

that pass through the starting position and all the points

of the intersection - Fig. 3-1. All straight lines will be

expressed parametrically. Thus we will obtain the straight

line with the highest parameter to generate the upper

path s1, or with the lowest parameter to generate the

lower path s4. This straight line, as far as the point of

intersection, represents the first part of the track. The

next procedure will be the same, only at the generating of

straight lines we will start from the point of intersection

in which the track has ended - Fig. 3-2. Thus we will go

around the whole object clockwise or counterclockwise in

the cross-sectional plane - Fig. 3-3.

Figure 3. The sequence of steps in path generation

MM SCIENCE JOURNAL I 2018 I JUNE

2370

This procedure is applied in all cross-sectional

planes. The paths generated from cross-section planes

can then be ordered by their length to obtain the shortest

possible path with the transition points that represent the

calculated targets. These targets are the output data for

generating a collision-free trajectory.

4 THE GENERATION OF "SMOTHED" PATH

To make the robot move more smoothly on the

track, we can insert into the program the so-called zones.

The zone is an imaginary ball around the generated

target. After the entry of TCP (Tool Center Point) effector

into the interior of the zone, the robot control system

evaluates that the robot has reached the target and will

move along the arc path to the next target of the

programmed trajectory. As a result, the robot does not

have to come in and stop at a precise position, but it is

enough to get the robot to come near the target position

at a certain speed. Thus the robot can continue to the

next position without having to stop and perform jerky

motions in slowing and starting. In order to avoid the

obstacle in the area with the zones, the generated targets

cannot match the object and thus have to be deflected by

a particular vector according to Fig. 4.

Figure 4. Deflection the transition target

The length and direction of the deflection vector

d are calculated from the following relationship:

d = z - kβ + zSafety (1)

where

z are zone data – the size of the generated corner path,

zSafety – a safety zone, can replace the offset of the

trajectory with the real size of the effector,

kβ is the distance coefficient which can be calculated as

follows:

kβ = *(β-45) (2)

where β is the angle between the vector and the

trajectory, and can be calculated as:

𝛽 =
360− 𝛼1

2
 (3)

α1 – is the angle between two consecutive abscissa of the

trajectory.

It follows from the relations that if α1 approaches

the 180° angle, the trajectory segments are parallel and

the length of the deflection vector is minimal. Otherwise,

if the angle is minimal, the part of the object that is

avoided by the trajectory is very sharp and therefore the

length of the deflection vector adjusts according to the

size of the angles and the zone. In the case of a defined

zone, we will move all the transition targets to get all the

targets from the resulting trajectory.

5 EXPERIMENTAL RESULTS

This software solution was verified by an

experiment. As an obstacle, we used a water turbine - Fig.

5. Initial coordinates were (-80, 0, 30) and the target

coordinates (80, 5, 40). The angle between the cross-

section planes was 5°, so 71 cross-sectional planes were

generated. From each plane, we obtained one trajectory.

We have sorted them in ascending order according to the

length. The value of the security zone was set to zero and

the value of the zone was set to 10 mm. In Fig. 6, we can

see the cross section of the turbine by the plane at the

shortest trajectory. This plane contains 4 transition

points. The length of this trajectory is 166.517 mm.

Figure 5. The avoided turbine - STL format

The coordinates of the transition targets from the

shortest trajectory are in Tab. 1.

 Coordinates

Targets X Y Z

Initial -80 0 30

Transition 1 -11.6337 10.2679 43.4541

Transition 2 -1.75313 11.1293 44.6955

Transition 3 -0.658056 11.2962 44.9138

Transition 4 0.507731 11.2326 44.8738

End 80 5 40
Table 1. The coordinates of the targets on the shortest path

Fig. 6 shows a cross-sectional plane with the

shortest trajectory. In Fig. 7 is a cross-sectional plane with

MM SCIENCE JOURNAL I 2018 I JUNE

2371

the longest trajectory. The length of the longest trajectory

is 179.118 mm and it contains 19 transition points.

Figure 6. The view of the shortest trajectory in the cross-

sectional plane (XY’ plane, α =165°)

The calculated coordinates of the targets in

Table 1. and in the Fig. 6. and Fig. 7. are based on the

origin of the coordinate system, which can also be

referred to as a global coordinate system (in this case it is

under the turbine on its axis of rotation). The XY' plane

denotes a cross-sectional plane rotated by an angle α

from the XY plane.

Figure 7. The view of the longest trajectory in the cross-

sectional plane (XY’ plane, α =45°)

The resulting coordinates of the transition

points can be written into the language understood by the

industrial robot control unit according to the certain

syntax - Fig. 8. This generated code can be directly used in

a real application, allowing the visual verification of this

solution.

Figure 8. Program code generated for the ABB industrial robot

Finding a solution is not time-consuming and is

cost-effective. The generation of a trajectory around an

object is possible in a few seconds. The algorithms are not

demanding for computational memory and the system is

not complicated graphically. All results are in the form of

images, as well as text files, which can be used in software

applications for off-line programming of industrial robots.

This software solution can be visualized as shown in Fig.

9.

Figure 9. Trajectory visualization in software RobotStudio from

company ABB

6 CONCLUSIONS

The article provides an overview of how to

generate trajectories. It presents the algorithms to

generate a robot effector trajectory to avoid obstacles.

The solution described is to accelerate the movement

along the trajectory by setting zones around the targets.

The aim was to design a collision-free trajectory based on

the cross-sectional plane of the object. Specific

algorithms enable solutions to be found with minimal

computational and time demands. In practice, the

algorithms mainly work with vector calculations,

equations of straight lines and planes and their

intersections. Another subject for research may be to take

into account the real dimensions of the effector and its

orientation in space.

ACKNOWLEDGMENTS

This study was supported by the Cultural and

Educational Agency of the Ministry of Education of the

Slovak Republic under the contract KEGA 035STU-4/2017

The introduction of progressive educational methods for

manufacturing systems to car production.

MM SCIENCE JOURNAL I 2018 I JUNE

2372

REFERENCES

Paper in a journal:
[Ata 2007] Ata, A.A. Optimal trajectory planning of
manipulators: A review. Journal of Engineering Science
and Technology Vol. 2, No. 1. 2007 pp 32-54.
[Carbone 2015] Carbone, G. and Gomez-Bravo, F. Motion
and Operation Planning of Robotic Systems. Background
and Practical Approaches. January 2015. ISBN 978-3-319-
14705-5
[D.Luca 1991] D.Luca, A. et al. A Sensitivity Approach to
Optimal Spline Robot Trajectories. Automatica, Vol. 27,
No. 3. 1991 pp 535-539.
[Fang 2012] Fang, H.C. et al. Interactive robot trajectory
planning and simulation using Augmented Reality.
Robotics and Computer-Integrated Manufacturing 28.
2012. pp 227 – 237.
[Henrich 1998] Henrich, D., et al. Multi-directional search
with goal switching for robot path planning. Computer
Science Department, University of Karfsruhe
[Chettibi 2004] Chettibi, T. et al. Minimum cost trajectory
planning for industrial robots. European Journal of
Mechanics A/Solids 23. 2004 pp 703–715.
[Koleda 2012] Koleda, P. and Nascak, L. Generate
trajectory using a neural network (in Slovak: Generovanie
trajektórie pomocou neuronovej siete). ACTA
FACULTATIS TECHNICAE, XVII. 2012 pp 43–49.
[Leng 1997] Leng, D.Y. and Chen, M. Robot Trajectory
Planning using Simulation. Robotics & Computer-
Integrated Manufacturing, Vol. 13, No. 2, 1997. pp 121-
129.
[Martin 1997] Martin, B.J. and Bobrow, J.E. Minimum
effort motions for open chain manipulators with task-
dependent end-effector constraints. In: Robotics and
Automation, 1997. Proceedings., 1997 IEEE International
Conference on , vol.3, no. 20-25 Apr 1997, pp.2044-2049.
[Saha 2006] Saha, M., et al. Planning Tours of Robotic
Arms Among Partitioned Goals.
[Saramago 1998] Saramago, S.F.P. and Steffen Jr., V.
Optimization of the trajectory planning of robot
manipulators taking into account the dynamics of the
system. Mech. Mach. Theory Vol. 33, No. 7. 1998 pp 883
– 894.
[Saramago 1999] Saramago, S.F.P. and Steffen Jr., V.:
Dynamic Optimization for the Trajectory Planning of
Robot Manipulators in the Presence of Obstacles. Journal
of the Brazilian Society of Mechanical Sciences. 1999
[Saramago 2000] Saramago, S.F.P. and Steffen Junior, V.
Optimal trajectory planning of robot manipulators
in the presence of moving obstacles. Mechanism and
Machine Theory 35. 2000 pp 1079 – 1094.
[Tian 2004] Tian, L. and Collins, C. An effective robot
trajectory planning method using a genetic algorithm.
Mechatronics 14. 2004. pp 455–470.
[Toyoda 2004] Toyoda, Y. and Yano, F. Optimalizing
Movement of A multi-Joint Robot Arm with Existence of
Obstacles Using Multi-Purpose Genetic Algorithm. EMS
Vol.3. No.1. 2004. pp 78-84.
[Valero 2006] Valero, F. et al. Trajectory planning in
workspaces with obstacles taking into account the
dynamic robot behaviour. Mechanism and Machine
Theory 41. 2006 pp 525–536.

[Vaz 2004] Vaz, A.I.F. et al. Robot trajectory planning with
semi-infinite programming. European Journal of
Operational Research 153. 2004 pp 607–617.
[Vitralab 2011] Automation and robotics. Guide. (in
Slovak: Automatizacna a roboticka technika. Prirucka.)
VITRALAB. Kosice: 2011
[Voronoiov 2015] Voronoiov diagram.
http://mathworld.wolfram.com/VoronoiDiagram.html
[2.11.2015]
[Wang 2012] Wang, X. et al. Energy Optimal Point-to-
Point Motion Using Model Predictive Control. Annual
Dynamic Systems and Control Conference. Florida: 2012
[Zha 2002] Zha, X.F. Optimal pose trajectory planning for
robot manipulators.

WWW page:
[Klingensmith 2013] Klingensmith, M. Overview of
Motion Planning. 07.05.2017
http://www.gamasutra.com/
[Wikipedia 2017] Stereolithography.
https://en.wikipedia.org/wiki/Stereolithography

CONTACTS:

Ing. Martin Komak, PhD.

doc. Ing. Marian Kralik, CSc

doc. Ing. Vladimir Jerz, CSc.

Slovak University of Technology in Bratislava,

Faculty of Mechanical Engineering,

Institute of manufacturing systems, environmental

technology and quality management,

Namestie slobody 17, 812 31 Bratislava 1, Slovak

Republic,

martin.komak@stuba.sk; Tel.: +421 908 099 406

marian.kralik@stuba.sk; Tel.: +421 (2) 57 296 579

vladimir.jerz@stuba.sk; Tel.: +421 (2) 57 296 554

file:///C:/Users/Maťo/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/martin.komak@stuba.sk
file:///C:/Users/Maťo/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/marian.kralik@stuba.sk
file:///C:/Users/Maťo/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/vladimir.jerz@stuba.sk

