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Linear rolling guides are used for realizing a translational 
motion of mechanical elements or assemblies e.g. in industrial 
robots, handling or CNC machines. Their reliability is highly 
desirable to meet the requirements of Industry 4.0, and hence 
the accurate load identification of linear guides is needed. The 
objective of this article is to identify a dynamical load of linear 
guides based on the substitutive mathematical model of 
machines. Where, the kinematic excitation, mass, inertia 
parameters of moving bodies and elastic and damping 
behaviour of linear guides are defined. The simulation of 
specific operating conditions is reached by Lagrange equations 
in a vector form. This way conveniently enables respecting the 
effect of nonconservative forces in the calculation. The article 
comprehensively describes the method of the dynamical load 
calculation of linear rolling guides, which is usable for a wide 
range of machines, their design as well as the design of linear 
guides. 
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1 INTRODUCTION 

Nowadays, for minimization of production losses and to meet 
requirements of Industry 4.0, the high reliability of linear rolling 
guides is demanded. These are widely used in machines of 
production lines, where enable linear motion of machine 
elements or assemblies. The most common usage examples are 
industrial robots, handling and CNC machines. 
Efforts to increase the reliability are often reflected in the 
detailed description of linear guides wear that is directly related 
to the contact stress of contact surfaces [Li 2018], [Kwon 2019]. 
For example, [Wei 2017b] evaluates the effect of the linear 
guides wear on the contact stiffness change. Another principle 
for the evaluation of the contact stresses uses [Ohta 2019] and 
[Cheng 2018], who determine the influence of the friction on 
the contact stress increase by FEM analysis and by analytic 
calculation. [Shimizu 2008] examines the influence of contact 
stresses on the basic dynamical capacity of linear guides. 
The above described knowledge of the fatigue wear is further 
accounted into the damage diagnostics of linear rolling guides 
[THK 2011], [THK 2019]. For example, [Schaeffler Technologies 
2017] for determination of linear guides damage uses time 
sections that respond to the vibration energy increase under 
the relubrication of linear guides. [Feng 2018] uses the 
analogous model by applying the wavelet transform and the 
neural networks for the signal analysis. [Wei 2017a] describes 
the reliability analysis of linear guides dynamically loaded and 

[Tao 2013] proposes the damage prediction based on the 
predetermined model of linear guides wear under a variable 
load and trajectory conditions. 
Nevertheless, linear rolling guides are currently designed 
mainly according to the static part of the load, but the 
significant portion of the linear guide's load is a dynamical part 
of that load caused by the inertia forces of the moving bodies. 
Therefore, the dynamical part of the load needs to be added to 

the first draft of machines with linear guides as well as to the 
investigation of contact stresses or diagnostic methods. 
Currently, many conventional engineering tools can be used for 
computing the bodies’ motion and evaluating the dynamical 
forces. These multibody system analyses (MBS) mainly use 
augmented Lagrange equations [Wittenburg 2008], [Schiehlen 
2007]. In the case of machines with linear guides, using 
Lagrange equations with a member of constraint is complicated 
especially for the evaluating the dynamical forces to the linear 
guide that can be represented by a series of elastic and 
damping links [Ohta 2000]. Further complication also might be 
creating the proper kinematic pairs those constrain the basic 
motion of the solved system. 
Hence, the article is focused on the calculation of the linear 
guides’ dynamical load using the mathematical model based on 
Lagrange equations in a vector form. The load calculation is 
further shown in a practical example. 

2 DESIGN AND USE OF LINEAR GUIDES 

The linear guide consists of the carriage, where rolling elements 
are situated and those are in contact with a guiding profile. A 
moving body of the machine is usually connected to the 
carriage; the guiding profile is connected to the machine frame 
(Fig. 1). 

 

Figure 1. The linear rolling guide [Schaeffler Group 2020] 

An example of linear guides’ usage, a manipulator of glass 
panes, is shown in Fig. 2. The moving assembly of this machine 
is composed of a cart with a telescopic carrier of clamping 
frames. In the manipulator, linear guide carriages are used on 
two parallel guiding profiles. The configuration of the moveable 
assembly and kinematic conditions are cyclically changed 
during the manipulator operation; mass and inertia parameters 
are consequently changed too. Various static and dynamical 
loads appertain to each assembly configuration and kinematic 
conditions. 

 

Figure 2. The glass pane manipulator [HAGER 2020] 
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3 LAGRANGE EQUATIONS 

The Lagrange equations in the vector form are used for the load 
evaluation of linear guides. Their advantage is the machine 
system description based on energies and on a proper set of 
generalized coordinates and generalized forces relate to the 
generalized coordinates. In this case, considering the dynamical 
behaviour of solved systems, the advantage is usage of 
Lagrange equations without a member of constraint. The 
proposed computation is mainly advantageous for easier 
optimization of dynamical parameters, better control of 
computing steps and settings, and especially for a more clear 
evaluation of the dynamical load. The chapter describes the 
derivation of the Lagrange equation in the vector form up to 
the final differential equations of motion. This calculation is 
applicable for diverse one mass systems with a spatial and 
translational motion via linear guides. It should be noted that 
one mass system is suitable for machines, where the dynamical 
load of linear guides is not much influenced by the dynamics of 
structural mechanisms or gears. 
The load calculation of linear guides substitutes solved systems 
by the mathematical model. The mathematical model is 
represented by a one mass system with a kinematic excitation 
defined as a time acceleration function at the reference point. 
The dynamical system (Fig. 3) is defined by mass and inertia 
parameters of a virtual body of the solved machine. Linear 
guides are substituted by elastic and damping links of the 
virtual body against the frame. Their stiffness and damping 
coefficient matches the parameters given by producers. 
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Figure 3. The one mass system 

The motion of the virtual body is described in global 
coordinates x, y, z with the origin O. Simultaneously, at time t0 
is the local coordinate system of the virtual body x', y', z' with 
the origin L identical to the global coordinate system. At time t, 
the origin of the local coordinate system is shifted by the 
position vector uL and rotated by the angular position vector ϕ. 
The proper set of generalized coordinates respectively 
generalized velocities is represented by the position vector uL 
and the angular position vector ϕ respectively the velocity 
vector uL' and the angular velocity vector ϕ'. The Lagrange 
equation of spatial motion in the vector form is 
 
 

 

(1) 

wherein K is kinetic energy, U potential energy, D dissipative 
energy, Q generalized force and moment, q generalized 
coordinate and q' generalized velocity. 
The proposed solution defines the kinetic energy K of the 
virtual body as a scalar field, which is given by the square of the 
scalar multiplication of the velocity vector. Analogously, the 
dissipative energy D of damping links and the potential energy 
U of elastic links is defined. 

3.1 Kinetic energy 

The kinetic energy of the rigid body is 

 

(2) 

The velocity vector u' is defined 

 
(3) 

Whenever the antisymmetric tensor R of the vector r exists, the 
equation (3) becomes 

 
(4) 

wherein the antisymmetric tensor R is 

 

(5) 

The partial derivative of the kinetic energy K by the velocity 
vector uL' is then 

 

(6) 

wherein I is the unit tensor. 

 

(7) 
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and SL is the antisymmetric tensor related to the vector of the 
first moment of inertia respecting the origin L of the local 
coordinate system 

 

(8) 

The partial derivative of the kinetic energy K by the angular 
velocity vector ϕ' is 

 

(9) 

wherein JL is tensor of inertia respecting the origin L of the local 
coordinate system. 

 

(10) 

The first member of the equation (1) for the generalized 
coordinates q', thus for the velocity vector uL' and the angular 
velocity vector ϕ' becomes 

 

(11) 

 
(12) 

3.2 Potential energy 

The energy of elastic links against the equilibrium position and 
by considering the gravitational field, the potential energy U 
becomes 

 

(13) 

wherein ki is the stiffness of i-th elastic link and δi its 
deformation, m is mass of the body, g the gravitational 
acceleration, uS the position vector of the centre of mass and gS 
the unit vector in the gravity direction. 
 
 

The deformation δi of the elastic link may be expressed as the 
scalar multiplication of the relative position Δui of its endpoint 
against the start point and the unit vector oi in the elastic link 
direction. Wherein the endpoint position ui of i-th elastic link is 

 (14) 

and uLi is the start point position of i-th elastic link. 
The deformation δi is then 

 (15) 

The position vector uS is defined 

 (16) 

Equations (14) and (16), analogously to the equation (3) and 
(4), become 

 (17) 

and 

 (18) 

wherein Pi is antisymmetric tensor related to the vector pi 

 

(19) 

and RS is antisymmetric tensor related to the vector rS. 

 

(20) 

The partial derivative of the potential energy U by the position 
vector uL is 

 

(21) 

the equation may be modified by 

 

(22) 

The position vector Δui equals to zero in the submitted system. 
Then the final equation of the partial derivative of the potential 
energy U by the position vector uL is 
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(23) 

The partial derivative of the potential energy U by the angular 
position vector ϕ analogously is 

 

(24) 

3.3 Dissipative energy 

The dissipative energy is defined as 

 

(25) 

wherein bj is the damping coefficient of j-th damping link and 
δ'j its deformation velocity. The deformation velocity δ'j can be 
expressed as the scalar multiplication of the relative velocity 
Δu'j of its endpoint against the start point and the unit vector ej 
in the damping link direction. 
The deformation velocity δ'j is then 

 
(26) 

The endpoint velocity u'j of j-th damping link is 

 
(27) 

this equation, analogously to the equation (3) and (4), becomes 

 
(28) 

wherein Lj is antisymmetric tensor related to the vector li, and 
is 

 

(29) 

The partial derivative of the dissipative energy D by the velocity 
vector u'L is 

 

(30) 

The equation (30) may be modified by 

 

(31) 

The velocity vector Δu'L equals to zero in the submitted system. 
Then the final equation of the partial derivative of the 
dissipative energy D by the velocity vector u'L is 

 

(32) 

The partial derivative of the dissipative energy D by the angular 
velocity vector ϕ' analogously is 

 

(33) 

3.4 Differential equations of motion 

External forces F and external moments M are represented by 
generalized forces and moments in differential equations of 
motion. 
Final differential equations of motion are 

 

(34) 

 

(35) 

 

(36) 

 

(37) 
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(38) 

 
(39) 

those are six differential equations that describe the spatial 
motion of the virtual body in the Cartesian coordinate system. 
Indexes mark the translational motion in the global coordinate 
system and mark the rotational motion around the axes of the 
global coordinate system. 

3.5 Numerical solution of differential equations 

The numerical solution of differential motion equations 
includes setting dynamical parameters of the solved system, 
kinematic excitation at the reference point of the virtual body 
and defining external forces and moments. 
Positions x, y and z of the reference point L are defined in 
differential equations (34) to (36), while external forces Fx, Fy 
and Fz are unknown variables. 
External moments Mx, My and Mz equal to zero are defined in 
differential equations (37) to (39), while angular positions ϕx, 
ϕy and ϕz around coordinate axes are unknown variables. 

3.6 Calculation of dynamical load 

The deformation δi of elastic links of linear guides may be 
calculated using the equation (15). The deformation velocity δ'j 
of damping links may be calculated using the equation (26). 
The deformation δi multiplied by stiffness ki gives the result of 
the load, regarding the elastic links. The deformation velocity δ'j 
multiplied by damping coefficient bj gives the result of the load, 
regarding the damping links. The final dynamical load of a linear 
rolling guide is defined as a vector addition of the elastic and 
damping loads. 

4 PRACTICAL EXAMPLE 

The proposed calculation was verified on a chosen clamping 
frames manipulator that uses linear guides for the translational 
motion. This chapter briefly describes the design of the 
manipulator, its kinematic conditions and the numerical 
solution of the dynamical load with results discussion. 
The manipulator (Fig. 4) uses clamping frames for fixing car 
bodies in a welding process. 

 

Figure 4. The clamping frames manipulator 

The clamping frames are connected to the telescopic parts (Y-
axis), those are included in the cart assembly. The cart 

assembly moves translationally on two parallel guiding profiles 
using eight linear guide carriages and is powered by the 
electromotor. The power from the electromotor is transmitted 
and transformed through the spur gear - through the meshing 
point of the pinion and the rack. The Y-axis uses two telescopic 
parts, outer and inner ones; those enable the vertical motion of 
clamping frames. 

4.1 Numerical solution of the manipulator 

The motion of the manipulator may be understood as the 
motion of the absolute translational motion and the relative 
rotation around the reference point L. The L point is also the 
mashing point of the pinion and the rack in the spur gear and 
the origin of the local coordinate system (Fig. 5). 

 

Figure 5. The clamping frames manipulator 

The relative rotational motion is expressed as an oscillation 
around the mashing point of the spur gear. The relative 
rotational motion is expressed as an oscillation around the 
mashing point of the spur gear and is caused by the clearance 
and finite stiffness of linear guides and the whole system. 
Mass and moments of inertia are concentrated into one rigid 
body. Elastic and damping links are shown in Fig. 7. Their values 
are initially obtained from a producer’s documentation, where 
the stiffness in each direction is described. Nevertheless, the 
final values of stiffness and damping coefficient should also 
consider the flexibility of connected objects. These might be 
reached by experimental and numerical methods. 

 

Figure 6. The kinematic scheme of the manipulator: 
                 1 – Guiding profile, 2 – Mass 

Only two linear guides are assumed for load transmission, the 
load is usually not distributed equally. In this case, two linear 
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guides with the highest wear after several years in service are 
included in the calculation. For sufficient substitution of the 
linear rolling guide, four elastic and damping connections were 
used – two pairs at each end point of the linear carriage. 
The cart electromotor is electronically controlled by a 
frequency converter and an incremental sensor of rotations nM. 
Measured rotations nM that correspond to the cart translational 
motion under the maximal appearing load, are shown in Fig. 7. 
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Figure 7. Time graph of electromotor rotations nM 

The cart velocity is obtained from the measured rotations and 
then the cart acceleration aM by a derivative of the velocity. 
The solved system has four degrees of freedom, those are the 
translational motion in the x axis direction and rotational 
motion around the x, y and z axes. The external moments equal 
to zero Mx=0, My=0 a Mz=0. The acceleration in the x axis 
direction ux'' is defined as the cart acceleration aM. 
Accelerations in the y and z axis direction equal to zero uy''=0 
and uz''=0. 
It should be noted that for solving the system is necessary to 
find a static position first, and then initial conditions may be 
set. 

4.2 Dynamical load of linear rolling guides 

The dynamical load of the linear guide was calculated 
respecting the simulation of operating conditions of the 
representative manipulator. Time graphs Fig. 8 and Fig. 9 show 
the dynamical character of the linear guide 1 load in y and z axis 
direction. 

 

Figure 8. Load of the linear guide 1 in y axis direction 

 

Figure 9. Load of the linear guide 2 in z axis direction 

Time graphs Fig. 10 and Fig. 11 show the dynamical character of 
the linear guide 2 load in y and z axis direction. 

 

Figure 10. Load of the linear guide 2 in y axis direction 

 

Figure 11. Load of the linear guide 2 in z axis direction 

The total dynamical load of linear guides is given by the vector 
addition in y and z direction. 
The influence of the dynamical load is dependent on a wide 
range of conditions - such as mass parameters of connected 
bodies, kinematic conditions and on the position of linear 
guides in the system In this case, the dynamical load reached 
significant values. 

5 CONCLUSIONS 

The article showed a method of the dynamical load calculation 
to linear rolling guides, and verified this method on the 
representative manipulator. In practice, the method provides, 
clear and sufficient computations that are based on the 
mathematical model uses tensor calculus. Different dynamical 
parameters and kinematic conditions are easily set and 
controlled during all steps of the calculation. 
The proposed method is applicable to a wide range of machines 
that use the linear rolling guides for translational motion. 
However, the accuracy of the calculation is dependent on 
values of acting dynamical forces given by structural 
mechanisms of the machine solved. These forces are not 
appropriately included. The accuracy of set dynamical 
parameters is a further limiting factor of proposed 
computation. The dynamical parameters set directly influence 
the result of dynamical load. 
In the future, the method may be extended to a multibody 
system, thus giving a more accurate description of machines 
dynamical behaviour. 
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