
 

 

 

MM SCIENCE JOURNAL I 2021 I JUNE  

4333 

 

 

AZURE KINECT BODY 
TRACKING UNDER REVIEW 
FOR THE SPECIFIC CASE OF 

UPPER LIMB EXERCISES 
EUGENIO IVORRA, MARIO ORTEGA, MARIANO ALCANIZ  

Institute for Research and Innovation in Bioengineering, 
Universitat Politecnica de Valencia, Valencia, Spain 

DOI: 10.17973/MMSJ.2021_6_2021012 

e-mail: euivmar@i3b.upv.es 
  

A tool for human pose estimation and quantification using 
consumer-level equipment is a long-pursued objective. Many 
studies have employed the Microsoft Kinect v2 depth camera 
but with recent release of the new Kinect Azure a revision is 
required. This work researches the specific case of estimating 
the range of motion in five upper limb exercises using four 
different pose estimation methods. These exercises were 
recorded with the Kinect Azure camera and assessed with the 
OptiTrack motion tracking system as baseline. The statistical 
analysis consisted of evaluation of intra-rater reliability with 
intra-class correlation, the Pearson correlation coefficient and 
Bland–Altman statistical procedure. The modified version of the 
OpenPose algorithm with the post-processing algorithm 
PoseFix had excellent reliability with most intra-class 
correlations being over 0.75. The Azure body tracking algorithm 
had intermediate results. The results obtained justify clinicians 
employing these methods, as quick and low-cost simple tools, 
to assess upper limb angles. 

 
             KEYWORDS 
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1 INTRODUCTION  

Human balance disturbances are common disorders in different 
populations. Previous reports have shown the contribution of 
the upper limb to human postural control; for example, upper 
limb immobilisation or fatiguing arm exercises have shown that 
decreases in upper limb function negatively affect postural 
control [Souza et al., 2016].Therefore, the assessment of upper 
limb disorders is crucial for elaborating proper rehabilitation or 
for treatment diagnosis. 
Upper limb movements have usually been assessed through 
traditional tests and scales. The Wolf Motor Function Test, the 
Action Research Arm Test and the Melbourne Assessment are 
valid tools for measuring the quality of upper limb movement 
[Randall et al., 2001, van Wegen et al., 2010]. However, the 
majority of these scales may be biased and could introduce a 
subjective component due to the therapist’s level of experience 
and are frequently time-consuming. In order to overcome the 
limitations of the traditional scales, instrumented systems have 
been developed and have appeared in the market. In clinical 
practice, the goniometer is a widely used instrument to 
measure range of motion. It is regarded as a simple, versatile, 
and easy to-use instrument. Reports indicate that its accuracy is 
highly dependent on the level of assessor experience and the 
anatomical joint being measured. It is also limited to measuring 
joint angles in single planes and static positions [Walmsley et 
al., 2018]. 

Currently, quantitative measurements of upper limb functions 
are normally performed using optical markerbased motion 
capture systems [Cai et al., 2019]. They use reflective 
landmarks positioned on the body that are detected by optical 
cameras located in the tracking area. Optical systems are 
considered gold standard due to their high accuracy in 
detecting human poses and movements [Aurand et al., 2017]. 
Nonetheless, the high cost (€20,000), the amount of space 
required, and, in some cases, the substantial amount of time 
spent preparing the subject for assessment make the 
introduction of these systems in clinics and daily routines 
difficult [Oh et al., 2018]. Cameras with the ability to detect 
depth and colour (RGB-D cameras), one of the earliest being 
Microsoft Kinect v1 released in 2011, have previously been 
used and validated for human pose estimation (HPE) [Cai et al., 
2019, Eltoukhy et al., 2017, Oh et al., 2018]. In this study, a 
Microsoft Azure Kinect camera is employed because it is one of 
the most modern and well-known RGB-D cameras. 
The solution to the problem of HPE, i.e. the problem of 
localisation of human joints, has recently made significant 
progress as a result of the use of convolutional neural networks 
(CNN) in images. The state-of-the-art method OpenPose [Cao et 
al., 2017] is able to perform 8.8 FPS HPE of 19 persons in the 
image by employing the Nvidia 1080 GTX GPU. In fact, this 
method has already been validated as a motion analysis 
method, but only for bilateral squat exercise [Ota et al., 2020]. 
Two subsequent methods, Mask RCNN [He et al., 2017] and 
AlphaPose [Fang et al., 2017], have made small improvements 
to the mean average precision (mAP) metric, but at the cost of 
slower runtime. Osokin modified the CNN of the OpenPose 
algorithm for making it more computationally efficient [Osokin, 
2018]. This modified OpenPose algorithm is employed in this 
paper and is referred to as OpenPoseMod. 
Obtaining the 3D skeletal pose from a monocular RGB image is 
a much harder challenge than 2D attempted by fewer methods 
[Bogo et al., 2016, Martinez et al., 2017]. Unfortunately, these 
methods are typically offline or do not provide predictions in 
real world units [Mehta et al., 2017a]. This could be solved by 
an additional depth channel provided by RGB-D sensors that 
overcomes forward–backward ambiguities in monocular pose 
estimation. The best-known studies are those based on 
Microsoft Kinect software development kit (SDK) [Wang et al., 
2015] that exploits temporal and kinematic constraints to result 
in a smooth output skeleton. This system is popular in clinical 
practice because it gives good results and is easy to use due to 
its free SDK which is able to track the movement of human 
joints without markers. This tool has been employed and 
validated in numerous clinical applications such as gait and 
motion analysis and shoulder joint angle or jump-landing 
kinematics [Asaeda et al., 2018, Eltoukhy et al., 2017, Valevicius 
et al., 2019]. 
To the best of our knowledge, this is the first study to analyse 
the new Microsoft Azure Kinect Body tracking technology with 
two recent 3D human pose algorithms using depth information 
and only colour information for upper limb movements 
(OpenPoseMod and RGB-3DHP). For this comparison, a 
baseline test was performed with the optical marker-based 
OptiTrack system. 

2 METHODS 

2.1 Participants  
 
Thirty healthy individuals, 20 men and 10 women, participated 
in this study. They had no known musculoskeletal or vestibular 
disease. The Universitat Politècnica de València granted ethical 
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approval for the study. All participants in the study signed an 
informed consent form. The mean age of the participants was 
31.5 ± 10.3 years. The participants did not present any mobility 
impairment. Their average height was 1.7 meters and the 
average weight was 70.6 kg, and 22 were righthanded. 
 

2.2 Instrumentation and procedures 
2.2.1 Human pose estimation methods 
Four different HPE methods were investigated and tested in 
this study: OptiTrack as the baseline; Azure Kinect body 
tracking method as the modern update of the commonly used 
Kinect v2 employed in numerous rehabilitation studies and 
clinical trials; OpenPoseMod as a CNN that employs an RGB-D 
camera for obtaining 3D human poses; and an RGB-based 
human pose estimation that leverages state-of-the-art 
algorithms in the field. 
The first HPE method employed was the OptiTrack motion 
capture system. OptiTrack typically generates less than 0.2 mm 
of measurement error; thus, it is considered the gold standard 
[Nagymáté and Kiss, 2018]. The setup employed included 28 
Prime 13 cameras distributed equally along two levels of 
height. This setup is able to capture a volume of 12 × 6 × 2 
meters and costs around €23,000. The skeleton obtained with 
the OptiTrack human motion tracking proprietary algorithm 
corresponds to the Rizzoli marker set protocols [Leardini et al., 
2007]. 
The second HPE method was the Microsoft Azure Kinect body 
tracking method (Azure). Azure is able to obtain a 3D human 
skeleton composed of 32 3D joints with the coordinates. It 
presumably provides better tracking results compared to Kinect 
v1 and v2 and can record more joints (from 20–25 to 32). This 
technology employs a deep-learning algorithm (not published) 
to estimate the 3D joints for each RGB-D image [Shotton et al., 
2013] using only depth information. It works in real time with 
consumer equipment with a dedicated graphical processing 
unit. 
The third HPE method was a modified OpenPosebased 
algorithm (OpenPoseMod) that estimates first a 2D human 
pose using a CNN called Lightweight OpenPose [Osokin, 2018] 
and then depth information and the corresponding 3D human 
pose for each person. In order to enhance the precision and 
accuracy of OpenPoseMod, after estimation of the 2D human 
pose, the next step is a post-processing filter using the state-of-
the-art method PoseFix [Moon et al., 2019]. PoseFix reported 
an increase from 64.2% average precision of the original 
OpenPose up to 76.7 mean average precision with the public 
Human Pose Microsoft COCO dataset [Lin et al., 2014]. 
Once the 2D human points of each joint have been extracted 
and refined, the 3D points of each can be easily and efficiently 
extracted with the information from the depth image. The 
complete procedure for obtaining the 3D human pose with 
OpenPoseMod is synthesised in Fig 1. 
The fourth HPE method was RGB 3D human pose estimation 
(RGB-3DHP). As shown in Fig 1, it is composed of two parts. The 
first infers the 2D joint locations and joint detection 
confidences (heatmap) using the Lightweight OpenPose CNN 
and the second estimates occlusion-robust pose maps and 
infers the 3D pose of the joints. This method, which is defined 
in [Mehta et al., 2018], is a further development of the Vnect 
[Mehta et al., 2017b] algorithm. 
These 3D human pose estimation techniques were calculated 
offline using the recorded media. However, the processing time 
was evaluated in order to determine if it was possible to 
employ the particular technology in real time. A personal 
computer with an Intel Xeon W3225 CPU, Nvidia Titan RTX and 
128G RAM memory was employed for testing. The results 

shown in Table 1 were obtained by averaging the processing 
time of all the subjects and exercises. According to these results 
and the assumption that real time was more than 20 fps, we 
can affirm that the only method that does not work in real time 
is OpenPoseMod with PoseFix. However, OpenPoseMod 
without PoseFix can work up to 35 FPS vs the 8.8 FPS of the 
original OpenPose implementation. 
 
 

 
 

Figure 1. Schematic diagram of the procedure for estimating the 3D 
human skeleton with three methods 

 
 

A summary of the comparison of these four 3D HPE methods is 
shown in Tab 1. 
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camera Kinect 
Azure 

D 
camer
a 

camera camera 

FPS 120 ±1 26 ±2 35 ±4 8 ± 2 21 ±3 

Table 1. A summary of the comparison of 3D human pose estimation 
methods 

 
2.2.2 Procedure 
Participants were asked to wear a black suit on which optical 
markers were positioned in order to obtain the 3D position of 
these landmarks in a virtual world through OptiTrack 
technology. These subjects performed an exercise set to build 
an average model of the exercises that could be used for 
checking the results of other technologies. Later, participants 
were asked to perform the same exercise set in their own 
clothes. The participants were assessed in four different areas 
without obstacles and repeated the exercises three times.The 
exercises were recorded using the Microsoft Azure Kinect RGB-
D camera and the recorded media were processed with the 
three different HPE methods (OpenposeMod, Azure and RGB-
3DHP). This way, the coordinate system, timeline and 
conditions were equal for all of them. The participants did not 
perform the exercises simultaneously with OptiTrack because 
the other three technologies lost accuracy significantly due to 
the black suit with optical markers. A manual temporal and 
spatial synchronisation were performed to transform the 
OptiTrack results with the other three HPE methods. Microsoft 
Azure Kinect camera was located at 2.5 meters from the 
participant and 0.9 m over the floor during the experimental 
tests and was configured to record at 1280 × 720 colour 
resolution, narrow field-of-view unbinned mode with 640 × 576 
for the depth mode and at 30 FPS framerate. 
The exercise set was composed of five exercises designed for 
assessment of numerous rehabilitation parameters, especially 
for the joints of upper body parts. Exercises lasted between 20 
and 40 seconds each  with 30 seconds of break between them. 
Please check supplementary materials for a graphical 
description. These exercises were 

1. Shoulder abduction in the frontal plane (shABfp). 
2. Flexion of the shoulder in the sagittal plane (shFLsg). 
3. Flexion of the elbow in the sagittal plane (elFLsg). 
4. External rotation of the shoulder in the zenith plane 

(shROTzp). 
5. Horizontal flexion of the shoulder in the zenith plane 

(shFLzp). 
 

2.3 Statistical and data analysis 

The raw 3D joint positions were smoothed for all HPE methods 
with a rolling window median of two seconds. Then, kinematic 
parameters were calculated as the average performance of all 
the subjects for each technology. The kinematic parameters 
defined the range of motion (minimum, maximum and 
difference) of angles between the joints involved in the 
movement. Shoulder and elbow angles were calculated 
following the international standards defined by the 
International Society of Biomechanics [Wu et al., 2005]. 

Pearson correlation coefficients were calculated to determine 
the concurrent validity of the three technologies with the 
OptiTrack baseline at an alpha value of 0.05. In addition, intra-
class correlation (ICC) for model (2,k) was calculated to consider 
the consistency of the within-subject agreement between 
systems, taking into account possible systematic errors. ICC was 
considered poor if it was < 0.4, fair if 0.4–0.6, good if 0.6–0.75 
and excellent if ≥ 0.75 [McGinley et al., 2009]. 

Finally, Bland–Altman analysis [Bland and Altman, 2010] was 
also performed. It is commonly employed to compare two 
methods of measurement and interpret findings to determine 
whether a new method of measurement could replace an 
existing accepted ‘gold-standard’ method [Ota et al., 2020]. The 
statistical analyses were performed using the Matlab R2019B 
computational environment and Microsoft Excel 2016. 

3 RESULTS 

The ICC obtained for each HPE method and for each exercise 
are shown in Tab. 2. To determine which exercises were better 
calculated and which worst for each HPE method, the 
difference from OptiTrack was also determined (Fig. 2). 

 

Figure 2. Percentage difference in the upper link angle between 
OptiTrack and other technologies. The lower the percentage the better 
the technology. 
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Table 2. Intra-class correlation (ICC) for kinematic parameters 
calculated for upper limb joints. In each row, the best value is in bold.  
(L- Lower, I-ICC,H-Higher) 

 

The five tasks results average of the % difference for Azure, 
OpenPoseMod and RGB-3DHP were 10.7%, 7.6% and 18.2%, 
respectively. These results are consistent with the Root Mean 
Square Deviation (RMSD) of 10 degrees for Azure, 8 for 
OpenPoseMod and 22 for RGB-3DHP and Pearson correlation 
coefficients of 0.979, 0.988 and 0.941 (all p<0.05), respectively. 
These values show that there was a strong correlation, but 
there was still some difference in accuracy, between OptiTrack 
and the RGB-D camera-based methods. 

Finally, the results of the Bland–Altman analysis are shown in 
Fig. 3. In these three methods, 95% of the measures were 
inside the limits of agreement (LOA). A perfect match between 
methods would give a mean of 0, and a smaller LOA means 
better adjustment. 

 

 

 

Figure 3. Bland–Altman plot for upper-limb exercises for each 
technology. 

4 DISCUSSION 

4.1 Discussion of results 

The purpose of this study was to evaluate and compare the 
performance of the Azure body tracking algorithm with two 
alternative human pose estimation algorithms using OptiTrack 
system as benchmark. From the analysis shown in Fig 2, it can 
be concluded that the results greatly depend on the type of 
exercise. These measures are used for example in rehabilitation 
exercises to assess the degree of recovery from injuries that 
limit the range of motion. Currently, these angles are clinical 
measured using goniometers; therefore, a fast and accurate 
camera-based method would be a significant improvement. 
Exercises with smaller differences from OptiTrack are those in 
the frontal plane, parallel to the camera sensor and those with 
wide movements. The algorithms had worse pose estimations 
when own subjects’ clothes happened to be black, had their 
arms tightly against the body or perfectly aligned with a normal 
vector from the camera. Exercise 4 had two of these problems 
which could be rectified by changing the camera setup position 
(or using another camera) so the movement was on the frontal 
plane. Moreover, previous studies such as [Bonnechere et al., 
2014] have reported poor results when using the Kinect for 
measuring the elbow angle on the sagittal plane. 

Azure had an excellent ICC (Tab. 2) except for measuring 
shoulder rotation in zenith plane which was rated good (range 
0.63–0.81). These results are lower to those obtained by [Cai et 
al., 2019], with ratings of 0.59–0.96 for shoulder motions 
measured by Kinect v2. The absolute mean error for Azure was 
10.7 degrees, higher than the 6 degrees reported by [Shotton 
et al., 2013]for different upper limb movements measured with 
Kinectv2 or the 7.6 degrees of error of [Wiedemann et al., 
2015] also with Kinect v2. These results were recently 
corroborated by Albert et al [Albert et al., 2020] who reported 
during a gait analysis that the Kinect v2 performed better than 
the Azure in the mid and upper body region, especially in the 
upper extremities. However, a specific study should be 
performed with the same conditions and exercises in order to 
conclude if it is meaningful to upgrade to Kinect Azure from 
Kinect v2.  Moreover, overall Azure results are lower than those 
obtained for OpenPoseMod with PoseFix, but at the cost of 
offline processing. With the overall results reviewed, it can be 
concluded that the best RGB-D camera method of the three 
analysed in this study is OpenPoseMod. This method can be 
employed as an effective alternative to the traditional 
goniometer or the expensive OptiTrack. 

Based on the results of this study, several recommendations 
can be made. It is important to be aware of the advantages and 
disadvantages of each technology. For example, if the 
illumination cannot be controlled or the scenario is cluttered, it 
is a good idea to employ the Azure algorithm because it is only 
based on depth information calculated using the infrared 
spectrum. On the other hand, OpenPoseMod showed better 
performance, mainly due to the employment of PoseFix, when 
the acquisition scenery was controlled. RGB-3DHP could be also 
employed, at a very low cost, for some exercises because it only 
needs a common RGB camera, although its accuracy is lower 
than that of the other two methods. This method is 
recommended for ludic applications or motivational games in 
rehabilitation with animated avatars like [Tannous et al., 2016]. 
Fig 4 summarises the recommendations depending on 
application requirements. It is important to remark that this 
diagram shows our recommended method for each context but 
it does not imply that other method is not valid, for example, 
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Kinect Azure could be also employed when there is good 
illumination and real time is required.  

 

 

Figure 4. Decision tree for recommendations from the RGB-D methods 
for upper limb joint estimation 

 

When using these technologies, we advise averaging multiple 
repetitions of the same subject, avoiding direct sunlight and 
asking the subjects not to wear dark or reflective clothing. 
Another important recommendation is to set the camera up so 
its sensor is parallel as much as possible to the plane of the 
movement, or to use two or more cameras to acquire images 
from the best angle possible. 

 
4.2 Limitations and future works 

Our results are specific to a population of healthy participants 
so results may vary with subjects with mobility restrictions. 
Although OptiTrack was considered as the baseline because it is 
a reference measurement system in clinical context these 
systems have potential sources of errors. The main potential 
source of error is soft tissue artefacts. This could happen when 
markers on the skin moves and no longer match the underlying 
anatomical bone landmarks. However, there are algorithms 
that could be applied in future works that can decrease these 
errors like the work of [Cutti et al., 2006]. 

As part of future work, this study will be extended to analyse 
temporal kinematics parameters and compare the full 
trajectory and not only ROM. Also, we will explore the influence 
of a multicamera synced setup. This would lower the error due 
to self-occlusion and give more reliable estimations averaging 
the measures from different cameras as done by the OptiTrack 
system.  

We have also planned to explore the potential use of Kinect 
Azure for real time lower limbs measuring. There are many 
hand tracking possibilities but the number of methods to track 
lower limbs is very low in comparison and could be very useful 
for example for using VR in real time. 

Another important point to explore is the use of tracking 
algorithms like the Kalman filter [Rodriguez, 1987] in order to 
improve temporal stability and give smoother trajectories 
without the need of a post-processing step. Finally, a Kinematic 
model could be introduced, as it is done in OptiTrack system, to 
take into consideration bone segment of constant lengths and 
joints with limited number of degrees of freedom. 

5 CONCLUSION 

RGB-D-based 3D human pose estimation has advanced 
significantly due to new deep-learning algorithms and more 
accurate depth and colour sensors. Optical markers are still the 
gold-standard method but this study shows that the distance 
between technologies has been reduced. This original research 
should be of interest to a broad readership, including those 

interested in methods of human pose estimation, innovative 
solutions with the Microsoft Kinect Sensor and rehabilitation 
monitoring sensors.OpenPoseMod, Microsoft Azure body 
tracking and RGB-3DHP algorithms could be used as low-cost 
alternatives to laboratory-grade systems under certain 
circumstances for multiple practical applications like 
rehabilitation exercises of the upper limb, physiotherapy or 
monitoring postural hygiene in fitness centres. 
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7 SUPPLEMENTARY MATERIALS 

 
 

 

(a) Dedicated room for OptiTrack 

 

 

 

 

 

(b) Subject in motion capture suit 

Figure S1. Optitrack setup 

 

 

 

 

 

 

Figure S2. Human pose skeleton obtained by: Optitrack, OpenposeMod 
and RGB-3DHP and Azure 

 

 

Figure S3. Acquisition setup with the RGB-D camera 
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Exercise Name of the 

measured 

angle 

Initial Final 

1 shABfp 

  

2 shFLsg 

  

3 elFLsg 

  

4 shROTzp 

  

5 shFLzp 

  
   

 

Table S1. Graphical explanation of the exercise set for the upper limb 
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Table S2. Kinematic parameters calculated for upper limb joints (in degrees) 

 

Exercise Kinematic 

parameter 

OptiTrack Azure OpenPoseMod RGB-3DHP 

1 min angle shABfp 24.58 21.22 22.82 25.45 

max angle shABfp 153.51 154.11 152.84 137.68 

angle range shABfp 128.93 132.89 130.02 112.23 

2 min angle shFLsg 26.19 23.91 24.31 22.69 

max angle shFLsg 153.58 155.00 155.63 156.55 

angle range 

shFLsg 

127.39 131.09 131.32 133.87 

3 min angle elFLsg 47.45 31.32 32.08 58.75 

max angle elFLsg 165.77 157.02 164.63 135.30 

angle range elFLsg 118.32 125.70 132.56 76.55 

4 min angle shRotzp 54.08 60.68 58.36 59.23 

max angle shRotzp 153.12 143.44 146.99 120.72 

angle range 

shRotzp 

99.04 82.76 88.63 61.48 

5 min angle shFLzp 59.23 80.09 62.60 85.51 

max angle shFLzp 157.65 171.15 172.21 152.22 

angle range 

shFLzp 

98.41 91.05 109.61 66.70 


