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The paper compares the most commonly used numerical 
methods of solving a set of nonlinear equations, especially in 
terms of computational speed. The methods are applied to a set 
of nonlinear equations that describe the forward kinematics of a 
non-standard robotic arm. This arm is an open-loop kinematics 
chain, composed of special rotary modules. A non-standard 
feature of the modules is the unlimited rotation around their 
own axis. This robotic arm consists of six such modules and, thus, 
has six degrees of freedom. Computations of this nonlinear set 
of equations are also called inverse kinematics. All computations 
were performed in Matlab. The same initial conditions, the 
computation input parameters, and the same structure of the 
program was used with each method. By applying the below 
mentioned known methods to the same set, we sought to 
choose a suitable computation method for the given type of 
mechanism. 
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1 INTRODUCTION 

The paper compares several numerical methods often applied to 
solving a set of nonlinear equations used in the kinematics of 
mechanisms and robots. In this case, they have been applied to 
solving a set of equations describing the so-called forward 
kinematics. However, we're already looking for joint coordinates 
vector depending on the known location of effector. This is the 
concept of the so-called inverse kinematics problem for the 
open-loop kinematics chain (eventually serial kinematics chain). 
Our computations refer to a stationary robotic arm composed of 
the so-called Unlimited Rotation Module (URM) modules, 
described in detail in [Svetlik 2013 and 2016, Stofa 2019] and in 
terms of position kinematics in [Svetlik2 2013, Ondocko 2020]. 
The solution method is also applicable to other assemblies. The 
URM module’s main attributes are its unlimited rotation around 
its own axis, availability of integrated energy source as well as 
embedded control unit and the undeniable advantage of its 
modularity. Thanks to the modularity, individual modules can be 
assembled into various types of interesting configurations. 

Where it comes to inverse kinematics of the position, such joint 
coordinates are searched for the given open-loop kinematics 
chain as to suit the position and orientation required of the 
coordinate system of the end effector. Of course, provided that 
we know the dimensions of the mechanism at hand [Murray 
1994, Grepl 2007, Siciliano 2007]. The inverse task is much more 
complicated than the direct one, where the position vector is a 
function of the joint coordinates, because in most cases it is 
necessary to solve the set of strongly nonlinear algebraic 
equations. Hence the use of computer support in the 
environments enabling just that [Coleman 1999]. One of the first 
pioneers in the formulation of this problem was, for example, 
[Paden 1986]. In most cases, these sets cannot be solved 
analytically. Therefore, different kinds of iterative numerical 
methods are used [Peiper 1968], most often using the Jacobian 
[Otto 2005, Zhao 2007]. In addition to other methods of verifying 
the collision states between the robot and its environment, the 
method by [Hrubos 2016] is also one that can be useful. When 
computing the inverse function, we often come across 
unsolvability of the task for the reasons bound to the limitation 
of the configuration space itself, (in addition to other). 
Everything depends on the configuration and the physical 
properties of the mechanism. For example, when the position of 
the effector is defined outside the given configuration space, no 
solution exists. There can also be several solutions in the 
configuration space, as the defined position of the end effector 
can be achieved in several ways. These, of course, grow in 
number especially with the growth in the mechanism's degrees 
of freedom. Then the vector of joint coordinates has a number 
of elements greater than the degree of freedom (DOF) in a given 
space or plane. 

2 COMPUTATION METHOD OF JOINT COORDINATES FOR A 
GIVEN TRAJECTORY  

The program's algorithm will be the same to ensure objective 
comparison of the individual numerical iteration methods. The 
method of data processing will be explained and evident from 
the logic of the flow chart shown in Fig. 1-part 1, 2. Thus, for each 
method of numerical computation, the structure of the program 
itself will be the same. The program was written in Matlab. 

 

Figure 1 - part 1. Logic flow chart of the program used for 
computing the inverse kinematics  
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Figure 1 - part 2. Logic flow chart used for computing the inverse 
kinematics, continued 

At the beginning of the process, the input data of the desired 
position’s trajectory are uploaded in the form of points As{xAs, 
yAs, zAs}, in Cartesian space. The same applies to the data of the 
desired effector orientation, expressed by the definition of Euler 
angles α, β, γ. To access this data, it is necessary to store it in a 
predefined array, in the order in which it was taken from the 
given trajectory. In this case, there were six two-dimensional 
vector arrays of data describing the desired position and 
orientation of the effector in space. Each of the six coordinates 
depends on the sequence number of the sample s. We can also 
imagine the sample number to be the time at which the sample 
was taken from the trajectory. Finally, we arrive at the definition 
of the vector array of the desired position and orientation, which 
we designate as Pd(s). An important value in the numerical 
calculation is the vector of initial estimation of joint coordinates 
q. The following applies to this value 

|𝒒| > 𝛿      (1) 

Where δ defines the minimum admissible error in computing the 
joint coordinates, the so-called tolerance. Further we need a 
joint coordinates vector of intermediate variable qi to store the 
value of the vector from the preceding iteration. The following 
will hold for this variable  

𝒒𝒊 = 0      (2) 

Furthermore, the mechanism's dimensions, such as link lengths 
or rotation of passive joints [Ondocko 2020], are defined. 
Another task is to determine the number of elements (samples) 
n from the array of vectors of the effector's desired position and 
orientation Pd(s) of the imported data. The vector of the 
effector's desired position & orientation for a specific point As on 

the trajectory will be that of pd. The iteration process begins with 
a conditional cycle based on the difference in the values of the 
initial estimation vectors q and the intermediate variable qi. That 
is, as long as the following condition is met 

|𝒒 − 𝒒𝒊| > 𝛿     (3) 

then the joint coordinates are inserted into the set of equations 
describing the robotic arm’s direct kinematics. Thus, in general, 
the effector vector of position & orientation pe will consist of six 
components of pe1, pe2, pe3, pe4, pe5, pe6, which represent the 
analytical form of the equations. Three of them determine the 
effector’s position in Cartesian space  

𝑝𝑒1 = 𝑝𝑒𝑥(𝒒)     (4) 
𝑝𝑒2 = 𝑝𝑒𝑦(𝒒)     (5) 

𝑝𝑒3 = 𝑝𝑒𝑧(𝒒)     (6) 

and three of them its orientation via Euler angles, calculated 
from the final rotation of the open-loop kinematics chain. 

𝑝𝑒4 = 𝛼𝑒(𝒒)     (7) 
𝑝𝑒5 = 𝛽𝑒(𝒒)     (8) 
𝑝𝑒6 = 𝛾𝑒(𝒒)     (9) 

Thus, we arrive at the set of nonlinear equations, which, 
subjected to derivation operations according to time, can be 
written in the following matrix form  

𝑑

𝑑𝑡

[
 
 
 
 
𝑝𝑒1

𝑝𝑒2
𝑝𝑒3
𝑝𝑒4
𝑝𝑒5

𝑝𝑒6]
 
 
 
 

= 𝑱
𝑑

𝑑𝑡

[
 
 
 
 
𝑞1

𝑞2
𝑞3
𝑞4
𝑞5

𝑞6]
 
 
 
 

     (10) 

where J is the Jacobian matrix (the so-called Jacobian), which 
represents the change in the vector function pe according to the 
vector q. This was computed symbolically from the pe using 
Matlab to save computation time during the program run. This 
brings us to the iteration equation itself, which is obtained from 
equation (10) by converting the total differential to the iteration 
difference 

[
 
 
 
 
𝑝𝑑1−𝑝𝑒1

𝑝𝑑2−𝑝𝑒2
𝑝𝑑3−𝑝𝑒3
𝑝𝑑4−𝑝𝑒4
𝑝𝑑5−𝑝𝑒5

𝑝𝑑6−𝑝𝑒6]
 
 
 
 

= 𝑱

[
 
 
 
 
𝑞1

𝑞2
𝑞3
𝑞4
𝑞5

𝑞6

−𝑞𝑖1

−𝑞𝑖2
−𝑞𝑖3
−𝑞𝑖4
−𝑞𝑖5

−𝑞𝑖6]
 
 
 
 

      (11) 

Equation (11) is the basis for other known iterative methods of 
inverse kinematics computation, to be presented and tested on 
the given mechanism in Chapter 3. An interesting overview of 
these and other methods can be found, for example, in [Buss 
2004, Aristidou 2009, Grepl 2007]. 

The program further identifies the sign for the q variable from 
the following relation  
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𝒒

|𝒒|
= 𝑠𝑖𝑔𝑛     (12) 

And the next decision subject to the condition below  

|𝒒| > 2𝜋      (13) 

on the need to reduce the joint variable vector value q. The need 
for reduction is based on the value of the initial estimate of q and 
also on the property of the singular states. A large number of 
iterations takes place then and the joint coordinate thus acquires 
very large values. The value preserving the information of the 
URM module's real angle with unlimited rotation can be reduced 
by a decrement of 2π. This lasts until condition (13) ceases to 
apply and where it comes to the value of q , we turn the direction 
of the modules' rotation according to the sign as follows. 

𝒒 = |𝒒|𝑠𝑖𝑔𝑛     (14) 

New values from the previous iteration process re-enter the 
process. Based on condition (3), they either re-enter the next 
iteration or are written to the array of joint variables as a result. 
The difference between pd, pe(q) values is described via relation 

𝜟 = 𝒑𝒅 − 𝒑𝒆(𝒒)     (15) 

Is the vector difference Δ between the computed position of the 
position vector effector pe(q) and the desired position 
determined by the pd vector of the As points on the trajectory. 
See the next Fig. 2. 

 

Figure 2. The vector difference Δ between the computed 
position of the vector effector pe(q) and the desired position 
determined by the pd vector of the As points forming the 
trajectory. Modeled in Matlab. 

2.1 Inverse Jacobian 

One of the basic iterative methods for solving a set of nonlinear 
equations is the method using the Jacobian matrix inversion. We 
obtain it from the relation (11) by inversion of the Jacobian 
matrix. Hence the name. The method was used for this type of 
mechanism also when the calculation results of the set of 
nonlinear equations were compared with the standard Matlab 
function “fsolve” (designed by MathWorks) as described in 
[Ondocko 2021]. 

[
 
 
 
 
𝑞1

𝑞2
𝑞3
𝑞4
𝑞5

𝑞6

−𝑞𝑖1

−𝑞𝑖2
−𝑞𝑖3
−𝑞𝑖4
−𝑞𝑖5

−𝑞𝑖6]
 
 
 
 

= 𝑱−1

[
 
 
 
 
𝑝𝑑1−𝑝𝑒1

𝑝𝑑2−𝑝𝑒2
𝑝𝑑3−𝑝𝑒3
𝑝𝑑4−𝑝𝑒4
𝑝𝑑5−𝑝𝑒5

𝑝𝑑6−𝑝𝑒6]
 
 
 
 

    (16) 

By expressing the dependent variable of the q vector, we can 
express the relation (16) in the vector form as follows 

𝒒 = 𝑱−1(𝒑𝑑−𝒑𝑒) + 𝒒𝒊    (17) 

The condition for using this method is that we work with a set of 
equations, the number of which is identical to the number of the 
unknowns. Thus, the J is square matrix. In other words, the 
mechanism has exactly 6 ° of freedom in space. The results of 
this method on our mechanism are shown in Fig. 3, 4. 

2.2 Pseudo-inverse method 

The second, very similar iterative method for solving a set of 
nonlinear equations is the pseudoinversion method. Known as 
the Moore-Penrose pseudoinversion, it is also suitable for sets 
of equations when the number of the unknowns is greater than 
the number of the equations. Such situation occurs in the case 
of the so-called redundant manipulators that have an excessive 
number of degrees of freedom. The iterative relationship of the 
dependent q vector variable in the vector form will be as follows 

𝒒 = 𝑱T(𝑱 𝑱T)−𝟏(𝒑𝑑−𝒑𝑒) + 𝒒𝒊   (18) 

This method is even more often used in robotics than the 
method of Jacobian inversion precisely because of the versatility 
of application even to redundant manipulators. The results of 
pseudoinverse method on our mechanism are shown in Fig. 5, 6.  

2.3 Damped Least Squares (DLS) method 

Another method applied to solving the set of equations for the 
inverse kinematics of our arm was the method called damped 
least squares (DLS). Or, especially in solving sets of nonlinear 
equations, known as Levenberg-Marquardt method. The 
iterative relationship used for the dependent variable q in the 
vector form is 
 

𝒒 = 𝑱T(𝑱 𝑱T + 𝜆𝟐𝑰)−𝟏(𝒑𝑑−𝒑𝑒) + 𝒒𝒊   (19) 

It is clear from the relationship that if the so-called damping 
coefficient λ is very small, almost close to zero, it is essentially a 
pseudoinversion. Increasing the damping constant leads to 
computation inaccuracies but speeds up the iteration process. 
The damping constant can, to some extent, influence the 
computation behavior around singularities. The method is also 
applicable to redundant manipulators and the results of DLS 
method on our mechanism are shown in Fig. 7, 8. 

2.4 Transpose method 

Another method tested to solve the set of equations for the 
inverse kinematics of our arm was the method the essence of 
which is to replace the inversion of Jacobian J by transposition, 
an example [Hock 2018]. Thus, for the iterative relationship used 
for the dependent variable q, the following holds 

𝒒 = 𝛼𝑱T(𝒑𝑑−𝒑𝑒) + 𝒒𝒊    (20) 

Where the optimal determination of the α coefficient is 

𝛼 =
(𝒑𝑑−𝒑𝑒)

T𝑱 𝑱T(𝒑𝑑−𝒑𝑒)

‖𝑱 𝑱T(𝒑𝑑−𝒑𝑒)‖
𝟐     (21) 
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The results of this method on our mechanism are shown in Fig. 
9, 10. Compared to the above-mentioned methods, this method 
was relatively slow. More detailed comparison of all approaches 
via simulation results is shown in Tab. 1 in the following chapter. 

3 EXPERIMENTAL COMPARISON OF INDIVIDUAL METHODS 

As said before, the individual iteration methods were applied to 
the same program algorithm and their results are shown in 
Tab. 1. Number of samples from the original trajectory n=2464 
As points; i5-7200 processor, 2.5GHz, 16GB RAM, Disc SSD PG 
SX8200 Pro, Matlab 2020b, x64. 

Table 1. Data measured under individual methods. Processor i5-
7200, 2,5GHz, 16GB RAM, Disk SSD PG SX8200 Pro, Matlab 
2020b, x64. Number of samples from the original trajectory 
n=2464 

Method Calculation 
duration 

TCPU ± 10% 

[second] 

Max.absolute 
value of 

vector ‖Δ‖ 
[meter] 

Vector Q 
accuracy 

δ 
[radian] 

Inverse 
Jacobian 

28.9 0.0033 10-5 

Pseudoinverse 38.2 0.0033 10-5 

DLS 
(λ=0.02744) 

47.1 0.0429 10-5 

Transpose 1137.7 0.0530 10-5 

Joint coordinate values q=[q1, q2, q3, q4, q5, q6]T are plotted in 
graphs of the corresponding computation method. This happens 
depending on the pe(q) effector’s position on the trajectory 
formed by the As points. In addition, the chart shows the error 
dependence quantified by the vector norm ‖Δ‖ dependent on 
the position of the trajectory formed by the As points. 

 

Figure 3. Vector value of joint coordinates q=[q1, q2, q3, q4, q5, 
q6]T dependent on the pe(q) effector’s position on the trajectory 
formed by the As points. Computed by the inverse Jacobian 
method.  

 

Figure 4. Graph showing the ‖Δ‖ vector norm dependent on the 
position on the trajectory formed by the As points. Computed by 
the inverse Jacobian method. 

 

Figure 5. Vector value of joint coordinates q=[q1, q2, q3, q4, q5, 
q6]T dependent on the pe(q) effector position on the trajectory 
formed by the As points. Computed by the Pseudoinversion 
method 

 

Figure 6. Graph showing the ‖Δ‖ vector norm dependent on the 
position of the trajectory formed by the As points. Computed by 
the Pseudoinversion method  

 

Figure 7. Vector value of joint coordinates q=[q1, q2, q3, q4, q5, 
q6]T dependent on the pe(q) effector position on the trajectory 
formed by the As points. Computed by the DLS method 

 

Figure 8. Graph showing the ‖Δ‖ vector norm dependent on the 
position of the trajectory formed by the As points. Computed by 
the DLS method 
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Figure 9. Vector value of joint coordinates q=[q1, q2, q3, q4, q5, 
q6]T dependent on the pe(q) effector position on the trajectory 
formed by the As points. Computed by the Transpose method 

 

Figure 10. Graph showing the ‖Δ‖ vector norm dependent on the 
position of the trajectory formed by the As points. Computed by 
the Transpose method 

4 CONCLUSIONS 

Based on the comparison of the methods in terms of the 
computation speed for this type of mechanism and the 
computation algorithm shown in Fig. 1 - part 1, 2, we can state 
that the fastest method was the Jacobian inversion method. 
However, if we were to create a structure with a different 
number of degrees of freedom from the modules, we would 
have to turn to a different method. The most suitable substitute 
for Jacobian inversion is pseudoinversion. In the DLS method 
(Figs. 7 and 8) we can notice the ability to avoid singularities 
(visible in the methods in Figs. 4 and 6) in the effector position 
corresponding to the sample at 3.5 and 5.5 seconds. Of course, 
this is subject to a suitable choice of the damping constant λ. In 
this case, it was chosen experimentally with regard to the 
highest possible computation speed and, at the same time, the 
smallest possible deviation from the original ‖Δ‖ trajectory. As 
mentioned above, it is possible to "pull" the system out of the 
singularity to some extend with this method, at the expense of 
an increasing ‖Δ‖ error. The cost of this "smooth" course is an 
exponential increase in the error from the singularity in the time 
of approx. 6.2 seconds almost 12 times - see Fig. 8. The error for 
the transpose method was relatively large. Due to this method, 
we were forced to increase the minimum allowable tolerance of 
joint coordinates vector from the value δ = 10-6 to the value 
δ = 10-5, for all methods, for the sake of objectivity. Otherwise, 
the computation time would be unbearable (it would take 
hours).  
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