

MM SCIENCE JOURNAL I 2021 I JUNE

4468

COMPARISON SELECTED
NUMERICAL METHODS FOR
THE CALCULATION INVERSE

KINEMATICS OF NON-
STANDARD MODULAR

ROBOTIC ARM CONSISTING
OF UNIQUE ROTATIONAL

MODULES
STEFAN ONDOCKO, JOZEF SVETLIK, TOMAS STEJSKAL, MICHAL

SASALA, LUKAS HRIVNIAK

Department of Manufacturing Machinery and Robotics, Faculty
of Mechanical Engineering, Technical University of Kosice,

Kosice, Slovakia

DOI 10.17973/MMSJ.2021_6_2021042

e-mail : stefan.ondocko@tuke.sk

The paper compares the most commonly used numerical
methods of solving a set of nonlinear equations, especially in
terms of computational speed. The methods are applied to a set
of nonlinear equations that describe the forward kinematics of a
non-standard robotic arm. This arm is an open-loop kinematics
chain, composed of special rotary modules. A non-standard
feature of the modules is the unlimited rotation around their
own axis. This robotic arm consists of six such modules and, thus,
has six degrees of freedom. Computations of this nonlinear set
of equations are also called inverse kinematics. All computations
were performed in Matlab. The same initial conditions, the
computation input parameters, and the same structure of the
program was used with each method. By applying the below
mentioned known methods to the same set, we sought to
choose a suitable computation method for the given type of
mechanism.

KEYWORDS
Matlab, inverse kinematics, Jacobian, robotics, unlimited range
rotary module, numerical algebra, nonlinear equations

1 INTRODUCTION

The paper compares several numerical methods often applied to
solving a set of nonlinear equations used in the kinematics of
mechanisms and robots. In this case, they have been applied to
solving a set of equations describing the so-called forward
kinematics. However, we're already looking for joint coordinates
vector depending on the known location of effector. This is the
concept of the so-called inverse kinematics problem for the
open-loop kinematics chain (eventually serial kinematics chain).
Our computations refer to a stationary robotic arm composed of
the so-called Unlimited Rotation Module (URM) modules,
described in detail in [Svetlik 2013 and 2016, Stofa 2019] and in
terms of position kinematics in [Svetlik2 2013, Ondocko 2020].
The solution method is also applicable to other assemblies. The
URM module’s main attributes are its unlimited rotation around
its own axis, availability of integrated energy source as well as
embedded control unit and the undeniable advantage of its
modularity. Thanks to the modularity, individual modules can be
assembled into various types of interesting configurations.

Where it comes to inverse kinematics of the position, such joint
coordinates are searched for the given open-loop kinematics
chain as to suit the position and orientation required of the
coordinate system of the end effector. Of course, provided that
we know the dimensions of the mechanism at hand [Murray
1994, Grepl 2007, Siciliano 2007]. The inverse task is much more
complicated than the direct one, where the position vector is a
function of the joint coordinates, because in most cases it is
necessary to solve the set of strongly nonlinear algebraic
equations. Hence the use of computer support in the
environments enabling just that [Coleman 1999]. One of the first
pioneers in the formulation of this problem was, for example,
[Paden 1986]. In most cases, these sets cannot be solved
analytically. Therefore, different kinds of iterative numerical
methods are used [Peiper 1968], most often using the Jacobian
[Otto 2005, Zhao 2007]. In addition to other methods of verifying
the collision states between the robot and its environment, the
method by [Hrubos 2016] is also one that can be useful. When
computing the inverse function, we often come across
unsolvability of the task for the reasons bound to the limitation
of the configuration space itself, (in addition to other).
Everything depends on the configuration and the physical
properties of the mechanism. For example, when the position of
the effector is defined outside the given configuration space, no
solution exists. There can also be several solutions in the
configuration space, as the defined position of the end effector
can be achieved in several ways. These, of course, grow in
number especially with the growth in the mechanism's degrees
of freedom. Then the vector of joint coordinates has a number
of elements greater than the degree of freedom (DOF) in a given
space or plane.

2 COMPUTATION METHOD OF JOINT COORDINATES FOR A
GIVEN TRAJECTORY

The program's algorithm will be the same to ensure objective
comparison of the individual numerical iteration methods. The
method of data processing will be explained and evident from
the logic of the flow chart shown in Fig. 1-part 1, 2. Thus, for each
method of numerical computation, the structure of the program
itself will be the same. The program was written in Matlab.

Figure 1 - part 1. Logic flow chart of the program used for
computing the inverse kinematics

mailto:stefan.ondocko@tuke.sk

MM SCIENCE JOURNAL I 2021 I JUNE

4469

Figure 1 - part 2. Logic flow chart used for computing the inverse
kinematics, continued

At the beginning of the process, the input data of the desired
position’s trajectory are uploaded in the form of points As{xAs,
yAs, zAs}, in Cartesian space. The same applies to the data of the
desired effector orientation, expressed by the definition of Euler
angles α, β, γ. To access this data, it is necessary to store it in a
predefined array, in the order in which it was taken from the
given trajectory. In this case, there were six two-dimensional
vector arrays of data describing the desired position and
orientation of the effector in space. Each of the six coordinates
depends on the sequence number of the sample s. We can also
imagine the sample number to be the time at which the sample
was taken from the trajectory. Finally, we arrive at the definition
of the vector array of the desired position and orientation, which
we designate as Pd(s). An important value in the numerical
calculation is the vector of initial estimation of joint coordinates
q. The following applies to this value

|𝒒| > 𝛿 (1)

Where δ defines the minimum admissible error in computing the
joint coordinates, the so-called tolerance. Further we need a
joint coordinates vector of intermediate variable qi to store the
value of the vector from the preceding iteration. The following
will hold for this variable

𝒒𝒊 = 0 (2)

Furthermore, the mechanism's dimensions, such as link lengths
or rotation of passive joints [Ondocko 2020], are defined.
Another task is to determine the number of elements (samples)
n from the array of vectors of the effector's desired position and
orientation Pd(s) of the imported data. The vector of the
effector's desired position & orientation for a specific point As on

the trajectory will be that of pd. The iteration process begins with
a conditional cycle based on the difference in the values of the
initial estimation vectors q and the intermediate variable qi. That
is, as long as the following condition is met

|𝒒 − 𝒒𝒊| > 𝛿 (3)

then the joint coordinates are inserted into the set of equations
describing the robotic arm’s direct kinematics. Thus, in general,
the effector vector of position & orientation pe will consist of six
components of pe1, pe2, pe3, pe4, pe5, pe6, which represent the
analytical form of the equations. Three of them determine the
effector’s position in Cartesian space

𝑝𝑒1 = 𝑝𝑒𝑥(𝒒) (4)
𝑝𝑒2 = 𝑝𝑒𝑦(𝒒) (5)

𝑝𝑒3 = 𝑝𝑒𝑧(𝒒) (6)

and three of them its orientation via Euler angles, calculated
from the final rotation of the open-loop kinematics chain.

𝑝𝑒4 = 𝛼𝑒(𝒒) (7)
𝑝𝑒5 = 𝛽𝑒(𝒒) (8)
𝑝𝑒6 = 𝛾𝑒(𝒒) (9)

Thus, we arrive at the set of nonlinear equations, which,
subjected to derivation operations according to time, can be
written in the following matrix form

𝑑

𝑑𝑡

[

𝑝𝑒1

𝑝𝑒2
𝑝𝑒3
𝑝𝑒4
𝑝𝑒5

𝑝𝑒6]

= 𝑱
𝑑

𝑑𝑡

[

𝑞1

𝑞2
𝑞3
𝑞4
𝑞5

𝑞6]

 (10)

where J is the Jacobian matrix (the so-called Jacobian), which
represents the change in the vector function pe according to the
vector q. This was computed symbolically from the pe using
Matlab to save computation time during the program run. This
brings us to the iteration equation itself, which is obtained from
equation (10) by converting the total differential to the iteration
difference

[

𝑝𝑑1−𝑝𝑒1

𝑝𝑑2−𝑝𝑒2
𝑝𝑑3−𝑝𝑒3
𝑝𝑑4−𝑝𝑒4
𝑝𝑑5−𝑝𝑒5

𝑝𝑑6−𝑝𝑒6]

= 𝑱

[

𝑞1

𝑞2
𝑞3
𝑞4
𝑞5

𝑞6

−𝑞𝑖1

−𝑞𝑖2
−𝑞𝑖3
−𝑞𝑖4
−𝑞𝑖5

−𝑞𝑖6]

 (11)

Equation (11) is the basis for other known iterative methods of
inverse kinematics computation, to be presented and tested on
the given mechanism in Chapter 3. An interesting overview of
these and other methods can be found, for example, in [Buss
2004, Aristidou 2009, Grepl 2007].

The program further identifies the sign for the q variable from
the following relation

MM SCIENCE JOURNAL I 2021 I JUNE

4470

𝒒

|𝒒|
= 𝑠𝑖𝑔𝑛 (12)

And the next decision subject to the condition below

|𝒒| > 2𝜋 (13)

on the need to reduce the joint variable vector value q. The need
for reduction is based on the value of the initial estimate of q and
also on the property of the singular states. A large number of
iterations takes place then and the joint coordinate thus acquires
very large values. The value preserving the information of the
URM module's real angle with unlimited rotation can be reduced
by a decrement of 2π. This lasts until condition (13) ceases to
apply and where it comes to the value of q , we turn the direction
of the modules' rotation according to the sign as follows.

𝒒 = |𝒒|𝑠𝑖𝑔𝑛 (14)

New values from the previous iteration process re-enter the
process. Based on condition (3), they either re-enter the next
iteration or are written to the array of joint variables as a result.
The difference between pd, pe(q) values is described via relation

𝜟 = 𝒑𝒅 − 𝒑𝒆(𝒒) (15)

Is the vector difference Δ between the computed position of the
position vector effector pe(q) and the desired position
determined by the pd vector of the As points on the trajectory.
See the next Fig. 2.

Figure 2. The vector difference Δ between the computed
position of the vector effector pe(q) and the desired position
determined by the pd vector of the As points forming the
trajectory. Modeled in Matlab.

2.1 Inverse Jacobian

One of the basic iterative methods for solving a set of nonlinear
equations is the method using the Jacobian matrix inversion. We
obtain it from the relation (11) by inversion of the Jacobian
matrix. Hence the name. The method was used for this type of
mechanism also when the calculation results of the set of
nonlinear equations were compared with the standard Matlab
function “fsolve” (designed by MathWorks) as described in
[Ondocko 2021].

[

𝑞1

𝑞2
𝑞3
𝑞4
𝑞5

𝑞6

−𝑞𝑖1

−𝑞𝑖2
−𝑞𝑖3
−𝑞𝑖4
−𝑞𝑖5

−𝑞𝑖6]

= 𝑱−1

[

𝑝𝑑1−𝑝𝑒1

𝑝𝑑2−𝑝𝑒2
𝑝𝑑3−𝑝𝑒3
𝑝𝑑4−𝑝𝑒4
𝑝𝑑5−𝑝𝑒5

𝑝𝑑6−𝑝𝑒6]

 (16)

By expressing the dependent variable of the q vector, we can
express the relation (16) in the vector form as follows

𝒒 = 𝑱−1(𝒑𝑑−𝒑𝑒) + 𝒒𝒊 (17)

The condition for using this method is that we work with a set of
equations, the number of which is identical to the number of the
unknowns. Thus, the J is square matrix. In other words, the
mechanism has exactly 6 ° of freedom in space. The results of
this method on our mechanism are shown in Fig. 3, 4.

2.2 Pseudo-inverse method

The second, very similar iterative method for solving a set of
nonlinear equations is the pseudoinversion method. Known as
the Moore-Penrose pseudoinversion, it is also suitable for sets
of equations when the number of the unknowns is greater than
the number of the equations. Such situation occurs in the case
of the so-called redundant manipulators that have an excessive
number of degrees of freedom. The iterative relationship of the
dependent q vector variable in the vector form will be as follows

𝒒 = 𝑱T(𝑱 𝑱T)−𝟏(𝒑𝑑−𝒑𝑒) + 𝒒𝒊 (18)

This method is even more often used in robotics than the
method of Jacobian inversion precisely because of the versatility
of application even to redundant manipulators. The results of
pseudoinverse method on our mechanism are shown in Fig. 5, 6.

2.3 Damped Least Squares (DLS) method

Another method applied to solving the set of equations for the
inverse kinematics of our arm was the method called damped
least squares (DLS). Or, especially in solving sets of nonlinear
equations, known as Levenberg-Marquardt method. The
iterative relationship used for the dependent variable q in the
vector form is

𝒒 = 𝑱T(𝑱 𝑱T + 𝜆𝟐𝑰)−𝟏(𝒑𝑑−𝒑𝑒) + 𝒒𝒊 (19)

It is clear from the relationship that if the so-called damping
coefficient λ is very small, almost close to zero, it is essentially a
pseudoinversion. Increasing the damping constant leads to
computation inaccuracies but speeds up the iteration process.
The damping constant can, to some extent, influence the
computation behavior around singularities. The method is also
applicable to redundant manipulators and the results of DLS
method on our mechanism are shown in Fig. 7, 8.

2.4 Transpose method

Another method tested to solve the set of equations for the
inverse kinematics of our arm was the method the essence of
which is to replace the inversion of Jacobian J by transposition,
an example [Hock 2018]. Thus, for the iterative relationship used
for the dependent variable q, the following holds

𝒒 = 𝛼𝑱T(𝒑𝑑−𝒑𝑒) + 𝒒𝒊 (20)

Where the optimal determination of the α coefficient is

𝛼 =
(𝒑𝑑−𝒑𝑒)

T𝑱 𝑱T(𝒑𝑑−𝒑𝑒)

‖𝑱 𝑱T(𝒑𝑑−𝒑𝑒)‖
𝟐 (21)

MM SCIENCE JOURNAL I 2021 I JUNE

4471

The results of this method on our mechanism are shown in Fig.
9, 10. Compared to the above-mentioned methods, this method
was relatively slow. More detailed comparison of all approaches
via simulation results is shown in Tab. 1 in the following chapter.

3 EXPERIMENTAL COMPARISON OF INDIVIDUAL METHODS

As said before, the individual iteration methods were applied to
the same program algorithm and their results are shown in
Tab. 1. Number of samples from the original trajectory n=2464
As points; i5-7200 processor, 2.5GHz, 16GB RAM, Disc SSD PG
SX8200 Pro, Matlab 2020b, x64.

Table 1. Data measured under individual methods. Processor i5-
7200, 2,5GHz, 16GB RAM, Disk SSD PG SX8200 Pro, Matlab
2020b, x64. Number of samples from the original trajectory
n=2464

Method Calculation
duration

TCPU ± 10%

[second]

Max.absolute
value of

vector ‖Δ‖
[meter]

Vector Q
accuracy

δ
[radian]

Inverse
Jacobian

28.9 0.0033 10-5

Pseudoinverse 38.2 0.0033 10-5

DLS
(λ=0.02744)

47.1 0.0429 10-5

Transpose 1137.7 0.0530 10-5

Joint coordinate values q=[q1, q2, q3, q4, q5, q6]T are plotted in
graphs of the corresponding computation method. This happens
depending on the pe(q) effector’s position on the trajectory
formed by the As points. In addition, the chart shows the error
dependence quantified by the vector norm ‖Δ‖ dependent on
the position of the trajectory formed by the As points.

Figure 3. Vector value of joint coordinates q=[q1, q2, q3, q4, q5,
q6]T dependent on the pe(q) effector’s position on the trajectory
formed by the As points. Computed by the inverse Jacobian
method.

Figure 4. Graph showing the ‖Δ‖ vector norm dependent on the
position on the trajectory formed by the As points. Computed by
the inverse Jacobian method.

Figure 5. Vector value of joint coordinates q=[q1, q2, q3, q4, q5,
q6]T dependent on the pe(q) effector position on the trajectory
formed by the As points. Computed by the Pseudoinversion
method

Figure 6. Graph showing the ‖Δ‖ vector norm dependent on the
position of the trajectory formed by the As points. Computed by
the Pseudoinversion method

Figure 7. Vector value of joint coordinates q=[q1, q2, q3, q4, q5,
q6]T dependent on the pe(q) effector position on the trajectory
formed by the As points. Computed by the DLS method

Figure 8. Graph showing the ‖Δ‖ vector norm dependent on the
position of the trajectory formed by the As points. Computed by
the DLS method

MM SCIENCE JOURNAL I 2021 I JUNE

4472

Figure 9. Vector value of joint coordinates q=[q1, q2, q3, q4, q5,
q6]T dependent on the pe(q) effector position on the trajectory
formed by the As points. Computed by the Transpose method

Figure 10. Graph showing the ‖Δ‖ vector norm dependent on the
position of the trajectory formed by the As points. Computed by
the Transpose method

4 CONCLUSIONS

Based on the comparison of the methods in terms of the
computation speed for this type of mechanism and the
computation algorithm shown in Fig. 1 - part 1, 2, we can state
that the fastest method was the Jacobian inversion method.
However, if we were to create a structure with a different
number of degrees of freedom from the modules, we would
have to turn to a different method. The most suitable substitute
for Jacobian inversion is pseudoinversion. In the DLS method
(Figs. 7 and 8) we can notice the ability to avoid singularities
(visible in the methods in Figs. 4 and 6) in the effector position
corresponding to the sample at 3.5 and 5.5 seconds. Of course,
this is subject to a suitable choice of the damping constant λ. In
this case, it was chosen experimentally with regard to the
highest possible computation speed and, at the same time, the
smallest possible deviation from the original ‖Δ‖ trajectory. As
mentioned above, it is possible to "pull" the system out of the
singularity to some extend with this method, at the expense of
an increasing ‖Δ‖ error. The cost of this "smooth" course is an
exponential increase in the error from the singularity in the time
of approx. 6.2 seconds almost 12 times - see Fig. 8. The error for
the transpose method was relatively large. Due to this method,
we were forced to increase the minimum allowable tolerance of
joint coordinates vector from the value δ = 10-6 to the value
δ = 10-5, for all methods, for the sake of objectivity. Otherwise,
the computation time would be unbearable (it would take
hours).

ACKNOWLEDGMENTS

This paper has been prepared with the support of the following
grant projects:
APVV-18-0413 Modular architecture of the manufacturing
technology structural elements.

KEGA 025TUKE-4/2019 Integrated teaching laboratory of virtual
prototyping and experimental verification of the machine tools
accuracy

REFERENCES

[Aristidou 2009] Aristidou, A., Lasenby, J. Inverse kinematics: a
review of existing techniques and introduction of a
new fast iterative solver. Technical Report.
Cambridge University, Engineering Department,
2009.

[Buss 2004] Buss, S.R. Introduction to inverse kinematics with
jacobian transpose, pseudoinverse and damped
least squares methods. San Diego: University of
California, Department of Mathematics, 2009.

[Coleman 1999] Coleman, T., Branch, M.A., Grace, A.
Optimization toolbox. For Use with MATLAB. User’s
Guide for Matlab 5, Version 2, Release II, 1999.

[Grepl 2007] Grepl, R. The kinematics and dynamics of
mechatronic systems. Brno University of
Technology: Brno, 2007. ISBN 978-80-214-3530-8.
(in Czech).

[Hock 2018] Hock, O., Sedo, J. Inverse kinematics using
transposition method for robotic arm. In: 2018
ELEKTRO. IEEE, 2018, pp. 1-5.

[Hrubos 2016] Hrubos, M., et al. Searching for collisions between
mobile robot and environment. International journal
of advanced robotic systems, 2016, Vol. 13,
DOI:10.1177/1729881416667500.

[Murray 1994] Murray, Richard M., et al. A mathematical
introduction to robotic manipulation. Boca Raton:
CRC press, 1994. ISBN 0-8493-7981-4.

[Ondocko 2020] Ondocko, S., et al. Position forward kinematics
of 6-DOF robotic arm. Acta Mechanica Slovaca 2020,
Vol. 24, Issue 2, pp. 30-36. DOI:
10.21496/ams.2020.01.

[Ondocko et al. 2020] Ondocko, S., et al. Inverse Kinematics Data
Adaptation to Non-Standard Modular Robotic Arm
Consisting of Unique Rotational Modules. Applied
Sciences 2021, Vol. 11, Issue 3, pp. 1-15. DOI:
10.3390/app11031203.

[Ondocko 2021] Ondocko, S., Stejskal, T., Svetlik, J., Hrivniak, L.,
Sasala, M. Processing of Inversion Kinematics Data in
Matlab for Robotic Arm Composed of Urm Modules.
In: Proceedings of the 18th International Scientific
Conference of Doctoral Students of Engineering
Faculties of Technical Universities and Colleges,
Novus Scientia 2021, Kosice, 28.1.2021, pp. 202-206,
ISBN 978-80-553-3798-2. (in Slovak)

[Otto 2005] Otto, S., Denier, J.P. An introduction to
programming and numerical methods in MATLAB.
Springer Science & Business Media. 2005. ISBN
1852339195.

[Paden 1986] Paden, B. Kinematics and Control Robot
Manipulators. PhD thesis. Berkeley: University of
California, Department of Electrical Engineering and
Computer Sciences, 1986.

[Peiper 1968] Peiper, D.L. The kinematics of manipulators under
computer control. Stanford University CA,
Department of Computer Science, 1968.

[Siciliano 2007] Siciliano, B., Khatib, O. (Eds.). Springer handbook
of robotics (2nd Edition). Springer, 2016. ISBN 978-3-
319-32550-7.

[Stofa 2019] Stofa, M. Experimental development of rotary
modules for the construction of serial kinematic

MM SCIENCE JOURNAL I 2021 I JUNE

4473

structures in manufacturing technology. Kosice:
Technical university, Dissertation thesis, 2019.

[Svetlik 2013] Svetlik, J., Demec, P., Semjon, J., Rotational kinetic
module with unlimited angle of rotation. Robotics in
theory and practise, Book Series: Applied Mechanics
and Materials, 2013, Vol. 282, pp. 175-181. DOI:
10.4028/www.scientific.net/AMM.282.175.

[Svetlik2 2013] Svetlik, J., Demec, P. Methods of Identifying the
Workspace of Modular Serial Kinematic Structures.
Book Series: Applied Mechanics and Materials, 2013,
Vol. 309, pp. 75-79. DOI:
10.4028/www.scientific.net/AMM.309.75.

[Svetlik 2016] Svetlik, J., Stofa, M., Pituk, M. Prototype
development of a unique serial kinematic structure
of modular configuration. MM Science Journal, 2016,
pp. 994-998.

[Zhao 2007] Zhao, Y., Huang, T., Yang, Z. A successive
approximation algorithm for the inverse position
analysis of the general serial manipulators. The

International Journal of Advanced Manufacturing
Technology, 2007, Vol. 31, No. 9-10, pp. 1021-1027.
DOI: 10.1007/s00170-005-0271.

CONTACTS:

Stefan Ondocko, Ing.
Technical University of Kosice,
Faculty of Mechanical Engineering,
Department of Manufacturing Machinery and Robotics,
Letna 9, Kosice, 042 00, Slovakia
Telephone: +421 55 602 3238,
E-mail: stefan.ondocko@tuke.sk

mailto:stefan.ondocko@tuke.sk

