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The main objective of this paper is to create computer crash 
models (up to the level of the Kelvin model, where the 
coefficient of stiffness and damping is calculated by 
implementing appropriate numerical methods: Trust - 
Region, Lavenberg-Marquardt and so on)  of measured real 
data that are obtained at the frontal impact of a vehicle into 
the rigid barrier. The process of modeling a vehicle crash can 
be done in two ways. One of them is related to CAE 
(Computer Aided Engineering) software including FEA. The 
other one (applied in this article) is based on the System 
Identification Toolbox, which contains MATLAB® functions, 
Simulink® blocks, and a special app for constructing models of 
dynamic systems from the measured input-output data.   
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1 INTRODUCTION   

Vehicle crash test is usually done in order to ensure safe 
design standards of a car software. Simulated crash tests can 
be performed and evaluated to the full extent of a real crash 
test. This means that due to simulated crash tests it is 
possible to significantly reduce the costs needed for 
performing real crash tests with real cars. Identification 
system concerns construction and validation of mathematical 
models from dynamic input-output data. In experiments the 
system reveals information about itself in terms of input and 
output measurements. System identification is routinely used 
in industry and by tools for modeling [Munyazikwiye 2013].  
One of the most convenient and accessible solution is to use 
the System identification  toolbox [Mathworks R2014a]. This 
toolbox is largely based on the works of Ljung [Ljung 1994]  
and it implements several common techniques used in the 
process of system identification. System identification 
toolbox enables us to create and use models of dynamic 
systems, which cannot be easily modeled from primary 
principles or specifications. We can use input-output data of 
the time- and frequency-domain to identify continuous-time 
and discrete-time transfer functions, process models, and 
state-space models. In a dynamic system, the values of the 
output signals depend on both, the instantaneous values of 
its input signals and also on the former behavior of the 
system. Models of dynamic systems are typically described by 

differential or difference equations, transfer functions, state-
space equations, and pole-zero-gain models. System 
Identification requires a model structure. A model structure is 
a mathematical relationship between those input and output 
variables which contain unknown parameters.  

2  KELVIN MODEL 

It contains a mass together with a spring and a damper 
connected in a parallel way. This model can be used for 
simulating the  vehicle-to-barrier collision  . In majority of 
cases the response of the system is underdamped. Therefore, 
we focus on this type of behavior. 
To obtain the parameters of the Kelvin model of the vehicle 

impact on the barrier from the actual tests, we use the 

Matlab Identification Toolbox. 

 

 

Figure 1.  Kelvin model [Huang 2002] 

k – spring stiffnes 

c – damping coefficient 

m – mass of the vehicle 

v0– barrier initial impact velocity 

3 GETTING DATA FROM THE IMPACT TEST  

Data for the System identification  Toolbox  were obtained 
from a frontal impact test into the rigid barrier with full 
coverage at the speed of 56.17 km/h (15.6 m/s) according to 
NCAP (New Car Assessment Program)  [NCAP 2017].  Honda 
Civic XL 2-door Coupe was chosen for providing the impact 
test. A measurement recording has been processed from an 
accelerometer that was firmly connected to the vehicle floor 
at the rear of the bodywork  [Vlk 2003]. Accelerometer is a 
sensor of non-electric quantities. It converts detected 
quantity into an electrical signal which is subsequently 
processed and evaluated. Each impact test recording coming 
from accelerometer must be filtered by the CFC 60 filter 
(Channel Frequency Class) due to significant signal oscillations 
[Cichos 2006]. This type of filter is characterized by the 
following filter parameters:  3-dB limit frequency, 100 Hz. 
Stop damping, –30 dB. Sampling frequency, at least 600 Hz. It 
was designed primarily for measuring deceleration on car 
bodies. In order to perform the impact tests correctly, signal 
processing must be done under specific predetermined 
conditions. These standard conditions are written down in 
SAE J211-1: Instrumentation for Impact Test, Part 1, Electronic 
Instrumentation. Moreover, all physical quantities occurring 
in the impact test are specified there [Coufal 2012, Krenicky 
2010].  

4 ACHIEVED RESULTS AND THEIR DISCUSSION 

As a matter of fact that for researchers it is important to 
know what happens mostly in the direction in which a car hits 
the rigid barrier, we have analyzed an x – direction 
(longitudinal). For the needs of this research, authors´ own 
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model of a vehicle was created (see Fig.2) in the Simulink 
programme, which is a graphical programming environment 
for modeling, simulating and analyzing multidomain 
dynamical systems. The main objective of this model is to 
process the measured data (unfiltered deceleration signal) in 
such a way that at the output of the Scope 5 block we would 
be able to observe the course of deformation of the chosed 
vehicle (Honda civic XL).   

 

Figure 2.  Model of a vehicle (from deceleration  to  
deformation) 

 

Figure 3.  Data signals [Vernier 2020] 

Figure 3 (lower left) shows the original data signal with noise 
(Deceleration in (g) vs. Time (s)). It was obtained from the 
accelerometer. In comparison, a data signal filtered by the 
relevant CFC 60 filter can be seen in Fig. 3 (lower right) 
(Deceleration (ms-2) vs. Time (s)). By integrating deceleration 
over time, it is possible to obtain a time-dependent velocity, 
see Fig. 3 (upper right) (Velocity (m/s) vs. Time (s)). By double 
integration of deceleration over time, it is possible to 
calculate a time-dependent deformation, see Fig. 3 (upper 
left) (deformation (m) vs Time (s)). From the measured data 
and the processed data Fig. 3, it is possible to determine 
some parameters respecting the deceleration, velocity and 
deformation in a closed time interval (in this case it is 3 ms). 
For the vehicle Honda Civic XL, it is possible to determine 
maximum dynamic crush (max. deformation)  C = 0.751m at 
time t = 0.08s – from real data [Vlk 2003; Evin 2016]. 

When data from Simulink´s own model were processed, they 
were imported into the system identification toolbox  (input-
deceleration output-deformation ). 

4.1 Linear models obtained due to Identification toolbox     

Transfer Function Models 
The general transfer function model has the following 
structure: Y (s)= (num( s)/den (s))U( s )+E( s),  
where Y(s), U(s) and E(s) represent the Laplace transforms of 
the output, input and error, respectively. Parameters num(s) 
and den(s) represent the numerator and denominator 
polynomials that define the relationship between the input 
and the output. The roots of the denominator polynomial are 
referred to as the model poles. The roots of the numerator 
polynomial are referred to as the model zeros.  
tf1 -  model  (blue line) was created from the measured input-
output data, see Fig. 4 (From input "Deceleration" to output 
"Deformation").    
State-space model - ss1: (green line) was created from the 
measured input-output data, see Fig.4 and has the following 
structure: dx/dt=Ax(t)+ Bu(t)+ Ke(t) 
y(t)= Cx(t)+ Du(t)+ e(t) , where y(t) represents the output at 
time t, u(t) represents the input at time t, x is the state 
vector, and e(t) is the white-noise disturbance. The System 
Identification Toolbox product estimates the state-space 
matrices A, B, C, D, and K. 
The model  n4s2 - state-space model (pink line) was created 
from measured input-output data, see Fig. 4 (Matlab 
algorithm selects the model order automatically (in this case, 
2))  
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Figure 4.  Measured and model outputs 

Polynomial ARX Models 
For a single-input/single-output system (SISO), the arx model 
structure looks like this:  

 
where y(t) represents the output at time t, u(t) represents the 
input at time t, na is the number of poles, nb is the number of 
zeros plus 1, nk is the input delay – the number of samples 
before the input affects the system´s output (called delay or 
dead time of the model), and e(t) is the white-noise 
disturbance.  
Name: arx441 - model  (turquoise line) was created from the 
measured input-output data. Sample time: 0.0001 seconds, 
see Fig. 4. 
arxqs - model (yelow line) was created from the measured 
input-output data. Sample time: 0.0001 seconds, see Fig.4.   
Process model - P2U  (red line) was created from the 
measured input-output data. Process model with a transfer 
function is shown in Fig. 4. A numerical search method is also 
very important for these models. In this particular case, the 
Levenberg-Marquardt method was used  
 G(s) = K/(1+2*Ksi*T*s+(T*s)^2 )                                                                                                                                 
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where  K = 8347.9 m/N                                
                  T = 90.677 s                                    
                   Ksi = 0                                                                                                 
Termination condition: Maximum number of iterations 
reached. Number of iterations: 20. Number of function 
evaluations: 83. Estimated using PROCEST on time domain 
data "honda". Fit to estimation data: 99.12% .  

4.2 Obtained parameters for Kelvin model  

Based on the discussion above and Fig. 4, we can say that the 
measured reference output best fits the estimated output of 
the model in the following order: model tf1 = 99.78%, model 
ss1 = 99.22%, model P2U = 99.12%. Therefore, we will deal 
with the Process Model with the P2U (Investigation of real 
crash data) transfer function and the use of the Identification 
toolbox in more detail. 
This identification toolbox allows us to obtain the parameters 

of the system according to the input and output data. As an 

example we are going to use the model of the second order 

differential equation  (second order oscillating element).  The 

forcing factor is the external force over mass  (acceleration) – 

initial conditions (velocity v0 =15.6 m/s and displacement 

x0 = 0 m).  

Equation of the second order oscillating element is as follows  

[Kowal 2003]: 

                      (1)                                                                                           

,where y(t) – output and x(t) – input. 
Providing the Laplace transform of equation (1)  with initial 

conditions v0 =15.6 m/s and x0 =  0 m we get:         

 
                                                                                                         (2) 

Therefore the transfer function of the system given by (2) is: 

                                                                          (3)                                        

From the equation of motion of the Kelvin model we know: 

                           (4)                                                              

input u(t) is an deceleration. 
By taking Laplace transform of (4)  with the same initial 

conditions as previously we obtain the following transfer 

function: 

                                                                              (5) 

Both equations, (3) and (5) describe the same model. 

Therefore, they equal each other only if the following is true: 

         (6)                                                       

With this findings we proceed to Identification Toolbox and 
select the appropriate type of estimation. An underdamped 

system with two poles has been chosen as a matter of fact 
that this research is based on Kelvin model. Parameters 
obtained for Process model  are shown in Fig. 5 

Figure 5. Identification toolbox - results 

Several parameters, namely, time constant T, damping  
coefficient  𝝽  and  gain  K  are the same for  both  models – 
reference , oscillating element model - Process model P2U 
and Kelvin model . It means that as soon as we get the input 
and the output data of the system and set the required initial 
conditions, we can determine precisely the numeric values of 
coefficients k1 and c1 of the Kelvin model according to 
relations (6).  It is done through the computational kernel of 
the matlab or through the Simulink model of blocks 
[Murcinkova 2013]  . (E.g.: It is possible to determine the 
value of time and dynamic crush  C for the Kelvin model and 
compare them with the values that result from the model 
output - Process model P2U or compare them from values up 
to the level of the measured output) . 
For this Process model with the Lavenberg-Marquardt 

numerical method, we can see a high fit value of up to 

99.12%. To calculate the stiffness coefficient k1 and the 

damping coefficient c1 for the Kelvin model we can use 

relations  in (6). Then we get: k1 =  0.17 N/m , c1 = 0 Ns/m, 

m=1422 kg .                                                                                         

The problem is the low values of the stiffness coefficient k1 
and the damping coefficient c1 to zero which result in other 
problem with the low value of the forces in the spring (in Fig. 
6). Therefore, the same Process model with the  transfer 
function but different numerical method seems to be more 
suitable. We used the Trust - Region reflective Newton 
numerical method with the following output. Process model 
P2U with transfer function:                                                                                                                                
  G(s) =  K/(1+2*Ksi*T*s+(T*s)^2)                                                                                                                                                            

 ,where  K = 2.7769 m/N                                                            

               T = 1.6569 s                                                              

              Ksi = 0.12152                                                                                                                                     

Termination condition: Maximum number of iterations or 

number of function evaluations reached. Number of 

iterations: 21. Number of function evaluations: 22. Estimated 

using PROCEST on time domain data "honda". Fit to 

estimation data: 99.02% .  

The coefficients for the Kelvin model  (6) are as follows: 

k1=518.5N/m , c1=207.30 Ns/m. The result is shown in Fig.6. 

The better the result is, the closer to real conditions the force 

in the spring gets [Hlavac 2018].  

Having the parameters of the Kelvin model we investigate its 
response using the Simulink diagram or the Matlab 
simulation program (used here) with the initial velocity 
v0=15.6m/s a d0=0m. 
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Figure 6.  Simulation result resulting from Kelvin model for 
parameters k1=518 N/m and c1=207 Ns/m and vehicle mass 
m=1422kg 

Thus, when comparing the output of the Kelvin model (Fig.6) 
with the reference, Process  model (respectively with the 
measured output ) (Fig. 4) it can be seen that the dynamic 
crush in both models differs by the order of centimeters. 
However, it is achieved at the same time. Unsuitable 
numerical methods are Gauss-Newton method - fitting 
0.0825 % and Gradient method has fitting 0.0826% .  

5 CONCLUSION 

For the purpose of this work, an authors´ own model (see 
Fig.1) was created in Matlab-Simulink. In order to get better 
results, the model was created in such a way that it was 
capable of filtering off (Lowpass CFC 60 filter) the native 
acoustic signal obtained from the accelerometer. 
Figure 4 shows measured and estimated model outputs that 
reconstruct the vehicle crash with small errors in terms of 
dynamic crush. Time of dynamic crush obtained from the 
models is approximately the same as the time of dynamic 
crush from the experimental, measured data.  
The fit between the two curves (measured output - first curve 
and estimated model output - second curve) is computed in 
such a way that 100% means a perfect fit, and 0% indicates a 
poor fit. This means that in our case the measured output 
best fits the model output in the following order: model tf1 = 
99.78%, model ss1 = 99.22%, model P2U = 99.12%, model 
n4s2 = 98.97%, model arx441 = 94.71% and finally model 
arxqs = 94.70%.  
Identification Toolbox allows us to obtain the Process model 
with the P2U transfer function according to the input and 
output data, the parameters of which also depend on the 
numerical method search. It is namely time constant T, 
damping coefficient 𝝽  and gain K [Jurko 2012].  
The most suitable numerical methods include: the Lavenberg-
Marquardt numerical method, in which a fit value is up to 

99.12% and the Trust - Region reflective Newton numerical 
method with a fit value up to 99.02%. 
Based on the fact that both models – reference, Process 
model and Kelvin model  are the same, we have calculated 
the values of k1, c1 for the Kelvin model. When using the 
Trust - Region reflective Newton numerical method, 
mentioned parameters reach the following values: k1 = 518.5 
N/m , c1 = 207.30 Ns/m. These numerical values represent 
the best result. It is a situation when the force in the string is 
very close to real conditions and difference in dynamic crush 
for both models is very little (a few centimeters). Moreover, 
the dynamic crush is reached at the same time of 0.08 
seconds (see Fig. 4 and Fig. 6). 
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