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At the studying the Mannesmann piercing process, we unify two 
approaches to the problem solving. Namely, the commercial 
FEM software procedure and the mathematical model of the 
process via the mathematical model of the considered FEM-
simulation bound by certain unifying symmetries. Such 
phenomenon seemingly exists only if the FE-mesh is initiated to 
be physically interpreted. We shortly outline, how to come to 
the slightly modified Cahn-Hilliard equation as to the 
mathematical model of the FE-simulation possessing quasi-
symmetry given by a lattice of colloidal assembly formed by the 
chosen FE-mesh. Separation of two cylindrical surfaces of the 
pierced product together with the inpainting role of the piercing 
plug are described with respect to the background given by the 
Navier-Stokes equations related to the flow between the both 
surfaces. Influence of the involved groups related to the 
considered quasi-symmetry is illustrated by the 
convergence/divergence of the Newton-Raphson number in the 
CPU-time.   
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1 INTRODUCTION  

The Mannesmann process (MMP) is used at the tube production 
and, in a certain sense, it can be understood as a transformation 
of the full cylinder into the hollow one taking part between two 
rotating working rolls by means of the piercing plug at a certain 
forming temperature. The critical point is a cavity origin (the 
Mannesmann effect), which is an atomic-level phenomenon. In 
that sense it is described as a process controlled by the 
Schrödinger equation that is further controlled by its 
generalization, namely by the Klein-Gordon one for the 
tunnelling the potential barrier [Perna 2020]. To simulate the 
MMP using the FEM simulation is therefore hardly limited by the 
possibilities of simulation mesh selection, which cannot reach up 
to the atomic-level of cavity formation instances (Mannesmann 
effect is moreover still not completely understood, even in 
general [Počta 1976]). So, any FEM-simulation of the MMP 
cannot be realistic as the whole, but only quasi-realistic, as we 
will show further (the relevant results from a commercial 
software FORGE (TRNASVALOR S.A.) being used generally for the 
forging and rolling simulations are considered here) - It is namely 
possible to bypass this fundamental shortcoming [Berazategui 
2006] by creating a preliminary hole in the product on which the 
MMP is intended to be simulated. In order to find out, how such 
a hole and the piercing plug should be combined, the 
mathematical model of the FEM-simulation itself must be 
developed. The solutions of such model should enable a piercing 
plug a certain involving within the simulation process as if it 
would be coupled with the sequence of instances of cavity 

formation. That´s why we will consider such a model only as the 
problem of a quasi-plug-action and call it as the “masked plug 
problem” symbolically. The region “damaged” by the 
preliminary hole will be again filled (reconstructed with respect 
to the plug) using information from surrounding areas. These 
areas are formed by the FE-mesh however, so that there is no 
physical, crystallographicaly based information to be processed. 
We will yield the required information from the FE-mesh 
interpreted in terms of the colloidal crystal assembly, admitted 
by the singular solution of the Navier-Stokes equation for the 
colloidal solution flow between two rotating cylinders that are 
formed by the process of the phase separation described by the 
Cahn-Hilliard equation. In other words, creating a mathematical 
model of the FEM-simulation of the MMP, we will build the 
Cahn-Hilliard-Navier-Stokes-system enabling the information 
transfer necessary for the considered reconstruction. Additively, 
specific symmetries are emerged with only one unique quasi-
symmetry of the colloidal crystal considered. Surprisingly 
enough, this approach is bounded by its algorithmically 
characteristic polynomial of the fifth degree, so (via an existence 
of icosahedral iterative scheme of the solution of quintic) it 
indicates an existence of the relevant iteration schemes 
diverging with respect to the simple alternating group A5 and its 

corresponding direct product with a cyclic group 𝑍2, i.e. 𝐴5  𝑍2, 
the icosahedral symmetry groups. Their order 60 and 120 
respectively is demonstrated by the divergence of the process 
related Newton-Raphson number in the CPU-time. – 
Consequently, for the convergence case, the icosahedral broken 
symmetry is substituted by the unique quasi-symmetry 
represented by a star of vector from the lattice of the colloidal 
crystal coupling the correct FE-mesh choice with an admissible 
calibration of the MMP. Furthermore, this quasi-symmetry 
connects the mathematical model of the MMP-FEM-simulation 
with its real, atomic-level-built model by the systematic 
exclusion of any A5 engagement from the correct realistic course 
of the MMP.  
 

2 MATHEMATICAL MODEL ALGORITHM OF THE FEM-
SIMULATION OF MMP  

Preferably use DIN A4 page format and MS Word editor, please.  
This algorithm is represented by such an arrangement of partial 
differential equations (PDE) that can “substitute” a 
mathematical model of an atomic level Mannesmann effect 
within a FEM-simulation course emerging certain symmetries 
controlling the whole scheme consequently. Classical eigenvalue 
problem for the biharmonic operator (see [Pereira 2008]) 

(2 +  )𝑢 = 0 𝑖𝑛 𝑎 bounded in 𝑅𝑛                                    (1) 

𝑢 =  𝑢/𝑁 =  0 on 𝑎 for a certain 𝑎 (0, ½), 

 
labelled with the „least rational“ a which cannot be contained in 
any pair of dyadic (binary) rationals generating some locally 
cyclic group [Tsankov 2011]. – If H is a certain cyclic group, so it 
is also locally cyclic, then the rational number a representing the 

hole/plug diameters ratio, should not prevent the region 𝑎 to 
be purely H – symmetric by some own „symmetry contribution“ 

of a. Since there is a „smallest“ cyclic group 𝑍2, which, in no way, 
can be generated by any pair of binary rationals, we put for H 
(see [Pereira 2008]) that 
𝐻 = 𝑍2  … 𝑍2 .  
For 𝑈 = 𝑔𝑢 + …  𝑔𝑢 , 𝑔𝐻.                                                           (2) 
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Now, incorporating U within mathematical models in [Perna 
2020] with respect to H, we consider more generally a concept 
of binarity, if it can be assumed that  also satisfies the Cahn-
Hilliard equation [Burger 2009] (modelling generally the phase 
separation in binary compositions) as  

𝑡 𝑈 =  −(• ( 𝑈/ 𝑈))  +  (𝑢 −𝑈) in 𝑎  (0, 𝑇),
𝑡 (0, 𝑇)  𝑅.                                                                                    (3)   
Further, using an operator 𝑗  from the affine connection 𝑗  

instead of the divergence operator • in (3), we obtain  

𝑡 𝑈 =  −𝑘𝑗 (𝑗 (
𝑈

𝑈
)) in 𝑅3 𝑅                                                (4)  

with a „hidden incorporation „of  through an extension of the 
relation (3) as it should look like in 𝑅3 𝑅. In this way, we achieve 
a state with the „masked plug“ incorporated in the process of 
FEM-simulation of the MMP. The last form of the Cahn-Hilliard 
equation takes the internal and external surfaces of the 
„computationally pierced product“ as a binary composition with 
respect to additionally emerged quantity 𝑘𝑗  that could be 

interpreted as a characteristic vector from a colloidal lattice, 
analogously like in [Tateno 2019]. It serves here as a symbol of 
the configuration of the perturbation mode leading to cavity 
formation that starts the phase separation process. This 
configuration (the „star of the vector 𝑘𝑗“[Litzman 1982]) can be 

found via the singular set of the Navier-Stokes equations solved 
for a colloidal solution Taylor-Couette flow [Larignon 2009] by 
means of the system TP-Complex [Perna 1995]. The network of 
the colloidal crystal grain boundaries is obtained as the simplest 
reinterpretation of the FE-mesh in the physical reality. 

3 RESULTS 

We call the solution U of (4) as the fiber of union of disjoint stars 
𝑆𝛼(𝑘𝑗) of the vector 𝑘𝑗  for 𝛼 =  1, 2, …, M, where M is a number 

of instances of perturbation modes representing moments of 
cavity origins. (Despite a certain apparent similarity with central 
series of the so-called nilpotent groups, it must not be confused 
with it.)   

(𝑅𝑛 𝑆1): =  𝑆𝑛                                                                                (5) 

as the n-sphere (with a measure z) equipped with a nonconvex 
cover U. This cover represents a space, where the pierced 

product is formed at a certain value of n  N given in our 
algorithm by the skew polynomial  

𝑃𝑁(𝑧)  =  𝑐𝑜𝑠(𝑁 𝑎𝑠𝑖𝑛(𝑧)).                                                              (6) 

Then, for a function 𝑉 =  𝑃𝑁(𝑧), we solve the differential 
equation 

𝑗  𝑗 𝑉 =  0  𝑖𝑛 𝑅3 𝑅                                                                     (7) 

where V takes a form of a vortex on U, finding 

𝑁 =  𝑎𝑡𝑎𝑛  (𝑧 (𝑠 –  1)(1 – z2)
3
2) / (𝑧4(2𝑏 – 𝑠 + 1)

+ z2(3(𝑠 – 1) –  4𝑏)  +  2(𝑏 –  𝑠 + 1))  /𝑎𝑠𝑖𝑛(𝑧) 
                          (8) 

as a degree of correspondingly relevant groups, when Im(z)≠0 
and Re(z) = ½. 

So, besides a problem-calibration coupling parameter b, we also 
obtain a torsion of the group H with s ∈ Tor H and can put 

𝐿𝑛 𝑈 =  𝑧4(2𝑏 – 𝑠 + 1) + 𝑧2(3(𝑠– 1) – 4𝑏) + 2(𝑏 –  𝑠 +  1) 

     (9) 

for the Ansatz in the problem (4). Together with the „masked 
plug“, the group H be-comes trivial by an introducing 

𝑓(𝜈(𝑠)) = 𝑓𝑎() , 𝑓𝑎 ∶  𝐻 → 0      (10) 

there. Thus, having an internal and external surfaces of the 
„computationally pierced“ semi-product separated (as a picture 
of the phase separation without torsion). In this way, s is not in 
Tor H,if the trivial group 0 starts to act in (10).Roughly speaking, 
having no crystallography within the binary separated phases 
assembly, we need something that is “systematically physically 
trivial”. Here we assume that the real meaning of the trivial 
group 0 can be found, if the equation (4) is considered as being 

solved with respect to a shear viscosity  in a “trivially 
crystallographic” colloidal crystal assembly (as a solid), which is 
quasi-provided with „finite elements-grain boundaries “.. We 
yield namely 

𝑈 = 𝑒𝑥𝑝 (3 − 4)/(( − 2)) – (3 −  4)/(2( −

2)) – 2/(3(3 −  4)) –  2/3                                                 (11) 

with 

𝑓𝑎 = 𝑒𝑥𝑝 /(( − 2)) – 4/(3(3 − 4)) –  1/3 ,               (12) 

where  is the so-called Euler characteristic [Meyer 2005] and 
the constant 1/3 is emerged as the value of a used for the given 
FEM-simulation of the MM-process. The extension (4) of the 
problem formulation (3) can, under a certain value of the 
coupling parameter (constant b) and the FE-mesh choice, start 
the divergence in the simulation process itself, when  → 2  if 
𝑡 → . Consequently, the corresponding substitutions in (11) 
and (12) imply 

𝑈 → 𝐴𝑢𝑡(𝐺)  𝑒𝑥𝑝 (5 −  4)/(6(3 −  4)( −  2))  +  5/
60                                                                                                    (13) 

𝑓𝑎  → 𝐼𝑛𝑛(𝐺)  𝑒𝑥𝑝 (5 − 4)/(3(3 − 4)( − 2)) +  5/30   

          (14) 
with the quotient 

𝐴𝑢𝑡(𝐺)/𝐼𝑛𝑛(𝐺) : = 𝑂𝑢𝑡(𝐺) = (𝐴𝑢𝑡(𝐺))−1,    (15) 

 
which is the outer automorphism group of the group G. The ratio 
5/60 induces that 𝐺 =  𝐴5, the finite simple group of degree 5 
and order 60. As we know, this group has only two normal 
subgroups, the trivial group and itself. So, the directly connected 
logical meaning of the trivial group 0 in (10) can be more 
specially seen in an existence of the trivial center Z(𝐴5), or in the 
fact that the group 𝐴5 is centerless respectively. Then, in this 
extreme interpretation, Out(G) results in a form of (𝐴𝑢𝑡(𝐺))−1 
as being dual to Z(𝐴5) at the case of divergence of the FEM-
simulation process. It is one of the exception from the rule 
[Wikipedia 2021]. 
 
𝑁 3, 𝑁  6 ∶ 𝑂𝑢𝑡(𝐴𝑁) = 𝐶2 (see also the case: 𝑧 =  𝑅𝑒(𝑧)  =
 ½ 𝑖𝑛 (8)).                                                                                        (16) 

Here 𝐶2 is the cyclic group of the order 2. So, we consequently 
proceed to an existence of the cyclic group 𝑍2 in the direct 
product  

𝐼ℎ =  𝐴5 𝑍2 ,                        (17) 

where 𝐼ℎ is the full icosahedral group of the order 120. It is a 
group of symmetry of the regular icosahedron or dodecahedron 
respectively.  

Now, retrospectively, which role does icosahedral symmetry 
play within the solution (U, 𝑓𝑎) of the problem (4)? – An answer 
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lies in the fact that, solving this problem, we must respect an 
emergency of existence condition  

𝑇 =  𝐹(𝑓𝑎 , 𝑃()) ,        (18) 

with  as the perturbation mode coupled with the cavity 
formation and the polynomial 𝑷(). We assume with respect to 
(17) that, since this polynomial is quintic having a form 

𝑃() =  35(𝜈 –  2)2(5𝜈 – 8) − 124(𝜈 – 2)2

+ 3(2 – 𝜈)(223𝜈2 − 672𝜈 +  496)  

+ 22(𝜈 –  2)(3𝜈 –  4)(21𝜈 –  20) 
+  4(3𝜈 –  4)2(9𝜈 –  16)  −  8(3𝜈 –  4)3 

          (19) 
it is not solvable by means of any icosahedral iterative scheme 
[Doyle 1989]. – It holds namely that according to [Doyle 1989] 
the generally convergent purely iterative algorithm assigns to its 
input data v a rational map 𝑇𝑣(z), such that 𝑇𝑣

𝑛(𝑧) converges for 
almost all v and z (the limit point is the output of the algorithm). 
In our case v are  for uncertain 𝜈 which does not satisfy the 
rigidity condition necessary for the convergence of the 
algorithm. This “lack of rigidity” can be then nicely observed in 
the realistically simulated picture of a metal flow in the following 
Fig. 1. It seemingly represents a type of embedding problem in 
iteration theory, when the embeddability of the given mapping 
𝑇𝑣(𝑧) in real (metal) flows fails. We note that the attribute 
„icosahedral“ is assigned not only by the relation (17) itself, but 
also by the known fact that no crystallographic group can be 
associated with the group 𝐴5 [Li 2016]. 

Consequently, only the star 𝑆(𝑘𝑗) related to the FE-mesh as 

formed physically by grain boundaries of colloidal crystal can 
represent some symmetry of the convergent model. 

 

Figure 1. 𝑺(𝒌𝒋) – symmetrical FEM-simulation of the MMP for two 

different values of the calibration constant b: for an incomplete phase 
separation (left) and for a complete phase separation (right) as assigned 
by solutions of the model (4). 

If we consider “some symmetry” of the mathematical model, we 
talk about an existence of some symmetry of the polynomial 
𝑃() as well. Namely, as it immediately follows from (19), there 
is a set 

ν  𝑆𝑀 ∶=  2, 8/5, 336/2234143/223, 4/3, 20/21, 16/9. 

(19a) 

with no unifying value of the shear viscosity ν for M=7 which 
could be defined with respect to the group G as the union of 
seven proper subgroups (see also the Tomkinson´s theorem 
[Tomkinson 1997]). Thus, instead of G we have only a fiber (11) 
that unifies all seven instances of an occurrence of 𝑆(𝑘𝑗) with 

respect to (12) with the vector 𝑘𝑗  from no crystallographic 

system in 3D. In other words, the whole “symmetry“ of 
polynomial (19) consists in a „quotient“ 

𝑈/𝑓𝑎𝑆(𝑘𝑗).        (20) 

Then, this incomplete and consequently instable “symmetry“ 
can easily land at the divergences (13) and (14) which are 
covered by the broken icosahedral symmetry [Roshal 2014]  and 
its iterative scheme. As it follows from the divergence courses 
shown in Fig. 2 (calibration coupling constant correct, mesh 
choice incorrect) and 3 (coupling constant incorrect, mesh 
correct) below, such scheme is represented by the order 60 and 
subsequently 120 (imaginary axes of a divergence oscillations) of 
the full isosahedral group reflected via the Newton-Raphson 
iterations number [Ouypornpraset 2016].   

 

Figure 2. The divergence of icosahedral iterative scheme as emerged 
at MMP-FEM-simulation  

Note. The peaks of the Newton-Raphson iterations number 
evolve from the order 60 of the group 𝐴5 up to the order 120 of 
the group 𝐴5 𝑍2 during the CPU elapsed time. Let´s remind that 
the whole FEM-simulation (by means of the commercial 
software FORGE) has the mathematical model (4). This model 
can be attracted to have the full icosahedral group of symmetry 
in a dependance of how the choice of the FE-mesh is realized 
here. Namely, the MMP-calibration coupling constant b was 
involved correctly, contrary to the FE-mesh density choice. 
Consequently, the vector 𝑘𝑗  was neither from any 

crystallographic system, nor from the corresponding colloidal 
crystal lattice. 

 

Figure 3. The divergence of icosahedral iterative scheme as emerged 
at MMP-FEM-simulation 

Note. The peaks of the Newton-Raphson iterations number 
evolve only up to the order 120 (avoiding the order 60 to a large 
extent) of the group 𝐴5  𝑍2 during the CPU elapsed time. So, 
the nature of this „evolution“ differs from the previous one. The 
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reason is an incorrect involving of the calibration coupling 
constant b within the model. Due to the fact that the numerical 
value of the parameter a was inadmissibly contained in a pair of 
some dyadic rationals generating additively a locally cyclic group 
which (contrary to 𝑍2) is avoided to stay in the direct product 
with 𝐴5. Lattice symmetries resulting from the colloidal crystal 
are limited, but optimal at any vector 𝑘𝑗  from a lattice coupled 

with the appropriate choice of the FE-mesh. If the density of the 
FE-mesh in the vicinity of the piercing plug is maximal, then also 
the stability of the „masked plug“ problem (4) as the model of 
the FEM-simulation process becomes maximal. Such a case is 
namely most relevant with respect to the meaning of the Cahn-
Hilliard equation, since the density of the FE-mesh in the vicinity 
of the piercing plug is separated from the rest of the FE-mesh 
density without separation of the „both“ meshes. It is an unique 
case, when the convergence of the 𝑆(𝑘𝑗)-appropriate iterative 

scheme can exist, being most stable at some maximal difference 
between the both FE-mesh densities. Beyond, we can see this 
case in the Fig.4. 

 

Figure 4. The convergence of the 𝑺(𝒌𝒋) −appropriate iterative 

scheme as emerged at MMP-FEM-simulation 

Note. The most remarkable feature of this convergence is that 
its peaks lie prevailingly at the value of 

IN   ½ 𝐴5  =  30 ,                       (21) 

where as 𝐴5 is denoted the order of the group 𝐴5.  

According to the so-called Lagrange theorem [Gyamfi 2021], the 
order of any subgroup of some considered group divides the 
order of the group by an integer called as the index of the 
subgroup in the group. So, the above figure shows that there is 

no subgroup of 𝐴5 and/or 𝐴5  𝑍2 respectively with the index 2, 
that is really the case. This directly demonstrates the correctness 
of our whole approach to the given FEM-simulation process. 

In the following paragraph we will shortly study, how to obtain 
the singular solutions to the Navier-Stokes equations (NSE) 
yielding the star 𝑆(𝑘𝑗) of the vector 𝑘𝑗  , creating the Cahn-

Hilliard-Navier-Stokes-system in the given context. (Another 
example of the Cahn-Hilliard-Navier-Stokes system as related to 
an appropriate FE-approximation scheme can be seen e.g. in 
[Kay 2008].) 

3.1 The Cahn-Hilliard-Navier-Stokes system based on a pair of 
singular solutions to NSE 

Considering the viscous flow of a colloidal solution between two 
rotating cylinders (Taylor-Couette system), we introduce a 
cylindrical surface 𝐔 (see U for (5)) between them separating 
mutually two phases in the colloidal crystal. - We expect that the 

Taylor vortex-flow gets, as the whole, into a certain state (𝑏, 𝑠) 
on U that subsequently bifurcates into binary components 


1
(𝑘(𝑥, 𝑡) 𝑠, ) and 

2
(𝑘(𝑥, 𝑡) 𝑠, ) at the point x, at which it is 

supposed that the vector 𝑘𝑗   can be found in a time 𝑡  (0, 𝑇). – 

We talk about the vector of a norm k from a colloidal crystal 
lattice with respect to the so-called volume viscosity (the second 
viscosity)  corresponding with some singular value q of a 
coupling constant b. We assume that a fluid (colloidal solution) 
should be compressible in order to permit an emergence of a 
colloidal crystal. That´s why the Navier-Stokes equations should 
be taken in a form expressing the velocity vector 𝑤𝑖 of the Taylor 
vortex-flow of compressible fluid (as given in e.g. [Hughes 1964]). 

𝑡𝑤𝑖 + 𝑤𝑗𝑗𝑤𝑖 = −𝑖𝑃 + 𝐹𝑖 +  𝑗ν(𝑗𝑤𝑖  + 𝑖𝑤𝑗– 2/

3𝑖𝑗𝑘𝑤𝑘) +  𝑖(
𝑘

𝑤𝑘)       (22)  

  
(𝑗𝑤𝑖  +  𝑖𝑤𝑗) =  0         on       U.      (23) 

The quantity P represents a required pressure, 𝐹𝑖 a force density, 
𝑖𝑗 is the Kronecker delta and a factor 2/3 coincides with (11). – 

Respecting non-commutative relations 


1

𝑤𝑖   𝑤𝑖1
,

2
𝑤𝑗   𝑤𝑗2

 at (𝑗1
−  𝑖2

)  =  0 on U  

        (24) 

and using TP-Complex, we find that the both states cannot be 
any complex valued function, so that 


1

= 𝑒𝑥𝑝𝑠(2𝑘4𝑞3 + 𝑘3𝑞2(2𝑞(𝑠 –  1) –  𝑠 + 3)

+ 𝑘2𝑞(1 – 𝑠)(𝑞(𝑠 –  3) + 2) + 𝑘(1 –  𝑠)(2𝑞(𝑠 – 1) + 1)
− (𝑠 –  1)22)/( 𝑞2(𝑘𝑞 –  𝑠 + 1)) 


2

= 𝑒𝑥𝑝𝑘3𝑠(2𝑞3 + 𝑞2(3 − 𝑠)

− 2𝑞(𝑠 − 1))/( 𝑞2(𝑞 – 𝑠 + 1) + (𝑘2𝑠(𝑠 − 1)(2𝑞3

+ 𝑞2(3 − 𝑠) − 2𝑞(𝑠 − 1) − (𝑠 − 1))/( 𝑞2(𝑞– 𝑠 + 1)) 

                                                                                                           (25) 

As we know, we have no crystallography or, more precisely, no 
Brillouin zone to be able to construct the star of the vector 
𝑘𝑗  within the lattice of the colloidal crystal directly. Therefore, 

we find only this star in a form of the state preventing the 
colloidal crystal from its possible deformations due to some 
interactions between the states 

1  and 
2

. This form then reads 

𝑆(𝑘𝑗) = 𝑒𝑥𝑝 − 𝑘4/ +  𝑘3/ −  5𝑘2/4 +  𝑘/2 −  1/4] 

            (26) 

It is already easy to show that (25) satisfies the relation (20) as 

𝑆(𝑘𝑗) 
𝑈

𝑓𝑎
 𝑆(𝑘𝑗) for 𝑆𝑀, 𝑀 =  7.     (27) 

The relation (27) must hold in the above considered Cahn-
Hilliard-Navier-Stokes system in order to preserve convergences 
like in the Fig. 4 at FEM-simulations of the MMP.   

4 CONCLUSIONS 

It seems to be for sure that any FEM-simulation of the MMP is 
physically realistic only then, if it has its own mathematical 
model connected with the original mathematical model of the 
atomic-level MMP. Connections are realized via the symmetries, 
namely the icosahedral one for the case of the divergence of the 
Newton Raphson number in the CPU-time and the quasi-
symmetry (emerged as the star of the vector from the colloidal 
crystal lattice) parametrizing the FE-mesh choice for the 
convergence case. This star stays further as a picture of the 
configuration of perturbation mode coupled with cavity 
formations sequence during the MMP. 
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The mathematical model of the MMP-FEM-simulation (realized 
by the commercial software FORGE here) is a part of the complex 
Cahn-Hilliard-Navier-Stokes-system representing a complex 
algorithm coupled with the quintic determining the identity of 
the solved problem. 

As a demonstration of the correctness of the given complex 
system some elementary theorems of the group theory were 
yielded naturally. Namely, the Tomkinson and Lagrange 
ones.The Tomkinson theorem states that if (𝑮) is defined as 
the smallest N such that G is the union of N proper subgroups, 
then there is no finite G satisfying (𝐺) = 7. Since this theorem 
is directly implied by (8) for 𝐼𝑚(𝑧)  0 in a contrast to the 

number M = 7 of occurrences of 𝑆(𝑘𝑗). These seven disjoint 

stars are unified by means of the solution U of the equation (4), 
so this equation is directly compatible with the Tomkinson 
theorem by contradiction. 

We have described the main blocks of our “know-how” of an 
approach to the FEM-simulations of processes, namely of the 
Mannesmann process-cavity formations here, as a part of the 
complex systems. Let´s note that data concerning technological 
parameters of the MMP setting principally, besides its 
calibration, do not play substantial role from the point of view of 
the structure and symmetries emerged within the whole 
algorithm. 

The relationship between FEM-simulation and symmetry being 
meaningfully bounded by the group theory is surprising and 
quite novel. Applying the given algorithm at the considered FEM-
simulation process, we save hundreds of computation hours.  
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