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Improving Machine-to-Machine (M2M) communication is 
essential for the development of Smart Factory as data can be 
exchanged and processed more efficiently. Herein this study, we 
employ the Deep Learning (DL) concepts aimed at improving 
end-to-end performance (E2E) M2M communication systems. 
Training the physical layers requires the explicit channel 
information to be fully known, which can be solved with 
generative adversarial network (GAN). Nonetheless, due to its 
deep neural network (DNN) structure, the GAN scheme is 
subjected to gradient vanishing and over-fitting, two major 
obstacles that can hinder the training process and limit the 
performance of the model. As a result, the system is significantly 
downgraded. To address these issues, we study a method known 
as Residual-Aided generative adversarial network (RA-GAN) 
learning scheme, in which the two problems are dealt with 
respectively by introducing a better propagation mechanism and 
a regularizer to the loss function. Herein this paper, the system 
model is described and the two problems are derived 
analytically. We also analyze the optimal learning scheme 
(where the channel-agnostic) and a Rayleigh-based learning 
scheme for comparison study. Through analyzing the block error 
rate (BLER), we can demonstrate that the RA-GAN approach 
achieves performance comparable to the optimal scheme, and 
significantly outperforms the conventional GAN method. 

KEYWORDS 
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1 INTRODUCTION 

Smart Factory is  concept where state-of-the-art communication 
technologies and conventional machinery are fused together. 
This is realized on the basis of Machine-to-Machine (M2M) 
communication, where the machines in a factory are 
interconnected to exchange data, monitor themselves to 
accomplish their tasks without human intervention. One 
important aspect of M2M is the need to continuously improve 
the communication quality and efficiency. This has been 
facilitated by the significant throughput improvement with 5G; 
the ability to collect, analyze, and learn from the data as the 

system operates with Machine Learning (ML) or Deep Learning 
(DL), etc.  [Sun 2018]. The ML or DL approach is well known for 
its ability to execute the feature engineering process itself. Thus, 
it has been widely applied in wireless communication, natural 
language processing, and computer vision (both spoken and 
written form) [Zhu 2017], [Wu 2017] to perform tasks that are 
impossible for a robust algorithm. Owing to its data-driven 
structure, computational complexity can be effectively avoided, 
yielding in some cases even more accurate results than what is 
generated by humans [Pfeifer 1989], [He 2015].  
 
Deep Neural Network (DNN) is the most popular structure that 
is deployed in applications related to DL. Structure-wise, a DNN 
is made of multiple layers that are stacked together. Each layer 
contains neurons, each of which is interconnected to all the 
neurons in the layers right before and after it (fully connected 
structure). In a deep neural network, there exist three types of 
layers: the input layer, which has neurons equal to the number 
of input features; one or more interconnected hidden layers, 
which perform the computations; and the output layer, which 
has neurons equal to the number of categories or other outputs 
that the DNN is expected to provide. 
 
To aid in understanding, let's examine a DNN that follows the 
typical architecture of a Neural Network (NN), which is 
composed of an input layer, multiple hidden layers, and an 
output layer. A connection between two neurons is called a link 
assigned with a weight value that forms the basis for the learning 
of the DNN. The weight initialization must be proceeded with 
caution because the gradient errors are exaggerated as they 
transfer through the layers, which can cause the gradients to 
vanish or explode in values. Among the most used initialization 
methods, there are random approaches (weight matrices are 
randomly generated using a uniform or the Gaussian distributed 
function), or the Xavier initialization method (weights are 
randomly generated and scaled by a scaling function) [Glorot 
2010]. The DNN is run with back propagation (BP) algorithm 
[Rumelhart 1986]. When the output is obtained in the output 
layer, it is scored and the loss value is calculated. The value as 
well as the type of loss function are chosen and fine-tuned with 
regard to the application and experience of the designers. In the 
next step, backpropagation is performed. During this step, the 
gradients are obtained by taking the derivative of the loss 
function with respect to the weights and biases. This process is 
conducted in reverse, starting from the output layer and moving 
through the hidden layers to the input layer. Once this is 
finished, the weights and biases of the model are modified. This 
cycle is repeated until the desired loss function is minimized. 
 
Although we can apply DL to optimize the physical layers of the 
communication network, the improvement is not meaningful 
[O’Shea 2017]. Indeed, optimization of end-to-end (E2E) 
communication as a complete system is more promising. For 
example, DL can be used to deal with cases in which the channel 
models are unknown or the mobility conditions are extreme. 
This is possible because the E2E learning communication 
networks, we deploy the transmitter and receiver as DNNs. 
Unlike the complex conventional algorithm [Yang 2015], the DL-
facilitated E2E learning system can solve the modulation and 
other issues related to signal processing using simple 
mathematic operations between DNN layers [Dai 2020]. In 
addition, we can utilize DL to design transmit signals facilitating 
straightforward algorithms to detect symbols for channel and 
system models. To accomplish this task, we must be able to 
obtain the gradient of the instantaneous channel transfer 
function (the channel model) [Ye 2018], whose identification is 
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hindered in most cases in practice. More often than not, a 
channel consists of a transceiver, which is non-differentiable, 
thus, preventing the gradient-based algorithm to execute its 
task. To address the problems with unknown channels in E2E 
learning, various ML techniques have been investigated in 
[Dorne 2018], [Raj 2018], [Aoudia 2019], [Ye 2018], [Aoudia 
2018], [Bhattacharya 2021],[Ye 2020], [Dorner 2020] to reduce 
the burden on the hardware requirements to obtain the full 
channel information. Specifically, the authors in [Dorne 2018] 
proposed a training model with two phases. During the first 
phase, to mimic the channel condition in practice, a stochastic 
channel model was utilized for system training. The second step 
of the process involves using a supervised learning approach to 
adjust the receiver and compensate for any discrepancies 
between the stochastic and actual channels. It is noteworthy 
that during the second phase, the transmitter cannot be 
adjusted, which could downgrade the system performance.  
 
Having acknowledged the pros and cons of the two-phase E2E 
learning scheme, several articles have attempted to refine it by 
alternative training the transmitter and receiver for better 
system performance. In general, these improved schemes can be 
classified into two types in which the receiver is aided or the 
channel is imitated. In the receiver-aided scheme, feedback from 
the receiver will be sent to the transmitter to assist the training 
process [Raj 2018], [Aoudia 2019]. Regarding the channel 
imitation scheme, the real received signal is imitated, that is, 
approximately generated to be closest to the real signal using a 
generative adversarial network (GAN) as in [Ye 2018]. A typical 
GAN is constructed of one generator and one discriminator, both 
of which are under the form of multi-layer DNNs. The system 
works so that the generator will base on how the real received 
signal is distributed to generate corresponding synthetic 
received signal to train the source. At the same time, the 
generator will be trained by the discriminator to match the real 
signal with the synthetic signal it produces. This process enables 
us to tackle the challenge of the unknown channel, making it 
possible to calculate the source (transmitter) gradient with ease. 
Moreover, studies have shown that GAN can be utilized in the 
case of arbitrary channels and it can the transceiver's hardware 
could be simplified [Ye 2018], [Aoudia 2018], [Ye 2020], [Dorner 
2020].  
 
Nevertheless, GAN training in most cases is unstable owing to 
the issues with mode collapse, network convergence, gradient 
vanishing, and overfitting [Creswell 2018], [Arjovsky 2017]. 
Moreover, GAN does not perform well when it is tasked with 
capturing a particular distribution [Wu 2017]. Thus, the authors 
in [Gulrajani 2017] proposed two GAN variants namely the 
Wasserstein GAN with gradient penalty (WGAN-GP) to reinforce 
the training and conditional GAN (C-GAN) to capture better the 
channel distribution. However, a major difficulty with this 
approach is with the iteration numbers since the generated error 
in most cases is small, i.e., the optimal number of iterations 
remains unknown. This problem has been countered by 
implementing regularization strategies such as early stopping 
[Srivastava 2014] and dropout [Prechelt 1998].  
 
Indeed, GAN has proven itself to be beneficial for wireless 
networks and has been utilized for many interesting applications 
in recent years [Bin 2021], [Hu 2021], [Balevi 2021], [Shi 2021], 
[Leng 2022]. Specifically, a novel GAN-based model namely GAN-
CDG was proposed to gather compressive data, which can 
achieve a compression ratio of up to 16 while ensuring highly 
accurate recovery, more than 30dB [Jiang 2011]. In wireless 
networks that employ a training approach, GAN helps to boost 

the channel estimation without the need to transmit lengthy 
training sequences [Hu 2021] and can even outperform 
conventional estimators that are used for digital receivers 
[Balevi 2021]. In the same paper, a lookup-table-based strategy 
was investigated so as to mitigate the overfitting problem when 
training the GAN model. From another perspective, authors in 
[Shi 2021] used GAN to simulate proofing attacks on single-input 
and single-output (SISO) as well as multiple-input and multiple-
output (MIMO), proving that this approach is a potential threat 
to the modern wireless networks. Finally, the paper [Leng 2022] 
combines the GAN and 5G to realize cell load estimation using 
the in-air information obtained from the terminals. This 
combination significantly improves network throughput, load 
estimation accuracy, and reduces network delay.  
 
However, it is worth mentioning that GAN system is subjected to 
its chronic problems namely the gradient vanishing and 
overfitting [Jiang 2011], owing to the DNN-structured generator 
and discriminator. Moreover, due to the fact that the channel 
model in the DL application is usually unknown, conventional BP 
algorithm cannot calculate the gradients.  In an attempt to solve 
these problems, we investigate in this we conduct a detailed 
investigation of a scheme known as residual aided GAN (RA-
GAN), as follows: 

• The proposed scheme employs a residual neural network 
(Resnet) to reconstruct the generator. Specifically, a link 
between the generator's input and output is designed, 
which results in an extra gradient to diminish the problem 
with gradient vanishing. 

• The addition of a regularizer to the loss function was 
implemented to limit the GAN scheme's representation 
capacity. By this, we are able to overcome the overfitting 
problem. 

• Full knowledge of complex channel model is irrelevant 
because the E2E network can perform well in terms of 
BLER in Additive White Gaussian Noise (AWGN) and 
Rayleigh fading channel solely by using DL to replicate the 
real received signals. 

• From the numerical simulation, we can demonstrate that 
the RA-GAN produces a better synthetic received signal 
than the GAN scheme. The improvement is shown in the 
block error rate (BLER) calculated for the theoretical model 
and for a chosen dataset. 

2 SYSTEM MODEL 

FIGURE 1. The diagram of E2E learning Machine-to-Machine 
communication system 

Fig. 1 illustrates the diagram of the E2E learning M2M 
communication network considered in this study. Technique-
wise, each of the modules has reached its mature state. 
However, as they are designed for different objectives, finding 
the optimal setup for a system where those modules are 
assembled is almost an impossible task with traditional 
optimization approaches. This is why researchers have focused 
on implementing DNN in modern communication systems to 
produce the so-called E2E learning M2M communication 
network. However, a drawback of this E2E scheme is that we 
must be able to monitor the channel transfer function or 
instantaneous channel state information (CSI). This is because 
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the DNN backpropagation process is blocked when the system 
does not know the channel, causing failures in E2E learning. 
Indeed, the channel transfer function can be arbitrarily chosen, 
but any choice would potentially introduce bias into the learning 
system. On the other hand, CSI is not always available and easy 
to record because of the noises from the environment [Glorot 
2010]. As a solution to this, we can use conditional GAN to learn 
the channel output distribution [Yang 2015].  Conditional GAN is 
trained iteratively and we can minimize the E2E loss in a 
supervised manner. For conventional wireless communication, 
the system consists of several modules e.g., channel, channel 
encoder, channel decoder, modulator, demodulator, source 
encoder, source decoder, etc. However, for an E2E learning 
communication system, it is sufficient to include three main 
components, i.e., transmitter T and receiver R in both ends, and 
the intermediate channel. T and R are structured as DNNs with 
respectively two weights ΘT and ΘR that are trainable [O’Shea 
2017].  The applied DL architecture can be observed in Fig. 2. 
 
During operation, 𝑻 receives an input 𝑠 and maps it to a one-hot 
vector 1𝑘. The one-hot vector is with K-dimension and its 
components are taken from set K. Notably, the only k-th 
element is assigned with value 1, while the remainders K-
dimension, K -1 elements are 0. T  then plays a role of a function 
𝑓Θ𝑇

: K ↦ 𝐶𝑛 to map the 1k to the signal s ∈  Cn before sending 

it via n channels. Meanwhile, R would act as a function fΘR
: Cn ↦

 { 𝛅 ∈  R+
𝐊

∣∣ ∑ 𝛅j
K
j=1 = 1 } to represent the signal y ∈  Cn, it 

received to a probability distribution δ ∈  R+
K .  

 
Following that, we receive a final choice �̂� with respect to one-

hot vector 𝟏�̂�, where �̂� is maximum in the probability vector 𝜹. 

Generally, T’s hardware would constrain the transmitted signal 
𝒔 in terms of power with |𝒔|2 = 1. From the received signal in 
the AWGN channel, we can calculate the signal received at each 
time slot as y = τ𝒔 + 𝜈, 𝑤here the channel coefficients 
considered in the block fading channels are assumed to vary 
freely from a time slot to the other. Given that there is no 
generality loss, we can examine the slow fading channel, marked 
as conditional probability 𝜹𝜏(𝒚|𝒔), where we have the channel 
remains the same throughout the n time slots, 𝜏 = 𝜏𝒋, 𝑗 ∈

1,2, . . , 𝑛.  The Gaussian noise is denoted as 𝜈 ∈ 𝐶𝑛. 

 

FIGURE 2. DL applied on the architecture of E2E learning 

communication machine-to-machine system. 

Remarkably, henceforward, we assume that an ideal 
communication system is with flawless timing, carrier-phase and 
frequency synchronization. R’s task is to reproduce the 
estimated message �̂� based on the original 𝒔 message, each of 
which is a bit sequence of length 𝑑 = 𝑙𝑜𝑔2(𝐾). The 
communication rate is therefore calculated as d/n (bits/channel 
use). According to [O’Shea 2017], [Ye 2018], and [Jiang 2011], 
BLER is sufficient for the evaluation of the proposed DNN-based 
structure. When the system transmits different messages, the 
block error rate (BLER) is calculated as 

𝑃𝑒 =
1

𝐾
∑ 𝑃𝑟( 𝒔 ̂ ≠ 𝒔 ∣ 𝒔 )𝒔 . (1) 

 
To obtain the optimal weights 𝚯𝐓∗  and 𝚯𝐑∗, for 𝑻 and 𝑹, we have 
to perform the training on the DNN T and DNN R to iteratively 
update the weights Θ𝐓 and ΘR. It is assumed that R knows the 
transmitted information. This information is generatable with 
the help of random seed that is in  𝑻 and 𝑹. Accordingly, we use 
a loss function to calculate the error between the T’s one-hot 
vector 𝟏𝐤 and the probability distribution that is 𝜹 recovered 
[Aoudia 2019]. The channel has the training set of Γ =

{𝜏(1), 𝜏(2), . . , 𝜏(𝑊) with 𝑊 being the size of the batch. As a result, 
the loss function can be written as 

ℒ(ΘT, ΘR, Γ) ≈
1

W
∑ l(𝛅(j), 1k(j))W

j=1 , (2) 

where we have the received signal 𝒚(𝒋), the training sample 𝟏𝐤(𝐣) , 

and the probability vector 𝜹(𝒋) at order j-th. According to 
[Goodfellow 2016], the distance from 𝟏𝐤 𝑡𝑜 𝜹 can be calculated 
with the help of cross-entropy (CE) as 𝑙(𝜹, 𝟏𝐤) =

− ∑ (𝟏𝐤)𝑗 ln(𝜹𝒋)𝑀
𝑗=1 + (1 − (𝟏𝐤)𝑗) ln(1 − 𝜹𝒋).   

 
As aforementioned in the Introduction, in the BP algorithm, it is 
necessary to calculate the gradient of the loss function (2) to 
update the weights ΘT and  ΘR. However, it is impossible to 

calculate the gradient ∇ΘT
ℒ̃ with respect to ΘT because the 

channel is unknown [Dorne 2018]. In other words, the channel-
agnostic τ has blocked the BP process with  

∇𝚯𝐓
ℒ̃(ΘT) =

1

𝑊
∑ 𝜏(𝑗) 𝜕 𝑙

𝜕𝒇𝜣𝑹

𝜕𝒇𝜣𝑹

𝜕𝐲(𝐣) 𝐈𝐧∇𝚯𝐓𝐟𝚯𝐓
(𝟏𝐤(𝐣))𝑊

𝑗=1 . (3) 

 
Nonetheless, it is noteworthy that only Θ𝑅 in (2) can be updated 
with the below gradient 

∇Θ𝑅
ℒ̃(Θ𝑅) =

1

𝑊
∑ ∇Θ𝑅

𝑙(𝑓Θ𝑅
(𝑦(𝑗)), 1𝑘(𝑗))𝑊

𝑗=1 , (4) 

where we have the loss function approximately derived from (3) 

as ℒ̃. 
 
To update ΘT, a surrogate gradient must be employed with the 
help of GAN learning scheme [Aoudia 2019]. We present the 
generator 𝑮 and discriminator 𝑫, that are executed as DNNs in 
the GAN scheme. The two possess weights Θ𝐺  and Θ𝐷 that can 
be updated through training. Based on the Gaussian distribution, 
𝑮: 𝑓θ𝐺

: 𝐶2𝑛 ↦ 𝐶𝑛 would generate synthetic received signal �̃� 

after considering the source transfer 𝑠  ∈ 𝐶𝑛 with random noise 
χ  ∈  𝐶𝑛. Here, the random noise χ is built-in for simplification. 
The task of χ is to make 𝑮 produce different output for any given 
input 𝑠. As a result, G could generate a distribution that 
resembles the true received signal distribution. Meanwhile, 
𝑫: 𝑓θ𝐷

: 𝐶𝑛 ↦ (0,1) would be deployed to train 𝑮, enabling 𝑮 to 

imitate the real received signal. 𝑫 is used to differentiate the real 
from the synthetic received signals.  
 
On the one hand, when the real received signal distribution 
δτ( 𝑦 ∣∣ 𝑠 ) → 1 passes through 𝑫.  On the other hand, for the 
synthetic received signal distribution 𝑝τ̃( �̃� ∣∣ 𝑠 ) → 0. For the 
imitation of real received signal, the output from 𝑮,  �̃� has to 
make the output in 𝑫, 𝑓Θ𝐷

(�̃�) → 1. As previously discussed on 

how the GAN scheme works, we can update the weights of 
𝑫,   θ𝐷 with regard to the actual received signal's loss function 𝑦 
as 

ℒ̃(Θ𝐷) =
1

𝑊
∑ 𝑙(𝒇𝚯𝑫

(𝒚(𝒋)), 1) 𝑙 {𝒇𝚯𝑫
+ ((�̃�(𝑗)), 0)} .𝑊

𝑗=1  (5) 
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Accordingly, the weights of  𝑮,  Θ𝐺  will be used to update the loss 
function of the synthetic received signal �̃� as 

ℒ̃(θ𝐺) =
1

𝑊
∑ 𝑙 (𝑓θ𝐷

(𝑓θ𝐺
(𝑠(𝑗),  χ (𝑗))) , 1)𝑊

𝑖=1 . (6) 

 

Subsequently, we can calculate the gradients using ∇θ𝐺
ℒ̃(θ𝐺) 

and ∇θ𝐷
ℒ̃(θ𝐷). The loss function (5) and (6) reduced with the use 

of the Adam gradient descent technique [Kingma 2015]. As it is 
able to train 𝑮 so that it can generate the synthetic received 
signal based on the real received signal, we can employ gradient 
surrogate, which is computed to be similar to the gradient (4) as 

∇𝚯𝑻
ℒ̃(𝚯𝑻) =

1

𝑊
∑

𝜕𝑙

𝜕𝜹(𝒋)

𝜕𝜹(𝒋)

𝜕 �̃�(𝑗)

𝜕 �̃�(𝑗)

𝜕𝒔 (𝑗) 𝛻𝜣𝑻𝒇𝜣𝑻
(𝟏𝒌(𝒋))𝑊

𝑗=1 . (7) 

 
It should be noted that training of 𝑻,  𝑹,  𝑮,  and 𝑫 have different 
objectives, thus, each of the module is trained separately. In 
other words, as one module is trained, the weights of other 
modules are kept constant. Nevertheless, it has been 
acknowledged that the unstable training would vastly 
downgrade the GAN performance [Aoudia 2018]. Particularly, 
when the data is passed through multiple layers of the 
generator, the gradient will be vanished. Additionally, because a 
large number of weights are involved in the iterative training 
process, an overfitting issue would occur. In view of this, we 
investigate the RA-GAN learning scheme to address the two 
problems with detail discussed below. 

3 RA-GAN SCHEME IN E2E LEARNING COMMUNICATION 
SYSTEM 

Because there exists the channel-agnostic, training the 
transmitter is a difficult mission. We establish a surrogate 
gradient during the GAN scheme's training procedure in (7) to 
update the weights of the transmitter. Nevertheless, There is a 
substantial disparity between the synthetic signal distribution 
and the real signal distribution δτ̃( �̃� ∣∣ 𝑠 ) and the real received 
one δτ( 𝑦 ∣∣ 𝑠 ). Due to the nature of the DNNs we use in G, there 
are two explanations for this: gradient vanishing and over-fitting 
problems. During operation, T receives an input 𝑠 and maps it to 
a one-hot vector 1𝑘. The one-hot vector is with K-dimension and 
its components are taken from set K. Notably, the only k-th 
element is assigned with value 1, while the remainders K-
dimension, K-1 elements are 0. T then plays a role of a function 
𝑓Θ𝑇

: K ↦ 𝐶𝑛 to map the 1k to the signal s ∈  Cn before sending 

it via n channels. Meanwhile, R would act as a function fΘR
: Cn ↦

 { δ ∈  R+
𝐊

∣∣ ∑ δj
𝐊
j=1 = 1 } to represent the signal y ∈  Cn it 

received to a probability distribution δ ∈  R+
K . This is the 

inspiration for us to investigate the so-called RA-GAN scheme. 

3.1 Gradient vanishing mitigation with residual learning 

In BP algorithm, a variable is input and multiplied by the partial 
derivatives while passing through the layers. As the number of 
layers increases and the partial derivative value approaches 0, 
the resulted gradient will vanish. This is so-called gradient 
vanishing and is an obstacle to the DNN generator training. To 
overcome this, in the RA-GAN scheme, a connection for the in-
out layers of the generator has been constructed based on the 
residual learning [He 2016] so that the input does not have to 
pass through the intermediate layers.  
 
The way we train the RA-GAN scheme is equivalent to the way 
we train the conventional GAN [Aoudia 2019]. Particularly, 𝑹 is 
under supervised learning problem to acquire the loss function. 
In the context of reinforcement learning, 𝑻 learns how to 
replicate the environment with the loss function from R and 

collect positive feedbacks as rewards. The results of simulation 
have shown that this approach performs comparatively well in 
comparison to the E2E supervised learning DNN network where 
the channel model is known. 
 
In particular, we use ỹ and 𝒚 for training 𝑫 and �̃� to train 𝑮 of 
the proposed RA-GAN. Followingly, 𝑹  is trained only with 
𝒚, while T is trained with �̃�. The training of T and R is monitored 

respectively by the loss functions 𝑙(𝒇Θ𝑹
(�̃�), 𝟏𝐤) and  

𝑙(𝒇𝜣𝑹
(𝒚), 𝟏𝐤). With regard to the residual generator, we can 

rewrite the residual generating function 𝑓Θ
𝐺𝑅

: 𝐶𝑛 ↦ 𝐶𝑛 

as 𝑓Θ
𝐺𝑅

(𝑠) = ỹ − s = 𝑓Θ
𝐺𝑅

(𝑠) − 𝑠, where we have the residual 

generator 𝑓Θ
𝐺𝑅

(𝑠) set up with condition 𝑠 to identify the 

distinction between the produced signal �̃� and transmitted 
signal 𝑠. 
 
Following, the gradient that we use to update weights of T can 
be computed from R of the T-R link and the gradient of this link 
is calculated as 

∇𝚯𝑻
ℒ̃(𝚯𝑻) =

1

𝑊
∑

𝜕𝑙

𝜕𝒇𝜣𝑹

𝜕𝒇𝜣𝑹

𝜕𝒇𝜣𝑮

𝜕𝒇𝜣
𝑮𝑹

𝜕𝒇𝜣𝑻

∇𝚯𝑻𝒇𝚯𝑻
(𝟏𝒌(𝒋))

𝑊

𝑗=1

+
1

𝑊
∑

𝜕𝑙

𝜕𝒇𝜣𝑹

𝜕𝒇𝜣𝑹

𝜕𝒇𝜣𝑮

∇𝚯𝑻𝒇𝚯𝑻
(𝟏𝒌(𝒋))

𝑊

𝑗=1

 

=
1

𝑊
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𝜕𝑙

𝜕𝜹(𝒋)

𝜕𝜹(𝒋)

𝜕 �̃�(𝑗)

𝜕𝒇𝜣
𝑮𝑹

(𝑗)

𝜕𝒔(𝒋)
∇𝚯𝑻𝒇𝚯𝑻

(𝟏𝒌(𝒋))

𝑊

𝑗=1

 

+
1

𝑊
∑

𝜕𝑙

𝜕𝜹(𝒋)

𝜕𝜹(𝒋)

𝜕 �̃�(𝑗) ∇𝚯𝑻𝒇𝚯𝑻
(𝟏𝒌(𝒋))𝑊

𝑗=1 .  (8) 

 
Remarkably, (8) is the gradient we use to update the weights of 
T through training. To optimal gradient is obtained when the 

derivative 
∂𝑓Θ

𝐺𝑅

∂𝑓Θ𝑇

 closed to value τ(𝑗) − 1. 

3.2 Overfitting mitigation with a regularizer 

When training with GANs, overfitting can occur due to the high 
number of trainable DNN weights in the generator and 
discriminator. To prevent this, a regularizer is added to improve 
the generation of synthetic signals to better match real signals. 
As can be observed in Fig. 3, the loss function is reconstructed 
after each iteration. Minimizing the newly created loss function 
is the algorithm's goal in (6), thus, making the weights 𝚯𝑖 , i ∈
{𝑹, 𝑻, 𝑮, 𝑫} close to 0. This is because a large value of weights 
will signify the small noise from the input data, which severely 
downgrades the output while small weights do not. Therefore, 
working with small weights is simpler and the problem of 
overfitting can be avoided more effectively [Goodfellow 2016]. 
As a result of this employment, we have a residual G that is free 
of overfitting problems and performs well with different channel 
data. 
 
Analytically, when a weight penalty item Ω(𝚯) is added to the 
loss function so that we can constrain the representation ability, 
we obtain 

�̂�(𝜣𝒊) = ℒ̃(𝜣𝒊) + 𝜑𝛺(𝜣𝒊), 𝑖 ∈ {𝑹, 𝑻, 𝑮, 𝑫}, (9) 
where we have the modified and the original loss functions 

denoted respectively as �̂�(𝜣𝒊) and ℒ̃(𝚯𝑖). The hyper-parameter 

𝜑 is deployed to balance the ℒ̃(𝚯𝑖) and the penalty item. It 
should be noted that D is simplified using the regularization 
method. Besides, D is set with relatively low learning rate so that 
it will converge slowly. This setting is necessary to avoid the 
gradient vanishing by maintaining a matching convergence rate 
between G and D. 
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The E2E training process based on RA-GAN can be observed 
below in Fig. 3. The inputs are weights 𝚯𝑖 , i ∈ {𝑹, 𝑻, 𝑮, 𝑫}, 
number of data used for training 𝑁train and iteration number 
Epoch. The outputs are the updated weights 𝚯𝑻 and 𝚯𝑹. 

 

 

Figure 3. Algorithm RA-GAN based E2E training for M2M system. 

4 RESULT AND DISCUSSION 

This section presents the performance analysis of the RA-GAN 
scheme by means of BLER. Specifically, two performance 
comparison studies between the RA-GAN scheme and the RL-
GAN scheme in the AWGN and the Rayleigh fading channel 
[Aoudia 2019]. The results in general show that the proposed 
model performs relatively well in comparison with the case 
when the channel is known over the AWGN and Rayleigh fading 
channel. The extra gradients are generated with the RA-GAN 
counteract the gradient vanishing problem and the regularizer 
added to the loss function has helped the system to overcome 
the overfitting.  
 
As a reference for the comparison study, an optimal scheme with 
known channel was employed. In the optimal case, it was 
assumed that the transmitter knew the real channel, so that the 

gradient ∇Θ𝑇
ℒ̃ can be used for its training (8). Additionally, we 

compared the generation ability of RA-GAN with the 
Reinforcement learning (RL) scheme. The system was trained 
with parameters as : 𝐸𝑏/N0 = 10(𝑑𝐵), 𝐾 = 16, 𝑊 =
320, 𝐸𝑝𝑜𝑐ℎ = 200, 𝑁_𝑡𝑟𝑎𝑖𝑛 = 106, 𝑛 = 7 𝑎𝑛𝑑 φ = 3 in the 
dataset used for validation consisted of 106 one-hot vectors 
[Jiang 2011], and learning rate for training both the  𝑻 and 𝑹 is 
0.001. In which 𝑹 and 𝑫 under AWGN and Rayleigh fading 
channel model are trained with different learning rate, i.e., 
respectively, 0.0005 and 0.0001.  
 
The AWGN channel's and Rayleigh fading channel's output is 
respectively described by y =s + 𝜈, and  y =τ s + 𝜈, where we 
have the transmitted signal s, Gaussian noise ν, and coefficient 
τ ∼ 𝒞𝒩(0,1). The BLER results for the AWGN (see Fig. 4) and 
Rayleigh (see Fig. 5) are with different scales because if the same 
scale is employed, the gains on one fading channel will be 
relatively insignificant in comparison with the other. It should be 
noted that we use the Nash equilibrium as the stopping criteria 
for the training of GAN. In particular, when 𝑫 outputs 
approximate value of 0.5, the training is stopped because the 
system cannot recognize anymore the synthetic signal from the 
real received signal [Sustika 2020]. 
 
Fig. 5 presents the BLER performance of the three schemes as 
we vary the 𝐸𝑏/𝑁0. In general, the RA-GAN scheme performs 
better than the RL scheme. In particular, for 𝐸𝑏/𝑁0 below 
12(dB), we can observe that the three curves are almost 

identical. However, as we increase the 𝐸𝑏/𝑁0, the gaps between 
them grow as well larger. This is because the representation 
ability of the scheme has been restrained by the regularizer. At 
BLER = 0.1, the performance The performance difference 
between the RA-GAN scheme and the RL scheme is 3(dB).  

 

Figure 4. Performance comparison with regard to BLER in AWGN 
channel. 

  

Figure 5. Performance comparison with regard to BLER in Rayleigh 
fading. 

 
Alternatively, by reducing the hyperparameter φ in (9), the ideal 
BLER system performance is achievable, albeit at a reduced BLER 
performance when the 𝐸𝑏/𝑁0 value is low. It's important to 
note that during the training process, there may be some 
negative outcomes due to training randomness, but these can 
be recovered in the next epoch. As a result, it can be concluded 
that the RA-GAN-based training method is capable of producing 
signals that more closely resemble the actual received signals. In 
other words, the trained residual 𝑮 is superior to the 
conventional G when it comes to signal generation performance. 

5 CONCLUSIONS 

In conclusion, an E2E learning scheme for channel-agnostic 
communication system so-called RA-GAN has been proposed 
and analyzed in this paper. The RA-GAN scheme was improved 
from the GAN scheme by implementing the gradient vanishing 
and over-fitting issues using the residual learning approach. 
During the paper, the formulation of the system and the two 
problems were derived. To assess the RA-GAN scheme, we 
compared its performance in terms of the BLER with the optimal 
scheme and the RL scheme. Results from the simulation 
indicated that the RA-GAN outperformed the RL and was almost 

Iteratively adjust the network weights using a new loss function 
�̂� 𝜽𝒊 in place of the original loss function ℒ̃ 𝜽𝒊 .

Using the network weight, derive the artificial signal ( �̃� ) and the 
authentic received signal (𝒚).

Set the initial weights of the transmitter 𝜽𝑻, receiver 𝜽𝑹, residual 
generators 𝜽𝑮, and discriminators 𝜽𝑫 for the network
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optimal. Besides, the derived formulations can be used for 
further comparison studies with other DL methods. This study 
has focused on the two most popular fading channel models, the 
fading channel used by Rayleigh and the AWGN. In the 
framework of Smart Factory, this is very essential since the 
technology helps to scope with emerging higher data payloads, 
and reduce the burden of sophisticated hardware and 
interactions between machines in modern machinery. This work 
can be expanded to fully automated machining workshop or 3D 
printing plants, where the M2M system requires effective 
communication to perform sophisticated machine 
programming, controlling loading and unloading parts, 
monitoring manufacturing parameters, etc.  
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