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The multi-motor drives, the typical examples of which are 

continuous lines (CL) for tension processing of various materials 

are complex and coupled MIMO higher-order nonlinear systems, 

which parameters are difficult to identify. The article focuses on 

a method for the design of a non-parametric black-box fuzzy 

model of a continuous production line with emphasis on minimal 

knowledge on the modelled system. The proposed fuzzy model 

structure is based on the state space representation of the 

dynamic system in discrete form, which only requires a suitable 

set of information on its input/output relations. The properties 

of the proposed CL fuzzy model were verified by experimental 

measurements on a CL laboratory model. The obtained results 

have confirmed the rightness and effectiveness of the fuzzy 

model design method that can be applied not only in the field of 

industry technologies with CL but also in modeling and control 

of nonlinear dynamic systems.  
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1 INTRODUCTION  

Typical examples of processes in technological practice the 

analytical description of which is rather complicated are 

combustion processes, temperature and pressure control of 

steam injection into power plant boilers, pressure control in 

injection moulding machine chambers, and also continuous 

technological lines for continuous processing of materials (sheet 

metal, foil, paper...). 

However, information on the performance of these processes 

can often be obtained experimentally (by suitably chosen 

measurements or by monitoring their responses to the control 

activities of the operator). In these situations, fuzzy systems can 

always be considered as an alternative for system modeling.  

The main advantage of a fuzzy logic system (FLS) is the capability 

of expressing nonlinear input/output relationships by a set of 

qualitative if-then rules. FLSs have the capability to handle both 

numerical data and linguistic knowledge, which is extremely 

difficult to quantify by means of traditional mathematics 

[Babuska 1997, Pedrycz 1984]. Therefore, they offer alternative 

solutions when the system cannot be expressed in terms of 

equations, i.e., when the mathematical model does not exist or 

is ill-defined. So far, most attention has been devoted to single-

input, single-output (SISO) or multi-input, single-output (MISO) 

systems [Khalifa 2022, Salgado 2016]. Relatively little attention 

has been devoted to the identification of MIMO fuzzy models 

from input-output data [Babuska 1998, Salgado 2017, Kuram 

2013]. It has been proved that fuzzy modeling can be recognized 

as one of the nonlinear black-box modeling techniques [Juditsky 

1995, Sjoberg 1995]. The problem in the development of black-

box fuzzy models of these systems lies in obtaining their 

qualitative properties on the basis of measured experimental 

data, having no prior knowledge on the parameters and 

structure of these systems. That often results in an inconsistent 

database, in problems with covering the entire possible space of 

the fuzzy system inputs, etc. [Leso 2018, Liu 2016, Johansen 

1994]. The fuzzy model obtained in this way may be very 

inaccurate and even unusable in industry applications.  

When a suitable method of data collection is used, or a suitable 

selection of qualitative data from the database is made, it is 

possible to construct a corresponding black-box fuzzy model of 

the unknown nonlinear dynamic system as it is shown in this 

paper. The functional dependencies between inputs and outputs 

can then be used for developing a suitable non-parametric black-

box fuzzy model of the dynamic system described in state space 

discrete form. Proposed fuzzy model that can be applied in the 

design of CL control and also in the identification of CL 

parameters and non-measurable additive disturbances 

influencing the system control. The realized experimental 

measurements on a continuous line physical laboratory model 

confirmed the effectiveness and the quality of the proposed CL 

fuzzy model and also its applicability to MIMO nonlinear 

dynamic systems with as little previous knowledge as possible. 

2 MODELLED SYSTEM DESCRIPTION 

A typical representative of multi-motor drive is the continuous 

line, where the individual working machines are coupled by each 

other through the material. They are, e.g. lines for processing 

continuous flows of material (e.g. sheet metal strips, tubes, 

processing lines in paper mills and printing works, etc.) by 

material traction in the field of elastic or plastic deformation, 

which influences the material´s mechanical properties.  

These lines usually consist of three autonomous sections 

[Jefteniü 2006]: 

 The entry section consisting of unwinding machine is 

determined for accumulating a stock of material for the 

technological section and for reduction of traction in the 

strip. 

 The technological section, where are carried out 

technological operations according to the technological 

formula for particular material. 

 The exit section consisting of winding machine, where coiling 

of the strip of material takes place. 

In industrial practice there exist many various typical multi-

motor drive configurations [Jefteniü 2006] where the tension in 

the web arises due to different circumferential speeds of the 

work rolls, partially due to the difference of their positions. For 

simplicity only the coupling of two machines (central part of 

continuous line) is investigated but this idea can be extended to 

an indefinite number of machines bound by processed material. 

Figure 1 shows the structure of the central section of the 

continuous line. The structure includes DC motors powered 

through static transistor converters TC. The working machines of 

the line are driven by the motors through gearbox j; v1, v2 are 

machine rolls circumferential velocities, F12 is the tension in the 

web of material between the two machines. The main line 

disturbances are tensions before and after the central part of the 

considered line which are affecting the first and second drive (F01 

and F23). Kv are circumferential speed sensors, KF is tension 

sensor, r is roll, radius, uv1, uv2 are outputs from speed sensors 

and uF12 is the output of the tension sensor. The controlling 

voltages u1, u2 of converters present the input variables of the 
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system. The tension in the web of material F12 and the web of 

material velocity v2 are the output variables (let us consider 

y1=uF12 and y2=uv2). 

 
Figure 1. Structure diagram of central section of a continuous line. 

The corresponding block diagram is shown in Figure 2. It is a 

simplified model where we assume that the static transistor 

converters (TC) have proportional gain and built-in fast current 

control loops. If the mechanical time constant of the drive is 

much greater than the electrical time constant of the motor, 

neglected can be the dynamics of the current loops. By such 

simplification, the current loop can be replaced with satisfactory 

precision by the transfer function 1/KI where KI is the current 

sensor gain. By such simplification the current references I1* and 

I2*present inputs into CL model.  

 
Figure 2. Block diagram of the central section of the continuous line. 

The elastic coupling is modelled according to Brandenburg 

[Brandenburg 1973], taking into consideration variable time 

mechanical constant of the running elastic strip depending on 

the strip speed which makes the model nonlinear. In Figure 2, l 

is distance between the rollers of the work machines, S – the 

cross-section of the processed material, E represents the Young 

modulus of elasticity, Kt – material damping constant, J – total 

moment of inertia on the motor shaft (let us consider for sake of 

simplicity that both motors and work machines are similar) and 

c– torque constant of the motor. 

The described system with the mechanical coupling of two 

machines presents a 3rd order nonlinear MIMO system with two 

inputs and two outputs (Fig.3). In the block diagram in Fig.2 the 

state variables were chosen as follows: x1= uv1, x2=y1=uF12 and 

x3=.y2=uv2. 

 
Figure 3. The central section of the continuous line as MIMO system. 

For the design and verification of the continuous line fuzzy 

model we used experimental measurements taken from its 

physical model built at the Department of Electrical Drives and 

Mechatronics of the Faculty of Electrical Engineering and 

Informatics, Technical university of Kosice. 

3 PHYSICAL MODEL OF THE CONTINUOUS LINE  

The physical model of the continuous line represents a 

functional model of multiple-motor drive technology coupled by 

a strip of material. The physical model includes a strip unwinder 

and winder and three transfer rolls over which the strip of 

material passes (magnetic tape 0.03 m wide). Between the 

unwinder, the work rolls and the winder the material creates a 

loop in which it is tensioned by a movable tension roll (Fig. 4).  

It is obvious from Fig. 2 that the continuous line roll drives are 

“coupled” together through the strip of material. From the 

physical analysis of the continuous line model [Jefteniü 2006, 

Brandenburg 1973] it follows that the system contains a fast 

(tension) subsystem and a slow (speed) subsystem. The 

parameters of the system change depending on the mechanical 

properties of the material and on the speed of its motion. 

 
Figure 4. Structure of the physical model of continuous line. 

As a result, the strip tension corresponds to the position of the 

tension roll. The model is driven by 5 DC disc motors powered by 

Allen Bradley DC converters 1386 DC Servo Drive System with 

PWM modulation. The control system is based on 

programmable controller PLC S7-400 with technological card 

FM458. CFC language was used for control program 

development. The physical model inputs are the control voltages 

for converters in the range of ± 10V, and the outputs are the 

velocities of the individual drives and the tensions in the sections 

between the work rolls. Incremental sensors (IRC) which 

generate 4000 increments per revolution were used for 

measuring the revolutions of all the motors. Sensing of the 

tensile force is carried out indirectly, by monitoring the position 

of the tension rolls with a potentiometric sensor, where it is 

changed to voltage and is brought directly onto the analogue 

inputs of the control system. 

Speeds and tensions of individual drives from position sensors 

are output variables of the physical model. Elastic material 

properties are simulated by mechanical changing spring, which 

causes the elongation of the web of magnetic tape. 

The physical model of the continuous line is shown in Figure5. 
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Figure 5. The physical model of the continuous line. 

To determine basic properties of CL, experimental identification 

measurements were performed on the physical model of the CL 

for current pulses applied sequentially to each input of the 

model. In Figure 6 the reference signals of 𝐼1
∗ – the first motor 

current and 𝐼2
∗ – the second one are shown. The measurements 

were performed with a sampling time of 1 ms, and the outputs 

are illustrated in Fig.7. 

 

Figure 6. Input signals u1=I1*and u2=I2* for identification measurements 

 
Figure 7. Time responses of the subsystems: the tension 𝑦1 = 𝑢𝐹12 and 

the speed 𝑦1 = 𝑢𝑣2 to the input pulses illustrated in Fig.6. 

From time courses in Fig. 7 it is seen that the system contains a 

fast (tension) subsystem with oscillating response and a slow 

(speed) subsystem. They are coupled and mutually interact. In 

such MIMO system a strong interaction between the transfer 

channels of the tension and of the speed leads to worsening of 

the strip quality, even can lead to destruction of the processed 

strip. 

Defining precise parameters of such nonlinear system 
analytically presents a rather demanding task, and therefore it is 
suitable to use for its description a fuzzy model obtained only on 
basis of its measured input/output data.  
The parameters of the CL physical model are specified in the 

Appendix. 

4 CONTINUOUS LINE CENTRAL SECTION FUZZY MODEL 
DESIGN 

Various possible fuzzy system structures exist, both as regards 

their static fuzzy subsystem (Mamdani, Sugeno ...), or their 

dynamic subsystems. From this point on we shall consider a fuzzy 

model structure based on the state concept of a discrete 

dynamic system, according to which the state of a system in a 

particular step depends on its state in the previous step and on 

the increment in state between these steps, which is a function 

of the preceding inputs and states. This concept can be 

expressed mathematically by the following equations 

𝑥𝑘 = 𝑥𝑘−1 + 𝑑𝑥𝑘  

𝑑𝑥𝑘 = 𝑓(𝑢𝑘−1, 𝑥𝑘−1) (1) 

where u is the model´s input quantities vector, x is the state 

quantities vector, f is the searched for static vector function of 

the modelled system, and k represents the sampling step. 

The static subsystem is in this case is represented by the static 

function f(uk-1, xk-1), which comprises information on the 

structure and the parameters of the given subsystem.  

Construction of the CL fuzzy model consists in determining the 

fuzzy approximation of this function on basis of the obtained CL 

inputs and outputs database.  

Considering the choice of CL input, state and output quantities 

presented in Fig. 3, the structure of the proposed CL fuzzy model 

is shown in Fig. 8. 

 

Figure 8. Structure of the discrete CL fuzzy model. 

The first step in the design of the fuzzy model for the central 

section of the continuous line is the establishment of a 

consistent database from measured inputs and their 

corresponding outputs, which covers its entire assumed work 

space. In a consistent database, the database does not contain 

different output values for the same input values Fedor 2013. 

This can basically be achieved either by exciting the system by a 

suitable statistic input signal u(t) [Babuska 1997], or by an input 

signal which evenly divides the entire input space [Yan 2014]. 

Using a random input signal is suitable for existing systems with 

which it is not possible (e.g. for operational reasons) to enforce 

predetermined inputs to the system. Such a database can be 

obtained also in the course of normal operation of the modelled 

system which is controlled by an operator who is the “generator” 

of input signals. In principal, no previous information on the 

characteristics and the structure of the modelled system is 

required in this case. Typical examples would be continuous 

technological lines for material processing, temperature control 

in power plant units, chemical technological processes, etc. 

Assume the operation range of input u2 for line velocity tuning is 

[-3, 3] and of input u1 for strip tension tuning [-1, 1]. Then for 

generating the database for CL fuzzy model construction we can 

apply a systematic transition over the operation range e.g. by 

applying step change of line velocity u2 every 12s and then in 1s 

intervals exciting the faster oscillating part of the system to both 

sides by input u1. The performance of the generated inputs for 

CL is illustrated in Fig. 9. Time responses of corresponding 

outputs y1=uF12 and y2=uv2 are shown in Fig. 10. 
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Figure 9. Input generator for collection of database for fuzzy model. 

 
Figure 10. Time waveform of the tension uF12 and the speed uv2 in CL for 
the inputs illustrated in Fig.9. 

The database for CL fuzzy model was generated as demonstrated 

in Fig. 11. The state quantity x1=uv1 also needs to be entered into 

the database. With sampling time T=0.1s we obtained 

a database with 1000 samples. A sampling time T was 

determined based on Shannon-Kotelnikov theorem from 

measured transient responses in Fig.7. 

 
Figure 11. Database generator for CL fuzzy model. 

This measured database can be used for serching two FIS 

structures of the given nonlinear system which best describe the 

measured relations between [u1k-1, u2k-1, x1k-1, x2k-1, x3k-1] → dy1k, 

and [u1k-1, u2k-1, x1k-1, x2k-1, x3k-1] → dy2k. 

Using the measured database, the particular fuzzy models can 

be designed by standardly known procedures of cluster analysis 

and adaptive approaches. The fundamental features of cluster 

analysis are reduction of the number of fuzzy rules and setting 

of good initial rule parameters. For our purpose from the 

numbers of methods for adaptive fuzzy systems development 

[Vo 2020, Ferreira 2015, Salgado 2017, Schafer 2015] we chose 

the adaptive neuro-fuzzy inference system (ANFIS) with 

subtractive clustering [Fedor 2016, Vu 2012]. The ANFIS 

approach uses Gaussian functions for fuzzy sets, linear functions 

for the rule outputs, and Sugeno's inference mechanism [Liao 

2005, Zuo 2017]. Subtractive clustering determines the optimal 

clusters in a multi-dimensional input/output space that 

accurately represent the data [Rani 2012], in our case CL 

behavior. Subtractive clustering was running with the following 

parameters: Range of influence=0.4, Squash factor=1.25, Accept 

ratio=0.4, Reject ratio=0.01. The results were two static Sugeno 

type fuzzy systems with two rules for each output quantity as is 

shown in Figure 12a. Fuzzification of inputs of this fuzzy system 

is illustrated in Figure 12b. These obtained fuzzy systems were 

implemented into the final continuous line fuzzy model 

structure, as illustrated in Figure 8. 

 

a) 

 
b) 

Figure 12. a) Fuzzyfication of CL fuzzy model inputs (MF=membership 

function), b) SUGENO type fuzzy system with 2 rules. 

The properties of the designed CL fuzzy model were verified by 

experimental measurements on the physical laboratory model 

described in Chapter 3. 

The CL fuzzy model verification was firstly carried out for input 

values, on basis of which the database for fuzzy model design 

was measured. The responses of the CL fuzzy model for these 

identification inputs are illustrated in Fig.13 and Fig.14. 

 

Figure 13. Comparison of fuzzy model and real physical model output 
uF12=y1 for a continuous line. 
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Figure 14. Comparison of fuzzy model and physical model output uv2=y2. 
for a continuous line. 

To verify the correctness of the CL fuzzy model, randomly 

generated signals u1 and u2 were applied to its input, as 

demonstrated in Fig. 15.  

 

Figure 15. Rrandomly generated input signals u1 and u2. 

The comparison of the fuzzy model outputs and CL physical 

model outputs for these inputs is shown in Fig. 16 and Fig.17. 

 

Figure 16. CL fuzzy model output y1 performance for randomly 
generated inputs u1 and u2. 

 

Figure 17. CL fuzzy model output y2 performance for randomly 
generated inputs u1 and u2. 

The obtained results confirm that the proposed fuzzy model very 

precisely approximates the performance of the continuous line 

physical model for identification inputs and also for randomly 

generated inputs.  

5 DISCUSSION AND CONCLUSION 

The paper presents a method for the construction of a fuzzy 

model of a continuous processing line. The model is designed 

only on basis of suitably measured relations between the 

system´s inputs and outputs, without the necessity of 

preliminary knowledge of its internal structure and parameters. 

In terms of the available information the modelled system may 

be considered as a typical Black Box system. The database for the 

construction of such model should be consistent. In order to 

achieve this goal, it is necessary to generate suitable input 

signals at the input of the modeled system (Fig. 9) to collect data 

into the database, which regularly cover its entire working range. 

A systematic procedure aimed at meeting this condition is 

presented in the paper. 

The sampling time T is also important for creating a database, 

because the number of measured samples for the database 

grows as T becomes shorter and similarly the number of 

transitions influences the complexity of further database 

processing. In our case, the sampling time was chosen based on 

the Shanon-Kotelnik theorem (T=0.1s), which was sufficient for 

the design of a high-quality and simple fuzzy model (Fig. 12). 

The fuzzy model design is based on the basic idea of dynamic 

system description in state space. The number of state 

quantities of the modelled system (i.e. the order of the system) 

represents important information. If we choose a smaller order 

of the fuzzy model than that of the modelled system, it will result 

in ambiguity and inconsistency of the fuzzy model rules, which 

reduces its quality. To derive the fuzzy rules, subtractive cluster 

analysis is applied. For the adaptive approach, a hybrid 

arrangement that uses a fuzzy inference engine in connection 

with a neural network was used (ANFIS tool). The result was two 

simple fuzzy models with two Sugeno-type rules for tension and 

speed subsystem of continuous line (Fig. 12). 

The proposed fuzzy modeling method was verified by 

experimental measurements on a real physical model. The 

designed CL fuzzy model properties have been demonstrated by 

comparing its outputs with those of the physical model for 

identification (Fig. 9) and randomly (Fig. 15) chosen input signals 

into the individual drives of the line. The obtained results have 

confirmed that the fuzzy model designed in this way can be very 

simple and at the same time can very well approximate the 

performance of a continuous line as a nonlinear system with 

multiple inputs and outputs (Figs. 13-14, Figs. 16-17). With this 

method no principal limitations for the modelled system´s 

nonlinearities are defined. 

Considering the quality of the proposed fuzzy model this fuzzy 

modeling method can be used to design various fuzzy model 

based control structures for controlling MIMO nonlinear 

systems, systems with transfer lag, complex systems, etc., the 

analytical model of which would be very difficult to describe, or 

the concrete parameters of which would be hard to obtain by 

analysis in practice. In mentioned control applications, a detailed 

analysis of the internal structure and parameters of such systems 

is often substituted by estimation of their performance on basis 

of an experimentally obtained fuzzy model. Described fuzzy 

model method could also be used in the identification of non-
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measurable additive disturbances influencing the MIMO system, 

principally in real time. 

The proposed method of fuzzy model design for a Black-Box 

nonlinear dynamic system for which only external information is 

available can be considered as an enhancement to the wide 

range of fuzzy modeling methods. Regarding to its simplicity and 

high-quality this method could find wide use in multi-motor 

drives in steel industry, paper-making, printing and textile 

industries, in the production of synthetic fibres and foils in the 

chemical industry and in other industries. 
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APPENDIX 

Parameters of the physical model: 

DC motors: 

UN = 24 V  nN = 3650 rpm-s 

Ra = 0.7   IN = 8.5 A 

PN = 140 W La = 0.1 mH 

MN = 0.39 Nm J = 0.002 kgm2 

j = 24  c = 0.043 Vs 

FN = 250 N  Imax = 20 A 

 

Converters: 

TTM = 0.1 ms 

 

Sensors: 

Current sensor KI = 2V/A 

Velocity sensor Kv = 6.6 V/ms-1 

Tension sensor KF = 0.022 V/N 

 

Working rolls: 

r = 0.04 m, vmax = 1.5 ms-1 

 

Processed material: 

b = 0,03 m, h = 0,510-3 m, S = bh = 15 10-6 m2, E = 1,8109 Nm-2, 

SE = 27 103 N 
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