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Abstract 

The advancement of Artificial Intelligence (AI) in manufacturing begins with the Fourth Industrial 
Revolution. AI allows manufacturing with efficiency optimization, product quality improvement, cost 
reduction, and ease of real-time predictive maintenance. The topic is clearly stated in the literature. 
However, it fails to note the turning operation and quality optimization. This review attempts to clarify the 
factors influencing the quality of the finished product, related challenges, and the integration of AI to 
address these issues. The article highlights several methods for developing AI models and their real-
world implementation. The paper systematically assesses the available literature, categorizing process 
characteristics and AI techniques based on data sources and management methodologies. The key result 
demonstrates that artificial neural networks and regression analysis are widely used in machining and 
optimization procedures, with fuzzy logic proving advantageous. Data management and filtration are 
essential for a reliable AI model. This paper offers insights into pre-processing, algorithm choice, and 
optimization methodologies, guiding researchers in constructing successful AI models for quality 
optimization in turning operations.  
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1 INTRODUCTION 

The shift towards Industry 5.0 has already started through 
technological innovation and the adoption of Artificial 
Intelligence (AI) based models for predicting machined 
product quality in turning operations. 

Traditional methods for predicting product quality usually 
depend on mathematical models or simulations, which can 
be time-consuming and less responsive to real-time 
changes in machining conditions. The introduction of AI has 
revolutionized this field, providing powerful tools for 
predicting various quality metrics such as surface 
roughness, tool wear, and dimensional accuracy. 

Predicting machined product quality in turning operations is 
a critical aspect of modern manufacturing, aiming to ensure 
high-quality outputs while optimizing production efficiency. 
This review synthesizes recent advancements in AI-based 
predictive models for turning processes, highlighting the 
machining parameters and quality indicators that need to 
be considered to create an AI model for predicting the 
quality of the machined product for turning operations in 
real-time. 

 

1.1 Paper Structure 

Fig.1 represents the contents of this review paper. First, the 
paper discusses why turning is still necessary in changing 
industries from time to time. It clarifies whether the industry 
is moving towards 5.0 or has room for improvement in 
Industry 4.0. At the end, the paper discusses Industry 5.0.  

 

Fig. 1: Contents of Paper 

The second part of the paper highlights the turning 
operation and the quality characteristics of the process 
parameters. In the third section, the paper highlights AI in 
turning, which will address the queries regarding the role of 
AI in the turning and the constituents of AI. 
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These AI techniques are used in the machining, benefits, 
and limitations of the AI, and the kind of Input-output data 
can be used to create AI for turning. The third part 
discusses the DATA sources, like sensors, types of 
sensors, and images, and how they can be analyzed. In the 
end, the future direction in this field is highlighted. This 
review paper covers the need for AI in turning operations. It 
is still a big part of the manufacturing industry. Turning 
operation creates mechanical parts by removing the 
unwanted material using the tool and orthogonal cutting 
[Astakhov 2011]. It is primarily used to make the shafts of 
the machine; however, it can be used to manufacture other 
mechanical parts used in the machine. 

Being a widespread method, the process requires several 
complex characteristics or parameters that are part of the 
objective of this review, which is to structure the turning 
parameters for different modeling targets based on the 
literature review.  

The final part consists of highlighting ML algorithms, 
mentioning optimization methods, identifying the 
challenges, and mentioning future research directions. 

 

1.2 Transition of Industry 

Industries experienced periodic shifts. First, the world faced 
the revolution of Industry 1.0, where the first industrial 
revolution began at the end of the 18th century and was 
represented by mechanical production plants based on 
water and steam power. After that, Industry 2.0 came into 
existence. The second industrial revolution started at the 
beginning of the 20th century with the symbol of mass labor 
production based on electrical energy, which brought mass 
production and mass development. The third industrial 
revolution began in the 1970s with automatic production 
based on electronics and internet technology. The fourth 
industrial revolution, namely Industry 4.0, is ongoing, and 
the characteristics of cyber-physical systems (CPS) 
production are based on heterogeneous data and 
knowledge integration, called Smart Manufacturing. It can 
be said that the industries are between Industry 4.0 and the 
transition towards Industry 5.0, which will be Human-
machine interaction (Kumar et al. 2024).  

 

1.3 Goals of Modern Industry 

The modern manufacturing industry's goals are efficiency, 
sustainability, and technological advancement. These 
objectives are motivated by adjusting to a rapidly changing 
world market and using modern technology for competitive 
advantage.  

Efficiency and Competitiveness – Modern manufacturing 

aims to enhance efficiency through effective management 
and leadership, enabling companies to adapt to changes 
and maintain competitiveness in a turbulent market [Lu 
2017]. This includes adopting zero-defect manufacturing 
strategies to reduce costs, energy consumption, and waste 
while improving lead times and production planning 
[Trebuna et al. 2022]. 

Sustainability – There is a strong focus on sustainable 

development driven by global resource constraints and the 
need for long-term environmental responsibility. This 
involves optimizing resources and integrating sustainable 
practices into manufacturing processes [Machado et al. 
2020]. 

Technological Integration – Integrating advanced techno

logies such as the Internet of Things, cyber-physical 
systems, and big data is crucial for modern manufacturing. 
These technologies support the development of intelligent, 

sustainable production systems and facilitate the transition 
to Industry 4.0 [Sharman et al. 2004]. 

Innovation and Quality – Emphasizing innovation-driven 

manufacturing and quality over quantity is a key goal, as 
seen in initiatives like 'Made-in-China 2025,' which aims to 
enhance industrial capabilities and achieve green 
manufacturing [Xu et al. 2018]. Similarly, the Make-in-India 
initiative by India's government focuses on manufacturing 
innovation. 

Flexibility and Adaptability – Modern manufacturing 

seeks to increase flexibility and adaptability by integrating 
lean and agile practices with Industry 4.0 technologies. This 
allows for rapid response to market changes and 
disruptions [Buer et al. 2018, Amjad et al. 2020]. 

2 THE TURNING PROCESS 

Turning operations in the manufacturing industry involve 
removing unwanted material from a workpiece to achieve 
the desired shape and dimensions. This process is 
fundamental in machining and is typically performed on a 
lathe. It involves several machining parameters and 
machining conditions to develop the desired product. Fig. 2 
represents the turning process in a CNC lathe. 

 

Fig. 2: Turning Operation 

2.1 Evolution of Turning Operations 

Turning operations have evolved from manual lathe 
machines requiring constant supervision to automated 
CNC machines, with advancements in optimization 
techniques and process parameters like spindle speed, 
cutting speed, depth of cut, and feed improving efficiency 
and outcomes. These machining parameters play an 
essential role in achieving good product quality. 

Traditionally, turning operations relied heavily on manual 
control and basic automation. Optimization of machining 
parameters was often done through trial and error or basic 
analytical methods [Yusup et al. 2012]. 

The introduction of Industry 4.0 has significantly 
transformed the way operations are conducted. Modern 
techniques involve advanced optimization algorithms like 
genetic algorithms, differential evolution, and particle 
swarm optimization to enhance efficiency and precision 
[Yusup et al. 2012, Yildiz 2012]. The focus is on integrating 
digital technologies to enable intelligent manufacturing 
systems, which are interconnected and capable of real-time 
data processing [Alcácer and Cruz-Machado 2019, 
Mourtzis 2020]. 

The future of turning operations is leading towards 
complete automation and intelligent manufacturing 
systems. This includes developing models that allow rapid 
configuration and intelligent operation of manufacturing 
systems, catering to personalized product requirements 
and shorter product life cycles [Xie et al. 2022]. Simulation 
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and digital twins will enhance manufacturing systems 
design and operation [Mourtzis 2020]. These projects need 
development in turning operations using AI models that 
improve the overall quality, and further look at sustainable 
production, which can reduce unwanted operational 
failures. 

 

2.2 Requirements of Enhanced Turning Operation 

One of the significant requirements for developing turning 
operations, including AI in the process, is quality 
optimization and efficiency. There is a strong emphasis on 
optimizing machining parameters to reduce costs, improve 
product quality, and reduce material waste. Techniques like 
differential evolution and genetic algorithms are employed 
to achieve these goals [Yusup et al. 2012, Yildiz 2012]. 

Modern turning operations require integration with digital 
platforms to enable smart manufacturing. This involves 
using sensors, real-time machining monitoring, and 
advanced information and communication technology for 
better interconnection and transparency in manufacturing 
processes [Alcácer and Cruz-Machado 2019]. 

The push towards automated and intelligent systems is 
crucial. This includes developing systems that can 
autonomously manage and optimize production processes, 
reducing the need for human intervention [Xie et al. 2022]. 

To integrate AI into turning operations, understanding the 
turning process and the factors involved in the turning 
process is necessary. In addition, those factors influence 
the quality characteristics of the turned workpiece. 

2.3 Quality characteristics of the turned workpiece 

The quality characteristics of turned workpieces are 
primarily determined by surface integrity, shape, hardness, 
and microstructure, which are influenced by factors such as 
cutting tool properties, tool material, and geometry. The 
other influencing factor is workpiece material. These 
materials are divided into various categories – steel,  
stainless steel, cast iron, non-ferrous material, superalloys, 
and challenging material. Manufacturers of these materials 
have defined the insert type and material.  

Another factor is machining conditions, such as the 
environmental temperature and dry or wet machining. In 
addition to the cutting phenomenon, which depends on the 
environment, tool used, and workpiece material, the quality 
characteristics of the final product are also influenced.  

Fig. 2 represents the fishbone diagram for factors influenci
ng quality characteristics in turning. It is necessary to 
understand the influence of these factors to implement the 
effects of these parameters in developing an AI model. 
Also, it is essential to understand each factor's influence on 
the others.  

 

Fig. 3: Fishbone diagram for factors influencing quality 
characteristics in turning. 

2.4 Process Parameters in Turning 

Several process parameters significantly influence the 
machining outcomes, such as surface finish, material 
removal rate, and cutting forces. These parameters can be 
broadly categorized into cutting tool properties, machining 
parameters, workpiece properties, and cutting phenomena 
[Felhő et al. 2025]. 

 

Cutting Tool Properties 

Many researchers have conducted experiments that keep 
cutting tool properties in the main frame and found that tool 
material, coating, and geometry influence the quality 
characteristics. 

Table 1 represents the cutting tool properties and their 
influence on quality characteristics. The choice of tool 
material and whether it is coated or uncoated affects tool 
wear and cutting efficiency. Coated tools can enhance 
performance by reducing friction and wear [Salman et al. 
2019]. This includes the tool nose radius and rake angle, 
influencing the cutting forces and surface finish. A larger 
nose radius can improve surface finish but may increase 
cutting forces [Salman et al. 2019a, Umamaheswarrao et 
al. 2021]. Some researchers have found that machining 
parameters are most influential in determining quality 
characteristics. 

 

Machining Parameters 

Machining parameters include cutting speed, feed rate, 
depth of cut, and, in some cases, spindle speed. This 
critical parameter affects the cutting force, surface finish, 
and tool life. Higher cutting speeds can improve surface 
finish but may increase tool wear [Salman et al. 2019]. The 
feed rate significantly impacts surface roughness and 
material removal rate. A higher feed rate can increase the 
material removal but may degrade the surface finish [Ho 
and Do, 2023]. The depth of the cut parameter substantially 
affects cutting forces and material removal rate. A greater 
depth of cut increases the cutting force and material 
removal rate [Petre and Găvruș, Ahmed et al. 2020]. The 
other influencing parameter that determines the quality of 
the final product is the workpiece properties 

 

Workpiece Properties 

Workpiece properties and getting the final product are 
challenging tasks in industries. The material of the 
workpiece, such as AISI 1040 steel or aluminum alloys, 
affects the choice of cutting parameters and tool material 
due to differences in hardness and machinability 
[Palanisamy et al. 2018]. The essential alloy elements in 
stainless steel, Cr and Ni, make it difficult to machine [Felhő 
and Namboodri 2024]. However, many researchers have 
examined the quality characteristics of Cr alloyed steel 
[Kundrak et al. 2021, Sztankovics 2024]. Some alloying 
elements like Sulphur (S) can make machinability easier, 
providing a better surface finish [Mujagić et al. 2021, Tanuj 
and Felhő 2024]. The initial surface condition of the 
workpiece can influence the final surface quality and the 
required machining parameters [Ho and Do, 2023]. The 
cutting phenomenon is another factor that affects the quality 
of the product. 

 

Cutting Phenomenon 

Cutting phenomena are parameters that proper precautions 
can control. They aren't parameters that machine operators 
or technicians can control. Cutting force is one of the factors  
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Tab. 1: Information on the effect of cutting tool properties on quality characteristics. 

Reference 
Cutting Tool 
Properties 

Workpiece 
Material 

Remark 

[Yuan et al. 1996] Diamond tool 
Sharpness, Cutting 

Edge radius 

Aluminum 
alloy 

Influences Surface roughness and 
microhardness. 

[Palanisamy et al. 2018] CVD-coated tool of 
TiN/Al2O3/TiCN/TiN 

Incoloy 800H The hardness of the tool was increased by 
cryogenic treatment. 

[Salman et al. 2019a] Coated and Uncoated AISI 1035 
alloy 

Heat transfer during machining decreases 
Residual stress. 

[Salman et al. 2019a] Cutting tool with a 
smaller radius 

AISI 1035 
alloy 

Reducing frictional heat generation. 

[Umamaheswarrao et al. 
2021] 

Rake angle followed 
by nose radius 

AISI 52100 
Steel 

A negative rake angle influences the cutting 
parameters. 

[Nagwa Mejid Ibrahim Elsiti 
and Mohamed Handawi 

Saad Elmunafi 2023] 

Coated carbide tool AISI 420 Optimization of parameters. 

[Brown and Schoop 2020] Tool Properties, 
cutting edge, and 

Nose radius 

Ti-6Al4V Cutting-edge geometries with larger honing 
were found to reduce the roughness of the 
machined surface 

[Xu et al. 2021] Tool Rake Angles Inconel 718 The increasing rake angles tend to 
decrease the cutting force. 

[Wang 2018] Tool structure, Tool 
material 

Titanium and 
nickel 

Geometrical characteristics, cutting-edge 
geometry, cutting tool shape, and coated or 
uncoated influences surface integrity. 

[Molaiekiya et al. 2021] Tool Material and 
Properties: SiAlON 

ceramic tools 

IN718 The fresh ceramic tool produces a better 
surface finish than conventional coating. 

[Dosbaeva et al. 2010]  Inconel 718 TiAlN PVD coating results in high tool life. 

[Sivaiah et al. 2021] Textured and 
untextured tool 

AISI 304 Textured tools reduced the machining zone 
temperature, 'Vb', and 'Ra' remarkably over 
untextured tools, which indicates a steady 
cutting mechanism with textured tools. 

Tab. 2: Information on the effect of workpiece properties on quality characteristics. 

Reference Workpiece 
Properties 

Workpiece 
Material 

Remark 

[Aouici et al. 2012] Workpiece Hardness AISI H11 
Steel 

Workpiece hardness has a significant 
statistical influence on surface roughness. 

[Barzani et al. 2015] Bi- Element Al–11.3Si–
2Cu, Bi- and 

Sb 

The bi-compound, which acts as a lubricant 
during turning, is more likely to be a reason to 
obtain the best surface roughness and the 
lowest main cutting force 

[Dobrzynski and Mietka 
2021] 

Workpiece Rigidity S355JR 
steel, AISI 

304 stainless 
steel, 

The properties of a workpiece material 
crucially affect the accuracy of execution. AISI 
304 material is characterized by better 
machinability. The low rigidity of workpieces 
relative to the rigid parts of a machine tool 
hinders it. The cutting process is due to the 
generated vibrations.  

[Li et al. 2024] Workpiece Diameter 06Cr19Ni1 In turn, the workpiece diameter is an essential 
factor affecting cutting vibration, 
A rapid increase in surface roughness. 
Surface roughness is affected by the surface 
roughness to obtain better surface quality.  

[Ho and Do 2023] Workpiece Surface N/A Influences on finished product quality 
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influenced by machining parameters and tool geometry. 
Optimizing these parameters can minimize cutting forces, 
enhancing tool life and surface quality [Nagwa Mejid 
Ibrahim Elsiti and Mohamed Handawi Saad Elmunafi 
2023]. Analyzing cutting forces can be challenging as 
workpiece and tool material change according to consumer 
requirements, and having cutting forces data on every 
condition can be difficult. Similarly, tool vibration also 
impacts the quality of the finished product. Many 
researchers have studied tool vibration and found that tool 
vibration impacts the surface finish and sometimes leads to 
chatter marks [Jang et al. 1996, Afeen and Younis 2007, 
Hessainia et al. 2013a, Namboodri and Felhő 2024, Tanuj 
and Felhő 2024]. 

 

Fig. 4: Impact of vibration on surface roughness. 

Tab. 3:  Information on the cutting phenomenon effect on quality characteristics. 

Reference 
Cutting 

Phenomenon 
Workpiece 

Material 
Remark 

[Chen et al. 2017] Cutting forces and 
Tool vibration 

Ti6Al4V Feed rate, cutting forces in the radial and 
tangential directions, and tool vibrations in 
three directions significantly correlate with 
the predicted value Ra based on the 
correlation analysis. 

Thomas M. Cutting Tool Vibration N/A Tool vibration analysis has revealed that two 
data types are correlated to the cutting 
parameters: the amplitude of vibration 
measured at the tool's natural frequency 
and the variation of this natural frequency.  

[Hoang and Nguyen 2023] Cutting forces and 
Tool vibration 

SKH2 Steel The feed rate's significant impact on cutting 
force and vibration is an essential factor that 
must be considered and controlled.  

[Safi et al. 2022] Cutting Tool Vibration Cold-drawn 
medium 

carbon steel 

Cutting tool acceleration has a significant 
effect on the surface roughness of the 
workpiece. 

[Kong et al. 2016] Cutting Tool Vibration GCr15 Cutting speeds increased will first make the 
amount of vibration and surface roughness 
increase 

[Kang et al. 2020] Cutting Tool Vibration AISI 316 At lower feed rates, the effect of vibration 
amplitude is not as significant as at the 
highest feed rate. 

    

Tab. 4:  Information on the effect of machining parameters on quality characteristics. 

Reference Machining Parameters Workpiece Material Remark 

[Ahmed et al. 2020b] DOC, feed, cutting speed AISI 201 Influences on cutting forces 

[Petre and Găvruș] DOC, feed, cutting speed AISI 1045 Forces in Turning 

[Baskar et al. 2024] DOC, feed, spindle speed AL 6063 & AL 6068 MRR Investigation 

[Palanisamy et al. 
2018] 

DOC, feed, cutting speed Incoloy 800H Surface roughness 

[Salman et al. 2019b] DOC, feed, environment AISI 1035 alloy Effect on surface residuals 

[Hessainia et al. 2013] DOC, feed 2CrMo4 steel [56 HRC] 
with Al2O3/Tic mixed 

ceramic. 

Feed rate and the cutting speed 
have the highest influence on the 

evolution of machined surface 
roughness. 
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It can be noted that the turning process is a complex task, 
and analyzing all the parameters and their effects can be 
challenging to understand the parameters and their 
influence on the product quality. AI can offer a more 
effective solution. 

3 AI IN TURNING 

3.1 Role of AI in Turning Operations 

AI can be more effective in turning operations within 
manufacturing by optimizing efficiency, precision, and 
decision-making processes. 

AI integration into manufacturing is a key component of 
Industry 4.0, leading towards Industry 5.0, where it supports 
various aspects of production, from predictive maintenance 
to quality control and supply chain management. Fig. 5 
describes the Role of AI in turning operations where 
adaptive control, predictive maintenance, and quality 
control can be the main tasks.  

 

Fig. 5: Role of AI in Turning Operation. 

Adaptive control uses AI-based optimization methods to 
modify machining parameters, including cutting speed, feed 
rate, and depth of cut, in real time. 

This includes adaptive control optimization and adaptive 
control with constraints, assuring efficiency and reduced 
overall tool wear and providing better quality. Predictive 
maintenance uses AI models to assess machine 
performance data and forecast faults before occurrence, 
including corrective, preventive, risk-based, condition-
based, predetermined maintenance, and tool change. This 
preventive approach reduces downtime and improves 
machine availability, providing AI-driven quality control. The 
AI will ensure a good surface finish, dimensional accuracy, 
and defect detection. 

3.2 Constituents of AI for Turning 

Developing an AI model for turning operations is like 
teaching a human to understand the machining process as 
the expert operator would. Every piece of data plays a role, 
and each element depends on the other to create a 
complete and accurate picture of how turning operations 
behave. It all starts with machining parameters like feed 
rate, depth of cut, cutting speed, and the type of machining. 
These fundamental settings determine how the process 
unfolds, directly impacting efficiency and product quality. At 
the same time, maintaining high-quality standards is crucial, 
so AI monitors surface integrity and material integrity to 
ensure the final product meets precision and durability 
requirements.  

Fig. 6 represents the fundamental structure of the AI 
components for the turning operation quality optimization. 
AI can be structured using various parameters, quality 
targets, data collection, and setting parameters. The 
procedure involves training the model using gathered Input 
and output data, including the results, surface roughness 
parameters, and hardness variation. Different AI 

techniques need to be considered to develop a suitable 
model. 

 

 

Fig. 6: Constituents of AI in Turning. 

3.3 AI Techniques 

To make smart decisions, AI needs data, and that's where 
real-time monitoring comes in. Sensors collect information 
on cutting forces, tool vibrations, acoustics, and 
temperature changes, giving AI a deeper understanding of 
how the machining process is performing. But collecting 
data alone isn't enough—AI must learn from it. By training 
on real machining scenarios, the model fine-tunes its ability 
to adjust parameters dynamically, optimizing efficiency 
while maintaining precision. The result is real-time quality 
prediction, allowing manufacturers to detect and correct 
potential issues before they impact production.   

Because all these elements are interconnected, the AI 
model continuously improves by learning from every 
operation. The more data it gathers, the better it gets at 
predicting outcomes, fine-tuning processes, and ensuring a 
smoother, more reliable machining workflow. Ultimately, AI 
isn't just automating turning operations—it's making them 
more intelligent, efficient, and future-ready. 

AI techniques can revolutionize operations by enhancing 
efficiency, reducing costs, and improving the overall 
machining performance. These techniques are machine 
learning (ML) algorithms, which work to create more 
intelligent machining systems. 

Machine Learning algorithms are key in analyzing 
machining data, predicting outcomes, and automating 
decision-making processes. Popular ML methods include 
Artificial Neural Networks (ANN) [Petre and Găvruș, Hanief 
et al. 2017, Chen et al. 2017, Panetto et al. 2019], which 
help in predictive modeling and optimizing cutting 
parameters, and Support Vector Machines (SVM) [Ullrich et 
al. 2024], which assist in classifying machining conditions 
and detecting irregularities. Fig. 6 describes standard ML 
algorithms used to develop AI models. The common ML 
algorithms that are used are ANN and Regression analysis. 

 ANN – Artificial Neural Networks (ANNs) are 
computational models inspired by the human brain's 
structure and function. They consist of interconnected 
processing elements, or neurons, that work together to 
solve specific problems by learning from data. ANNs are 
composed of layers of neurons, each connected by 
weights. These weights are adjustable parameters 
optimized during learning to minimize prediction errors 
[Patel et al. 1AD, Agatonovic-Kustrin and Beresford 2000, 
Maind and Wankar 2014]. ANN learns by example, 
adjusting the synaptic weights between neurons based on 
input data. This process is akin to how biological systems 
learn, involving modifying synaptic connections [Wasukar 
2014, Kalina et al. 2023]. Each neuron receives inputs, 
processes them through a transfer function, and produces 
an output. The transfer function introduces non-linearity, 
allowing the network to model complex relationships [Maind 
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and Wankar 2014, Shehab et al. 2022]. The network's 
weights are adjusted during training to minimize the error 
between predicted and actual outputs. This is typically done 
using algorithms like backpropagation. ANNs are used for 
pattern recognition, data classification, and feature 
extraction. They are beneficial for handling non-linear data 
relationships and have applications in engineering and 
manufacturing [Lira et al. 202]. 

Regression Analysis - Regression analysis in machine 

learning is a method used to predict continuous output 
variables by establishing relationships between dependent 
and independent variables, utilizing various models such as 
linear, logistic, polynomial, and tree-based regressions, and 
is essential for data exploration and forecasting. 
Regression analysis in machine learning is a statistical 
method used to predict a continuous output variable based 
on one or more input variables. It is fundamental in 
understanding the relationships between variables and is 
widely used in engineering. Regression analysis aims to 
establish a relationship between dependent and 
independent variables, allowing for predictions of the 
dependent variable based on new data inputs [Moore 2001, 
Manikyala Rao et al. 2019, Kumar and Bhatnagar 2022]. 

There are several types of regression models, each suited 
for different data characteristics and analysis needs. 
Standard models include Linear Regression, which predicts 
the output as a linear combination of input features [Ansari 
and Nassif 2022, Qu 2024]. Polynomial regression extends 
linear regression by considering polynomial relationships 
between variables. Ridge and Lasso Regression are 
regularization techniques that prevent overfitting by adding 
penalties to the regression coefficients. Regression Trees 
use tree structures to model non-linear relationships and 
are known for their interpretability [Yang et al. 2017, 
Fernández-Delgado et al. 2019]. Regression models are 
trained using historical data to minimize the error between 
predicted and actual values. Techniques like mean squared 
error minimization are commonly used, although they may 
not always yield optimal results. Evaluation metrics such as 
mean absolute error (MAE) and R-squared are used to 
assess model performance [Liu et al. 2021, Ермаков and 
Леора 2022]. The other ML algorithms are SVM, HMM, and 
CNN.  

 

Fig. 7: ML algorithms. 

Support Vector Machine (SVM) is a supervised machine 

learning algorithm for classification and regression tasks 
[Cervantes et al. 2020]. 

Hidden Markov Model (HMM) is a probabilistic model for 

modeling sequential data [Franzese and Iuliano 2025].  

Convolutional Neural Network (CNN) is a deep learning 

algorithm for image recognition, object detection, and 
computer vision tasks. The human visual system inspires it 
and is widely used in AI applications [Jia et al. 2022]. ML 
algorithms are designed to learn patterns from data and 
make predictions. Optimization algorithms fine-tune ML 
models by minimizing or maximizing an objective function 
[Geranmayeh and Grass 2024]. 

 

Fig. 8: Optimization Algorithms. 

 

Optimization algorithms focus on fine-tuning machining 
parameters for optimal performance, such as Evolutionary 
Algorithms. Genetic Algorithms, Differential Evolution, and 
Teaching-Learning Optimization simulate natural selection 
to find the best machining conditions. Swarm Intelligence 
methods, including Particle Swarm Optimization (PSO) and 
Artificial Immune Systems (AIS), mimic the collective 
behavior found in nature to enhance machining efficiency. 
Fuzzy optimization helps manage uncertainties in cutting 
conditions, allowing for dynamic adaptation [Namboodri 
2022]. Other specialized methods like Bayesian 
Optimization, Simulated Annealing, and Levenberg-
Marquardt Algorithms are also used to refine AI models in 
machining [Rena et al. 2011, Kumar et al. 2015, Sivam et 
al. 2018, Sharma et al. 2019, Ahijith Kumar et al. 2024]. 
Combining ML with optimization algorithms allows AI-driven 
systems to offer real-time monitoring, adaptive control, and 
predictive decision-making. Integrating AI, IoT, and data-
driven insights improves productivity, minimizes tool wear, 
and achieves superior machining results, transforming 
turning operations. Input and output data are required to 
develop these models as described. 

3.4 Input and Output Data for AI 

The AI models use input and output data to predict the 
outcomes using different input parameters. Tab. 5 
describes the input and output variables used by several 
researchers. These input and output data can be different 
according to different modeling targets. In this paper, the 
main focus is on the Product quality. Fig. 9 describes the 
different modeling targets for the development of AI. 
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Different modeling targets require different Input and Output 
Data. For product quality, the key input parameters used 
are machining parameters - cutting speed, feed rate, and 
depth of cut, which are the most influential factors affecting 
machining performance [Sztankovics 2024a, c]. The other 
data, like cutting force tool vibration, can be used in real-
time or after the collection to train the AI model. Some 
researchers have used temperature power to model the AI, 
which can help better understand the factors affecting the 
output.  
The output parameters primarily focus on surface roughne
ss (Ra, AA Surface Roughness), which is critical in 
determining the final product's quality [Maros et al. 2015, 
Sztankovics et al. 2024]. Other significant outputs 
include material removal rate (MRR) and shape factors like 
cylindricity, geometry, and tolerances. Microstructure 
formation can be studied during the turning operation [Felhő 
et al. 2023]. Some studies consider spindle speed and 
radial depth to capture various machining influences. Other 
studies mentioned tool and material characteristics, which 
were Inputs 
may also include tool geometry, material properties, and 
coating types, such as AlTiSiN-coated carbide tools. 

Environmental conditions factors like cooling systems (dry, 
MQL, flooding), while keeping the cutting fluid mixture ratio 
or solid-liquid lubricants in account. Optimizing these input 
parameters, manufacturers improve machined surface 
quality, extend tool life, reduce energy consumption, and 
enhance overall machining stability. This data can be useful 
in building an AI model as selecting the proper parameters 
allows for better control over the turning process, 
minimizing defects, and ensuring high precision in 
manufacturing. Some studies also analyze tool life, cutting 
temperature, chip morphology, and power consumption, 
providing insights into energy efficiency and tool 
performance. If the industrial requirement focuses on 
monitoring tool conditions, the input-output data for the AI 
model can be changed. The other two modeling targets 
mentioned in Fig. 9 are process characteristics and process 
condition prediction.  
 

 

Fig. 9: Modelling Targets for AI in Turning. 

These targets can allow AI to integrate adaptive control and 
predictive maintenance, as mentioned in subsection 3.1. AI 
models can bring numerous advantages and 
disadvantages, so it is essential to understand them. 

3.5 Benefits and Limitations of AI 

AI brings numerous benefits to turning operations, making 
them more efficient, sustainable, and cost-effective. One 
key advantage is tool wear prediction in stable turning 
processes [Mozaffar et al. 2022]. AI models can accurately 
predict when a tool will wear out, allowing for proactive 
maintenance and reducing downtime. AI also helps reduce 

undesirable effects such as vibrations or tool chatter, which 
can compromise product quality. By continuously analyzing 
real-time data, AI systems can adjust parameters to 
minimize these effects, leading to smoother and more 
precise machining. Another significant advantage is 
optimizing the machining process [Papadimitriou et al. 
2024]. AI algorithms can adjust cutting parameters 
dynamically to achieve optimal performance, improving 
productivity and reducing the risk of tool damage or part 
defects. This is complemented by error compensation, 
where AI models correct machining errors automatically, 
ensuring the final product meets the required specifications. 
AI also contributes to energy saving by optimizing cutting 
speeds and feed rates, which minimizes energy 
consumption without sacrificing performance. Moreover, 
failure prevention is enhanced, as AI models can predict 
and prevent potential failures, allowing operators to take 
corrective actions before issues arise [Dwivedi et al. 2021]. 
Implementing AI leads to smart manufacturing, where 
systems are interconnected, self-learning, and capable of 
making real-time decisions. This enhances the overall 
efficiency and flexibility of the manufacturing process. As a 
result, good product quality is maintained consistently, with 
AI ensuring that machining operations stay within the ideal 
parameters. AI is crucial in sustainability by reducing waste, 
energy consumption, and material usage. By optimizing the 
machining process, AI helps minimize environmental 
impact and supports sustainable manufacturing practices 
[Colantonio et al. 2021]. 

Despite the numerous benefits, several challenges are 
associated with using AI in turning operations. One 
significant disadvantage is the high initial investment 
required to set up AI-driven systems, including the cost of 
hardware, software, and integration with existing machinery 
[Besigomwe et al. 2025]. AI systems also require highly 
experienced operators to effectively manage, monitor, and 
fine-tune the models [Kinkel et al. 2022]. These operators  

need advanced knowledge of AI techniques and machining 
processes, making it more challenging for companies with 
limited expertise. Consumption of materials and resources 
raises concerns about environmental sustainability in the 
short term [Xu et al. 2022]. Ethical issues can also arise, 
particularly regarding the use of AI in decision-making. 
There may be concerns about the transparency of AI 
models, accountability for mistakes, and potential job 
displacement due to automation in the industry [Zhang and 
Aslan 2021]. AI systems can also lead to over-reliance, 
where manufacturers become too dependent on the 
technology, ignoring the importance of human judgment 
and oversight. This reliance can pose a risk of failure, 
especially if the AI model encounters unforeseen issues or 
limitations in its design. Mathematical accuracy is critical in 
AI models, and even minor errors in the algorithms or data 
can lead to significant problems in machining outcomes 
[Alexander et al. 2024]. High error tolerance is essential, as 
even minor inaccuracies can affect the final product's 
quality and precision. In summary, while AI offers immense 
potential for improving turning operations, the challenges of 
high investment, skilled labor requirements, and potential 
ethical and environmental concerns should be carefully 
considered.  

4 DATA SOURCE AND MANAGEMENT 

Artificial Intelligence uses various data types, including 
structured and unstructured data such as images, text, 
point clouds, and sensor data. Fig. 10 represents the basic 
summary of data collected in the turning operation. These 
data are processed through machine learning, deep  
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learning, and data fusion to enhance decision-making and 
improve applications across multiple domains.  Sensor and 
image data are the primary data types used in machining. 
Real-time machining data, multisensory fusion data, and 
large-scale datasets containing machining parameters and 
tooling characteristics are crucial in AI-driven process 
optimization. These data sources enable AI to predict 
machining quality, enhance efficiency, and improve 
manufacturing performance. Effective data management in 
AI manufacturing is crucial for optimizing processes, 
enhancing productivity, and ensuring sustainable practices 
[Whang et al., 2023; Jiang et al., 2024]. To manage data 
from experiments, collecting, storing, and accessing it in 
real time can be challenging due to its volume. In 
manufacturing, a lot of data is collected from sensors and 

devices. It can be acceleration data, force measurement 
data, or thermal data. To manage data from various 
sources, there is a need to establish clear guidelines for  

data management [Arinez et al. 2020; Rakholia et al. 2024; 
Dey et al. 2024]. 

Focus on data validation, cleaning, and integration to 
ensure high-quality data, essential for effective AI 
performance. Industry experts will be integrated to validate 
the data. In addition, the challenges are related to the high 
volume, variety, and frequency of data generated by 
sensors and digital manufacturing activities. Effective data 
management strategies are needed to harness this data for 
performance enhancement 10. Encourage collaboration 
between humans and AI systems, leveraging both 

Tab. 5: Information on optimization method and Input, output parameters. 

Reference 
Experiments 

Design 
Optimization Method Input Parameters Output Parameters 

[Nian et al] Taguchi 
Method 

 Cutting Speed, Feed, 
Depth of Cut 

Tool life, cutting 
force, and Surface 

Finish 

[Tzeng et al. 2009] Taguchi 
Method 

Grey Relational 
Analysis 

Cutting Speed, Feed, 
Depth of Cut, Cutting Fluid 

Mixture Ratio 

Roughness Average, 
Roughness 

Maximum, and 
Roundness 

[Kumar and Kumar] TOPSIS  Cutting Speed, Feed, 
Depth of Cut, Nose 

Radius 

MRR 

[Abolghasem and 
Mancilla-Cubides 

2022] 

- Artificial Neural 
Network, PSO 

Cutting Speed, Feed, 
Depth of Cut, Nose 

Radius 

AA Surface 
roughness, MRR 

[Abhang and 
Hameedullah 2012] 

- Grey Relational 
Analysis, Factorial 
Design with eight 

center points. 

Cutting Speed, Feed, 
Nose Radius, DOC, 

Concentration of Solid 
Liquid Lubricants 

AA Surface 
roughness, Chip 

Thickness 

[Duplak et al. 2023] - Statistical Model Spindle Speed, Feed 
Rate, Radial Depth 

Actual Chip 
Thickness, Chip 

Shape, Ra 

[Sivam et al. 2018] - Fuzzy Logic Cutting Speed, Feed, 
Depth of Cut 

Surface Roughness 
and Cutting Force 

[Kouahla et al. 2022] Taguchi 
Method 

RSM, GRA, ANOVA, Nose Radius, Feed, 
Cutting Speed, Depth of 

Cut 

AA Surface 
roughness, MRR,  

Tangential Vibration, 
Tangential Cutting 

Force, Power 
Consumption 

[Savella et al. 2022] - Statistical Model Spindle Speed and Feed AA Surface 
roughness 

[Kónya et al. 2024] Taguchi 
Method 

- Cutting Speed, Feed Cutting Forces, 
Cutting Temperature, 

Chip Morphology 

[Siddique et al. 2023] Taguchi 
Method 

Statistical Model - 
ANOVA 

Depth of cut, feed, and 
cutting speed 

Tool wear, specific 
cutting energy, and 
surface roughness 

[Safi et al. 2022] Taguchi 
Method 

GRA, MOORA, DEAR, 
WASPAS 

Nose Radius, Feed, 
Cutting Speed, Depth of 

Cut 

Ra, Fz, and Pc, and 
the maximization of 

MRR 

[Nian et al.] Taguchi 
Method 

 Cutting Speed, Feed, 
Depth of Cut 

Tool life, cutting 
force, and Surface 

Finish 

[Tzeng et al. 2009] Taguchi 
Method 

Grey Relational 
Analysis 

Cutting Speed, Feed, 
Depth of Cut, Cutting Fluid 

Mixture Ratio 

Roughness Average, 
Roughness 

Maximum, and 
Roundness 
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automation and human expertise to optimize data 
management practices (Wang et al. 2019, Jamwal et al. 
2022, Adeolu Adenekan et al. 2024). 

 

4.1 Data Processing 

Sensor data for force, vibration, and temperature can be 
monitored in real-time and afterward stored locally or sent 
to the cloud. The initial data processing stage is cleaning, 
which involves using filters (such as low-pass, high-pass, or 
Kalman filters) to reduce noise and improve signal quality 
[Kenda et al., Kaiser and Reed 1977]. An outlier 
identification method, including Z-score and interquartile 
range (IQR), can eliminate deviations [Anusha et al. 2019]. 
The interpolation method could address missing data points 
[Narang et al. 2013, Spatial Interpolation 2017].  
 

 

Fig. 10: Different Data and Processing. 

The data is then normalized and scaled to ensure uniformity 
among sensor readings. Min-max scaling or Z-score 
normalization can be utilized to standardize values for 
improved comparison [Jain et al. 2018, Editors et al. 2024]. 
In addition to pre-processing, the data is analyzed using 
statistical methods, including mean, variance, skewness, 
and frequency-domain transformations such as the Fast 
Fourier Transform (FFT), which allow the identification of 
main vibration frequencies. Further feature extraction 
techniques like Wavelet Transform and Principal 
Component Analysis (PCA) may be employed to identify 
significant patterns [Sengupta and Kay 1995]. The 
processed data may then be Input into AI models for 
training and predictive analysis. Regression methods: 
Linear Regression is suitable for numerical predictions. The 
other models are mentioned in subsection 3.3.  
 
Image data from microscopic analysis, surface topography, 
and thermal imaging can help AI to understand the outcome 
of turning operations. Techniques like image processing 
can be used to recognize the pattern and quality of the 
produced surface at any given parameter to understand 
images. The initial step involves capturing images of the 
object or surface to be analyzed. Pre-processing includes 
converting images to grayscale, noise reduction, and 
adjusting parameters like pixel fineness to prepare the 
image for further analysis [Corke 2017, Okamoto and Ura 
2024]. Techniques such as contrast improvement and 
histogram processing are applied to enhance image quality, 
making it easier to identify features and defects. This step 
involves dividing the image into meaningful regions or 
segments, often using edge detection and thresholding 
techniques. Segmentation is crucial for isolating areas of 
interest, such as defects or specific workpiece features 
[Corke 2017, Kanavi 2021]. Extracting relevant features 
from the segmented image is essential for analysis. 

Identifying surface textures, tool wear, or surface tearing. 
[Rajakumar et al. 2023, Parfenov and Parfenov 2024, 
Ercetin et al. 2024]. The extracted features are analyzed 
using algorithms and machine learning models to make 
decisions or predictions. This can involve comparing 
features to a database of known defects or using AI to 
predict maintenance needs [Russ 2006, Burger and Burge 
2008, Yapp and See 2008]. The final step involves using 
the analysis results to inform quality control processes. This 
can include automatic adjustments in CNC programming or 
feedback for predictive maintenance, ultimately improving 
manufacturing precision and reducing errors [Parfenov and 
Parfenov 2024, Ercetin et al. 2024]. 

5 FUTURE DIRECTION 

AI-based Sustainable Machining - AI-driven predictive 
modeling for power consumption is crucial for optimizing 
energy use in machining, aligning with sustainability goals. 
Future work should develop more sophisticated models to 
predict and manage energy consumption effectively   [Soori 
et al. 2023, Singh et al. 2024]. Integration of IoT for Real-
time Monitoring - Future research should explore the 

integration of AI with other advanced technologies like the 
Internet of Things (IoT), digital twins, and sensor monitoring 
to enhance real-time adaptability and predictive 
maintenance in machining operations [Rajesh et al. 2022, 
Murzin 2024 Multi-Objective Optimization – There is a need 
for developing multi-objective optimization approaches that 
consider various aspects of machining processes, such as 
tool wear, product quality, and energy consumption, to 
improve overall performance [Aggogeri et al. 2021, Ullrich 
et al. 2024]. Interdisciplinary Collaboration - Addressing the 
technical and economic complexities of integrating AI into 
existing manufacturing environments will require 
multidisciplinary collaboration. This includes combining 
expertise from computer science, engineering, and 
materials science [Gao et al. 2024]. 

6 SUMMARY 

Artificial intelligence will completely transform the 
machining process in Industry 5.0 by enabling continuous 
product quality monitoring and avoiding unwanted 
manufacturing failures. Modern manufacturing requires 
efficiency, sustainability, and improved product quality. The 
turning process evolved from manual lathes to CNC, with 
the most recent development being its integration with AI. 
The future of the turning process depends on integrating AI 
into production, and integrating AI requires knowledge of 
process parameters and their impact on quality. Shape, 
surface roughness parameters, and hardness can 
characterize quality features. An in-depth understanding of 
machining parameters, tools, and cutting phenomena is 
essential for predicting these quality indicators. Artificial 
intelligence offers a suitable resolution for analyzing 
complex behaviors and giving precise outcomes. Creating 
AI models for turning requires machine learning techniques 
such as Artificial Neural Networks (ANN) and regression 
models for predictive analysis and decision-making. 
Different input and output properties are essential for 
developing a model.  
It uses structured and unstructured data, including sensor 
and image data, for real-time monitoring and optimization. 
Data processing involves filtering sensor noise, statistical 
analysis, and feature extraction for AI model training. Future 
AI advancements in machining will focus on sustainable 
practices, IoT integration, and multi-objective optimization. 
Industries can get advantages from AI-driven predictions of 
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tool wear, reduced defects such as chatter and vibration, 
and improved product quality and precision in machining. 
Additionally, AI can help reduce energy consumption, 
contributing to a more sustainable environment. 
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