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Abstract 

ANN-based predictive models are becoming increasingly popular in machining technologies. Our 
research focused on the potential applications of AI-based predictive models in micro-milling, using a 
dataset from a cutting experiment designed to analyze the tool life. This dataset was previously utilized 
solely to develop traditional regression models, so our goal was to create an Artificial Neural Network 
(ANN) that could more efficiently predict tool life based on this data. Given the small sample size of the 
dataset, leave-one-out cross-validation (LOOCV) was employed during validation. By experimenting with 
various network structures—modifying the numbers of layers and neurons, and types of activation 
functions—we determined an appropriate ANN model to outperform the original regression models. Fully-
connected feed-forward neural networks were trained using the Adam optimizer for up to 200, 500, and 
1000 epochs. The model complexity was adjusted by varying the number of hidden layers from 1 to 10 in 
steps of one, and the number of neurons per layer from 5 to 50 in increments of five. Each model’s 
evaluation was based on the Mean Absolute Error (MAE) and the Coefficient of Determination (R2) and 
Standard Deviation of repeated training. The optimized ANN structure outperformed the second-order 
linear regression method in terms of both evaluation metrics and monotonicity analysis between the data 
points. 
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1 INTRODUCTION 

In recent years, the development of Artificial Intelligence 
has been picking up pace. This trend could be largely 
attributed to the continuous and vast expansion of 
accessible and diverse data. The trend is not limited to any 
specific field, it will gain traction in more and more fields in 
the future, including industry and manufacturing. Data-
driven methods provided smart manufacturing with 
unprecedented opportunities to facilitate the transition 
toward Industry 4.0-based production. Machine learning 
and deep learning play a critical role in developing 
intelligent systems for descriptive, diagnostic, and 
predictive analytics for machine tools and process  
monitoring (Vahid Nasir and Farrokh Sassani 2021). 
Recent studies pay particular attention to tool wear, the 
determination of cutting forces, variations in surface 
roughness and other process parameters during machining 
(Jacso et al. 2023). Fluctuations in these machining-related 
parameters significantly influence dimensional accuracy 
and productivity. Moreover, excessive tool wear growth can 
potentially lead to tool breakage and subpar quality of the 
machined part (Pimenov et al. 2023). 

Adizue et al. focused on predictive modeling for ultra-
precision hard-turning, leveraging AI-driven approaches to 
optimize manufacturing processes. A full factorial 
experiment was conducted on AISI D2 hardened steel 
using a CBN cutting insert, varying cutting speed, feed and 
depth of cut, with surface roughness as the key response 
variable. To assess machine learning models, ANFIS, ANN, 
SVM, GPR type models were developed and validated for 
predictive accuracy, with ANFIS and ANN models proving 
to be more reliable in predicting surface roughness. The 
study identified optimal machining parameters to enhance 
surface quality and reduce production costs and highlighted 
the artificial intelligence’s (AI) potential in real-time 
machining adjustments and cloud-based predictive 
maintenance (Adizue et al. 2023). Balázs et al. conducted 
micro-milling experiments on hardened Böhler M303 
martensitic corrosion-resistant steel to analyze the effects 
of feed per tooth, depth of cut, and milling strategies on 
cutting force, vibration and characteristic frequencies. A 
500 μm diameter, two-fluted coated micro-milling tool was 
used. An experimental-based cutting force model was 
developed, achieving high accuracy. They concluded that 
the cutting force components increased with higher cutting 
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parameters; however, milling strategies influenced vibration 
differently. Up-milling minimized acceleration compared to 
down-milling, while groove-milling resulted in the smallest 
amplitude vibrations. Frequency analysis (FFT) revealed 
that characteristic frequencies mainly stem from process 
kinematics, with additional harmonics and environmental 
influences affecting lower-frequency components (Balázs 
et al. 2021). 

One of the main difficulties in tool wear modeling is the 
acquisition of a sufficiently large dataset. This process is 
both time and cost-intensive since gaining deeper insights 
into wear mechanisms requires repeated machining 
experiments until the cutting tool is completely worn. 
Therefore, choosing an appropriate experimental design 
method is vital (Jiju Antony and Cahyono St 2022). 

Considering three experimental factors (depth of cut, 
cutting speed, cutting feed) and four levels for each factor, 
a full factorial experiment consists of 64 trials. However, if 
the Taguchi method is applied for the design of experiments 
(DoE), the minimum required number of trials decreases to 
16 (Hisam et al. 2024). At the same time, reducing the 
number of experiments means that there is a smaller data 
set available for creating predictive models. 

To deal with a challenge caused by the small data set, the 
leave-one-out cross-validation (LOOCV) method can be 
used. In this method, the ANN is trained on the entire 
dataset except for one instance, which is then used to 
evaluate the model's performance. This process is 
repeated for all instances, ensuring every data point serves 
as the test set once. This method is advantageous when 
the data set is small: due to the training set being almost 
the entire dataset, therefore low bias will be present, as 
every data point is used for training and testing the model. 
However, it’s disadvantageous when larger data sets are 
present: due to the high resource cost in memory usage for 
every instance (Lumumba et al. 2024). 

In model development, the goal is to achieve a well-fitting 
model, but it is important to avoid overfitting. When a model 
overfits, it not only learns the essential patterns but also 
picks up on peculiarities specific to the training data. As a 
result, the predictions can become highly inaccurate when 
applied to new data. The opposite of this is an underfitted 
model, where the model fails to learn the underlying 
relationships present in the training data set (Aliferis and 
Simon 2024). In the case of a small data set, the most 
significant concern is the risk of overfitting. 

Pimenov et al. discussed modern approaches to tool 
condition monitoring within the framework of online trends 
across various machining operations. They aimed to study 
and analyze the application of traditional sensor systems 
and various AI methods for monitoring tool conditions, as 
well as to identify the advantages and disadvantages of 
these methods in modern manufacturing. To achieve this 
goal, they examined newly developed and applicable 
sensors for tool wear monitoring, along with the effective 
implementation of AI. They summarized and introduced a 
sensor systems used for tool wear monitoring and stated 
that these systems facilitate the automation and modeling 
of machining process parameters for primary cutting 
operations such as turning, milling, drilling, and grinding. 
They also covered modern artificial intelligence methods in 
the review, ranging from neural networks and fuzzy logic to 
genetic algorithms (Pimenov et al. 2023). 

2 DEVELOPING AN ANN-BASED MODEL FOR 
TOOL WEAR PREDICTION 

This paper presents a case study in which an ANN-based 
predictive model was developed for tool life prediction. 
Despite utilizing a small dataset, the model demonstrated 
excellent accuracy and reliability. This section outlines the 
dataset employed and its experimental background, the 
process of creating the predictive model, and also provides 
a comparative evaluation of its performance. 

2.1 The basis of this work 

As mentioned in the Introduction, generating data through 
targeted experiments is time and cost-consuming. 
Therefore, the base of this work on predictive modeling has 
been derived from an experiment performed by J.B 
Saedon, et al., who developed traditional regression 
models using self-made, valid micro-milling experiment 
data. The cutting experiments were conducted on a 3-axis 
CNC milling machine using a TiAlN-coated solid carbide 
end mill with a diameter of 0.5 mm. The tool had a cutting 
length of 1.0 mm, a helix angle of 30°, an edge radius of 5–
7 μm, and a shank diameter of 6 mm. The workpiece 
material was AISI D2 cold work tool steel, machined in the 
form of a block measuring 90 mm in length, 20 mm in width, 
and 20 mm in thickness. The tools used and their edge 
rounding were measured with an Alicona-type measuring 
device, while tool clamping compensation was ensured 
using a Renishaw NC3 measuring system. The milling 
machine was prepared before the start of the experiment to 
avoid errors related to heat expansion. All key parameters 
were documented during the experiment, including cutting 
speed, feed rate, depth of cut, tool life, and the amount of 
material removed, which are presented in Table 1 (Saedon 
et al. 2012).  

2.2 The data set used 

The data set was created by an experimental series based 
on a Central Composite Design, as seen in Figure 1. In the 
experiment, micro-milling was performed on tool steel with 
a hardness of 62 Rockwell, using a coated tool with four 
edges and a diameter of 0.5 mm. For interpreting tool life, 
there are several different criteria. In the presented 
experiment series, tool life refers to the time elapsed during 
machining until the tool diameter decreased by 30 μm, 
which is approximately 6% relatively (Saedon et al. 2012). 

 

 

Fig. 1: The data set’s Central Composite Design from the 
experiment of J.B Saedon, et al. (Saedon et al. 2012) 
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Table 1: Micro-milling experimental data extract from J.B Saedon, et al. (Saedon et al. 2012) 

 

Since there were differences in magnitude among the 
numerical values of the input data, all variables were min-
max normalized between 0 and 1 (Shantal, Othman, and 
Bakar 2023) using the following formulas: 

�̂�𝑐,𝑖 =
𝑣𝑐,𝑖 −min(𝑣𝑐)

max(𝑣𝑐) − min(𝑣𝑐)
= 

𝑣𝑐,𝑖 − 20

68,2 − 20
(1) 

𝑓𝑧,𝑖 =
𝑓𝑧, 𝑖 −min(𝑓𝑧)

max(𝑓𝑧) − min(𝑓𝑧)
= 

𝑓𝑧,𝑖 − 0,78

2,5 − 0,78
(2) 

�̂�𝑝,𝑖 =
𝑎𝑝,𝑖 −min(𝑎𝑝)

max(𝑎𝑝) − min(𝑎𝑝)
= 

𝑎𝑝,𝑖 − 10

85 − 10
(3) 

2.3 ANN models development and comparison 

The ANN-based predictive models were implemented using 
Wolfram Mathematica 14.1. The input layer of the ANN had 
three neurons corresponding to the three input variables 

(cutting speed, feed rate, and depth of cut), and the output 
layer had one neuron for the tool life prediction. The 
activation function of the neurons was chosen to be 
hyperbolic tangent since during testing, the traditionally 
used RELU function showed a poorer fit. All networks were 
set to be Fully-Connected Feed-Forward neural networks 
using the Adam optimizer. The experiment consisted of 
three rounds, each with a maximum training round limit of 
200, 500, and 1000 respectively. In each round, the number 
of layers varied from 1 to 10, increasing by one, and the 
number of neurons per layer varied from 5 to 50, with an 
increment of five. Therefore, 100 models were trained and 
tested each round. 

 

 

Fig. 2 The Maximum Absolute Error of the evaluated models 

 

Test 

No. 

Cutting 

speed 

Vc 

(m/min) 

Cutting 

Feed 

fc 

(µm/tooth) 

Depth of 

Cut 

ap 

(µm) 

Tool 

Life 

T 

(min) 

1 20.00 1.00 15.00 4.71 

2 50.00 1.00 15.00 1.42 

3 20.00 2.00 15.00 2.77 

4 50.00 2.00 15.00 1.10 

5 20.00 1.00 55.00 3.14 

6 50.00 1.00 55.00 0.95 

7 20.00 2.00 55.00 1.19 

8 50.00 2.00 55.00 0.55 

9 32.00 1.42 29.00 1.90 

10 32.00 1.42 29.00 1.70 

11 32.00 1.42 29.00 1.70 

12 32.00 1.42 29.00 1.90 

13 14.17 1.42 29.00 2.64 

14 68.30 1.42 29.00 0.68 

15 32.00 0.78 29.00 2.16 

16 32.00 2.5 29.00 0.92 

17 32.00 1.42 10.00 3.12 

18 32.00 1.42 85.00 1.56 
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Fig. 3 The Coefficient of Determination of the evaluated models 

 

 

Fig. 4 The Standard Deviation of 10 training repetitions 

 

To evaluate the algorithm’s performance, the leave-one-out 
cross-validation (LOOCV) method was used and to 
measure the performance, two indicators were considered, 
namely the Mean Absolute Error (MAE, refer to Equation 4) 
and the Coefficient of Determination (R2, refer to Equation 
5). The former measures the average magnitude of 
absolute errors in a set of predictions and the latter is 
commonly used for regression tasks to assess the model 
quality. In Equation 4 and 5, the measured value is marked 
as 𝑦𝑖, the predicted value as �̂�𝑖, the mean of the actual 

values as �̅� and the number of data points as 𝑛. 

𝑀𝐴𝐸 =
|∑ (𝑦𝑖 − �̂�𝑖)

𝑛
𝑖=1 |

𝑛
(4) 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑑
𝑆𝑆𝑜𝑡

= 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

(5) 

In Equation 5, if 𝑅2 = 1, then the model fits perfectly, if 𝑅2 =
0, then the model performs no better than the mean value, 

and if 𝑅2 < 0, the model is weaker predictor than the mean 

value. The MAE and R2 results for each of the 100 network 
structures are shown in Figures 2 and 3 respectively, where 
the following trends can be noticed. The low MAE and R2 
values are concentrated on the left and the lower side, while 
the high MAE and R2 values are in the upper right corner of 
the diagram. The first section indicates a lack of complexity 
that increases with more layers and neurons per layer while 
the latter area gets larger also by increasing the maximum 
epoch number. If we look at Figure 3, the graphs show that 
with more epochs, layers and neurons per layer, higher 
coefficient of determination can be achieved which 
indicates a better fitting. However, in Figure 4 where the 

standard deviation of the results of 10 training repetitions is 
shown, there are some sporadic red and orange dots even 
in the area declared for satisfactory models. The high 
variance indicates the unreliability of the network structures. 
In other words, using the LOOCV method, the appropriate 
size of the ANN structure to ensure sufficient complexity 
can be well limited based on MAE and R2. Furthermore, 
uncertain network structures can be filtered out by 
repeating the training several times and analyzing the 
variance between the results. 

However, checking for overfitting requires further 
examinations. To address this, we conducted a visual 
inspection of the predictive models' behavior across various 
structures between measurement points, while 
systematically fixing one input variable at a time, namely the 
axial depth of cut. Overfitting is indicated when the 
predictive model shows inconsistent behavior between 
measurement points (refer to Figure 5). We experienced 
this behavior in all cases with larger network structures. 
Based on this analysis, the model with 5 layers and 20 
neurons per layer using 500 epochs was designated as the 
optimal network with simple structure, high accuracy and 
good reliability (refer to Figure 6). 
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Fig. 5 Inconsistent behavior of the predictive model when overfitting between measurement points 

 

Fig. 6 The consistent behavior of the optimal model between measurement points 

 

To summarize the key steps presented in this section, the 
models were trained using the Leave-One-Out Cross-
Validation (LOOCV) method to reduce bias in the 
evaluation process. Models demonstrating favorable 
performance in terms of Mean Absolute Error (MAE) and 
Coefficient of Determination (R²) were shortlisted; however, 
inconsistencies between individual data points were still 
observed. To investigate these regions of uncertainty, 27 
intermediate data points were introduced. Each neural 
network configuration was trained ten times on these 
points, and their performance was evaluated based on the 
standard deviation of the predictions.  

The optimal model, selected according to all three 
performance indicators (MAE, R², and standard deviation), 
was a Feed-Forward Fully-Connected Artificial Neural 
Network (ANN) with five hidden layers, 20 neurons per 
layer, and 500 training epochs. 

2.4 Comparison with traditional regression methods 

The optimized model was subsequently compared to two 
analytical models developed by J. B. Saedon et al., namely 
a first-order and a second-order regression model based on 
an extended form of Taylor’s tool life equation. The 
comparison was conducted using the Coefficient of 
Determination as the primary evaluation metric. For the 

first-order model, this value was 𝑅2 = 0.882, for the 

second-order model, it was 𝑅2 = 0.984 (Saedon et al. 
2012). These two models were surpassed in Coefficient of 
Determination by the optimal ANN-based model, which had 

a 𝑅2 = 0.989 (refer to Figure 7). Furthermore, the ANN-
based model did not exhibit monotonicity inconsistencies in 
tool life prediction, as observed in second-order linear 
regression (refer to Figure 6 and 8). So, with an ideal 
structure and training method, the ANN-based prediction 
can be considered more favorable in terms of both accuracy 
and reliability. 
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Fig. 7 The Coefficient of Determination of the different predictive models 

 

 

Fig. 8 The inconsistent behavior of the second-order regression between measurement points 

 

3 SUMMARY 

In this paper, an experimental dataset obtained from 
Central Composite Design (CCD) was used as the basis for 
developing Feed-Forward Fully-Connected Artificial Neural 
Network (ANN) models for tool life prediction. Three 
batches of training were performed with 200, 500, and 1000 
epochs, respectively. In each epoch, the number of hidden 
layers varied from 1 to 10 (in increments of one), and the 
number of neurons per layer ranged from 5 to 50 (in 
increments of five). In total, 100 models were trained. These 
models were compared based on Mean Absolute Error 
(MAE) and Coefficient of Determination (R²) to assess 
point-wise accuracy, as well as based on the standard 
deviation of repeated trainings. Finally, the optimal network 
was selected based on its overall performance across all 
three evaluation metrics. 

In summary, the following statements can be made: 

 increasing the number of layers, neurons and epochs 
generally result in a better Mean Absolute Error and 
Coefficient of Determination but carry the risk of 
overfitting 

 the size of ANN structure that ensures the required 
complexity can be well limited by using the LOOCV 
method  

 testing with intermediate points can show the 
phenomenon of overfitting 

 in the current experiment, the Feed-Forward Fully-
Connected ANN structure with 5 Layers, 20 Neurons 
per Layer and 500 epochs of training were more 
accurate and expressive compared to traditional 
regression models. 

Further development opportunities could arise with more 
experiments and the involvement of other ANN structures, 
as more data is needed to verify the reliability of the model 
and to be a basis for further expansions. In cutting tool life 
analysis, even a full factorial experiment would not yield a 
large dataset, so LOOCV is expected to be an effective 
validation method in such cases as well. Although this work 
focused solely on the tools, the scope could be extended in 
the future to include other parameters such as vibration 
level or surface quality.  
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