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Recent shifts in Europe's security landscape driven by evolving 
hybrid warfare tactics require innovative solutions for real-time 
threat detection. This paper presents a security concept 
leveraging Beyond Visual Line Of Sight (BVLOS) drone flights 
combined with state-of-the-art YOLO-based object detection to 
enhance surveillance capabilities. By integrating advanced drone 
technology with AI-driven video analysis, the proposed system 
aims to detect armed individuals and mitigate potential hybrid 
attacks in critical infrastructure areas. A specialized dataset is 
prepared to improve detection accuracy and response times, 
ensuring cost-effective, autonomous monitoring in high-risk 
scenarios. This approach offers a robust solution for proactive 
perimeter security, optimizing resource allocation and 
reinforcing safety measures in an increasingly volatile 
environment. The results indicate substantial promise for future 
security implementations. 
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1 INTRODUCTION  

The security landscape in Europe has undergone a profound 
transformation since the outbreak of the war in Ukraine. Initially 
characterized by traditional military confrontations, the conflict 
has evolved into multifaceted hybrid warfare, blending 
conventional tactics with cyber operations and psychological 
strategies. One striking aspect of this evolution is the extensive 
use of both commercial and custom-built FPV drones, which 
have not only intensified battlefield dynamics but also 
contributed to a broader sense of insecurity across the continent 
[Pemcak 2024]. 
Beyond the immediate military implications, this new form of 
warfare has introduced unconventional threats targeting the 
public domain. European nations now face coordinated hybrid 
attacks—often delivered via menacing emails containing bomb 
threats or warnings of impending armed assaults on public 
institutions. Educational establishments, from primary schools 
to universities, have increasingly become targets, forcing 
authorities to implement disruptive measures such as 
evacuations, deployment of security forces, and mobilization of 
specialized response teams. These reactive strategies impose 
significant financial burdens on states and strain security 
resources, potentially leaving other critical areas vulnerable. 
Amid these escalating challenges, rapid advancements in 
artificial intelligence offer promising avenues for enhancing 
public safety. AI-driven systems now enable the autonomous 
analysis of video footage, opening up new possibilities for early 
threat detection. In particular, state-of-the-art object detection 
algorithms—such as the YOLO (You Only Look Once) models 

from Ultralytics [Redmon 2016] —have emerged as industry 
benchmarks due to their balanced performance in speed and 
accuracy. The latest iteration, YOLO11, along with its variants (n, 
s, m, l, and x), provides a versatile framework suitable for a wide 
range of detection tasks. Leveraging these cutting-edge models, 
we are developing a system to detect armed individuals from 
drone-captured footage by training a model on custom dataset, 
thereby enhancing real-time detection capabilities during BVLOS 
(Beyond Visual Line Of Sight) operations and contributing to 
more effective, proactive security management. However, to 
fully realize this potential, such technological innovations must 
be implemented within a robust and evolving regulatory 
framework. As highlighted in [DAVIES 2018], the rapid 
advancements in UAV technologies and their expanding 
operational roles necessitate regular updates to regulatory 
frameworks. The European Union Aviation Safety Agency (EASA) 
has proactively developed comprehensive guidelines for BVLOS 
operations, including the STS-02 [EASA n.d.a] summary of BVLOS 
flight rules—integral to Regulation (EU) 2019/947—which 
establish clear operational, technical, and safety standards to 
harmonize UAV operations across European member states. 
In parallel, the commercial drone sector, exemplified by the DJI 
Matrice 4 series and the DJI Dock 3 charging station introduced 
in 2025, has spurred significant legislative transformation. On 
May 22, 2024, Slovakia achieved a historic milestone with its 
first-ever BVLOS flight, during which Východoslovenska 
Energetika Holding, a.s. – Východoslovenska distribucna (VSD) 
successfully conducted an inspection of the traction network. 
This accomplishment was enabled by adherence to the PDRA – 
G03 [EASA n.d.b] guidelines, a detailed framework outlining 
performance data and risk assessment protocols tailored for 
complex BVLOS scenarios. While PDRA – G03 focuses on 
technical and risk management aspects, it effectively 
complements the broader operational guidelines defined by STS-
02. Together, these frameworks form a synergistic legislative 
approach that ensures robust operational safety while fostering 
innovation in commercial drone technology. 

2 RELATED WORKS 

Object detection is a widely discussed topic due to its broad 
application in critical industries such as healthcare, security, 
manufacturing, and more. Nowadays, powerful GPUs and CPUs 
provide sufficient computational power for a wide range of 
machine-learning applications [Hortobagyi 2021, Kuric 2021 & 
2022, Hu 2022]. 
The study [Zhang 2024] describes an innovative implementation 
of YOLO integrated with autonomous aircraft inspection using a 
drone. During the inspection, the drone flies around the aircraft 
and transmits video footage to a ground station where the image 
processing is performed. By handling the image analysis on the 
ground station instead of on the drone, the system eliminates 
the need for high onboard computational power. This 
automated approach can replace manual inspections carried out 
by a qualified technician, significantly reducing maintenance and 
repair costs during test flights and regular aircraft operations. 
The study [Di 2023] provides a typical example of employing 
YOLO for the detection of electrical power lines using drones in 
hard-to-reach areas. In these settings, traditional manual 
inspections would incur high costs and pose elevated risks to the 
distribution company's personnel. 
Study [Do 2023] represents a significant contribution by 
introducing a novel method for human detection using drone 
footage. The proposed approach achieves an impressive average 
accuracy of around 90.0% mAP@0.5 on the Human Drones 
dataset. Detecting humans from aerial imagery is particularly 
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challenging, as the human figure often occupies only a small 
portion of the image while the remainder is filled with 
environmental noise. Despite these challenges, the method 
demonstrates robust performance, highlighting its potential for 
practical applications in surveillance and security. 
From a public safety standpoint in public spaces and institutions, 
baggage screening is frequently implemented. In addition to 
traditional manual inspections, security personnel are 
increasingly exploring automated solutions to enhance 
efficiency and accuracy. The study [Kundilokovit 2024] focuses 
on the detection of hazardous objects in X-ray scans of baggage. 
The authors compare the performance of several models, 
including CNN, RCNN, Detectron, RetinaNet, and YOLO, to 
identify the most effective approach for automating threat 
detection. 
Studies [Sumi 2024, Chitravanshi 2024, Pawar 2022] further 
demonstrate the suitability of YOLO models for hazardous object 
detection. In these investigations, YOLO-based approaches 
achieved exceptionally high detection accuracy for various 
dangerous weapons, including both firearms and pointed 
weapons. This impressive performance not only underscores the 
reliability of YOLO in complex security scenarios but also 
highlights its potential to significantly enhance threat detection 
capabilities. By providing rapid and precise identification of 
hazardous items, these models offer a promising solution for 
improving safety measures in environments where swift 
response is critical. 
As mentioned in the introduction, adherence to applicable 
legislation, and its continuous adaptation to emerging 
challenges by relevant authorities, is an indispensable part of all 
BVLOS drone operations. Study [Lieb 2020] highlights a pan-
European operational concept for UAS, centered on the UTM 
approach known as U‑ space. U‑ space is a digital ecosystem and 
regulatory framework designed to safely and efficiently 
integrate unmanned aerial systems into European airspace. It 
offers essential services such as flight planning, airspace 
monitoring, and real‑ time traffic management, thereby enabling 
seamless coordination between drones, manned aviation, and 
other airspace users. Through standardized procedures and 
robust technical support, U‑ space empowers both operators 
and regulators to manage BVLOS operations with enhanced 
safety and efficiency while fostering innovation in the rapidly 
evolving drone industry. 

3 SECURITY CONCEPT DESIGN 

In the context of our proposed concept, BVLOS operations are 
indispensable. Visual line of sight (VLOS) flights require the 
drone operator to maintain continuous visual contact, which can 
pose a significant security risk when monitoring areas with 
potentially armed intruders. In 2025, the Chinese company DJI 
introduced a commercially available solution for safe BVLOS 
operations, namely the Matrice 4 drone paired with the DJI Dock 
3 ground station. This system not only supports autonomous, 
pre-programmed flight trajectories, reducing operator 
workload, but also integrates real-time streaming of footage. 
Together, these features provide an ideal tool for the automated 
monitoring of designated public spaces and the rapid detection 
of potential threats, ultimately contributing to more efficient 
and proactive security management. 
Our concept is built on a commercially available DJI solution, 
extended with a computer powered by NVIDIA Jetson AGX Orin 
for artificial intelligence (Fig. 1). The NVIDIA Jetson AGX Orin 
64GB delivers up to 275 TOPS of computational performance 
while consuming only 60W, making it exceptionally energy 
efficient. This powerful edge computing platform is engineered 

to handle demanding AI applications in real time, enabling the 
rapid processing of complex neural network and computer vision 
tasks. Its robust GPU architecture, substantial memory capacity, 
and optimized power consumption make it an ideal component 
for enhancing our system’s automated threat detection 
capabilities. 

 
Figure 1. Security concept with trained model to detect potential thread 

A key element of the proposed concept is the development of a 
robust model for detecting potential threats. This process 
involves creating a sufficiently large dataset, accurately labelling 
individual objects, and defining the relevant object classes 
before training a neural network. In the subsequent chapter, we 
will delve into these steps in greater detail, outlining the 
methodologies and best practices for each phase of the model 
development process. 

4 DATA COLLECTION 

All datasets begin with the collection of images or videos that 
can be used for further annotation. It is important to consider 
the necessity of diverse images capturing the target object in 
different conditions, such as various angles, distances, 
background variations, and lighting conditions. The quality of the 
prepared dataset directly affects the quality of the output 
model. Creating a dataset is one of the most important steps in 
such a project and will therefore be discussed in this chapter. 
Our safety system aims to detect weapons and people to identify 
potential threats. There are many official and widely used 
datasets that could be utilized. For instance, the large-scale 
COCO dataset [Lin 2014] includes 328k images with 91 object 
categories. However, it is not specialized for aerial detection. On 
the other hand, one of the most well-known datasets for drone-
based applications is the VisDrone dataset [Zhu 2021], which 
consists of manually annotated images, including over 2.5 
million bounding boxes of pedestrians, cars, bicycles, tricycles, 
and more. 
However, none of the available and verified datasets include 
labelled aerial images of armed individuals. Considering these 
limitations, as well as the importance of having direct control 
over the dataset, its modifications, and the nature of the 
discussed topic, it is suitable to build a dedicated dataset. 
None of the well-known datasets were perfect on the first 
attempt, but they provide valuable insights into the problem and 
help guide further data collection. In our case, we started with 
outdoor scenes, where we positioned three different DJI Mini 
drones at heights ranging from 2 to 5 meters, varying their 
distances from the location where actors moved with a gas gun. 
Another set of images was captured using DJI Mini drones in 
indoor scenarios. After the first sets of video shooting, we 
collected around 500 images of people, both armed and 
unarmed. 
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During data collection, we prioritized safety and took all 
necessary precautions to avoid causing unintentional panic 
among bystanders. While walking around the streets with a 
visible gun would have been a valuable source of data, it would 
likely cause panic and is not even legal, as such gas guns must be 
covered in public. This is one of the limitations to consider before 
collecting footage. 

5 IMAGE PRE-PROCESSING 

Image pre-processing involves manipulating images and 
transforming them into a standardized format. This step directly 
impacts model precision and computational efficiency, and the 
choice of specific pre-processing techniques should be guided by 
the application’s requirements. In this study, we applied auto-
orientation to standardize image orientation based on EXIF 
metadata. Omitting this step could result in a mismatch between 
image and bounding box orientations, leading to incorrect model 
training and inference. 
A common practice in deep learning is to start training with 
lower-resolution images to evaluate model accuracy and 
performance efficiently. Smaller images reduce training time 
and speed up inference. However, if the application demands 
higher resolution, it is advisable to progressively increase image 
size. In this work, we employed resizing as the next pre-
processing step while maintaining the original 16:9 aspect ratio. 
We reduced the resolution from 1920×1080 to 960×540, 
ensuring a balance between computational efficiency and model 
performance. 

6 DATA AUGMENTATION 

The augmentation process helps generate new images for the 
dataset by modifying the original ones. In this chapter, the 
augmentation steps used in our study will be discussed.  
To improve the model's ability to recognize objects from 
different perspectives, we first applied horizontal flipping. We 
also rotated the images clockwise, counter-clockwise, and within 
a range of -15° to +15° as shown on Fig.2. Additionally, to cover 
more perspectives, we applied shear transformations of up to 5° 
both horizontally and vertically, which helps the model become 
more resilient to variations in an object's pitch and yaw. 

(a) (b) (c)  
Figure 2. Rotation augmentation: (a) original image (b) rotated by -15° 
(c) rotated by +15° 

The steps mentioned above help expand the dataset by 
incorporating objects in various positions, but ensuring diversity 
in lighting conditions is equally important. Therefore, as the next 
augmentation step, we created a new subset of images by 
increasing and decreasing brightness by 25%. Another subset 
was created by modifying saturation within a range of -30% to 
+30% and adjusting exposure between -15% and +15% as shown 
on Fig. 3. 

(a) (b) (c)  
Figure 2. Exposure adjustment: (a) original image (b) exposure 
decreased by 15% (c) exposure increased by 15% 

Next, we randomly altered image colours by varying the hue 
between -25° and +25°. Following this, we artificially added noise 
to the images by converting 2% of the pixels to either black or 
white (Fig. 4), which helps the model become more resilient to 
camera artifacts. 

(a)  

(b)  
Figure 4. Noise addition: (a) original image (b) 1.85% of pixels randomly 
converted to black or white 

Finally, as the last augmentation step, we applied mosaic 
augmentation. This technique helps the model recognize targets 
in different locations and enhances its robustness to varying 
surroundings. 
In the end, after applying all augmentation techniques, our 
dataset grew to approximately 1200 pictures. 

7 MODEL TRAINING 

In this study, we trained models using the state-of-the-art YOLO 
11 detector and assessed their performance. To better 
understand how different YOLO variants perform on our custom 
dataset, we focused on training the n, m, and x versions. All 
models were trained with a batch size of 16 for 200 epochs. The 
models were trained on Google Colab utilizing NVIDIA A100-
SXM4-40GB GPUs, ensuring high computational efficiency. 
Based on the results, we identified the most effective model for 
further optimization. This assessment helps determine whether 
YOLO 11-based models are well-suited for our use case. The first 
metric used is Precision, which indicates the model’s ability to 
reduce false positive detections, ensuring that identified objects 
are truly present in the image. Precision is defined as: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (1) 

 
where TP (True Positives) represents the number of correctly 
detected objects—meaning the model identified objects that 
exist in the image. FP (False Positives) accounts for cases where 
the model mistakenly detects objects that are not actually 
present. 
Another crucial evaluation metric is Recall, which assesses the 
model’s ability to correctly identify all relevant objects, 
minimizing instances of missed detections. Recall is calculated 
as: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (2) 

  
where FN (False Negatives) refers to cases where the model fails 
to detect an object that is actually present in the image. 
The final performance metric considered in this study is mAP50-
95, which provides a comprehensive evaluation of the model by 
analysing its precision and recall across various Intersection over 
Union (IoU) thresholds, ranging from 50% to 95%. 
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8 RESULTS 

As mentioned earlier, we trained three YOLO model variants: n, 
m, and x. As shown in Table 1, the fastest model is the n variant, 
achieving an inference speed of 0.7 ms with an mAP50-95 of 
0.603. This model would be the optimal choice for applications 
where speed is the top priority. On the other hand, the m variant 
demonstrated the highest mAP50-95, reaching 0.675, 
outperforming the x variant in terms of precision. Based on these 
results, the m variant appears to be the most suitable for 
applications prioritizing accuracy, while still maintaining 
relatively fast inference speed. 

Table 1. Performance comparison of models using different YOLO11 
variants 

Variant All classes 

Inference 
speed 

Precision Recall mAP50-95 

n 0.7 ms 0.864 0.756 0.603 

m 2.4 ms 0.858 0.806 0.675 

x 4.9 ms 0.879 0.799 0.645 

For the proposed safety concept, the m variant was identified as 
the most suitable model, offering the highest precision while 
maintaining a good inference speed. Fig 5. illustrates the training 
process, showing the changes in precision, recall, and mAP50-95 
over 200 epochs. Precision exhibited significant oscillations 
during the initial epochs, followed by a gradual decline 
throughout the training process. Recall stabilized around 0.75, 
with fluctuations, while the highest recorded value in the best 
epoch reached 0.806. The mAP50-95 metric steadily increased 
over the entire training period, peaking at 0.675, underscoring 
the model’s ability to provide accurate detections across varying 
Intersection over Union (IoU) thresholds. 

(a) (b)  

(c)  

Figure 5. Training progress: (a) Precision (b) Recall (c) mAP50-95 

Even though the model achieved satisfactory results, further 
improvements remain a key objective. As shown in Figure 6, the 
model demonstrated high confidence in detecting humans, 
whereas confidence in detecting guns was noticeably lower. This 
discrepancy may be attributed to an imbalanced dataset, a lower 
number of gun instances, or insufficient representation of real-
world conditions. Additionally, object size poses a challenge, as 
models generally struggle with detecting smaller objects. 

(a) (b)  
Figure 6. Model Inference: (a) Indoor scenario (b) Outdoor scenario 

9 CONCLUSION AND FUTURE WORK 

The integration of drones and computer vision for safety 
applications has gained significant interest in recent years, with 
further advancements on the horizon. As demonstrated in this 
study, YOLO models have proven to be highly effective and well-
suited for these applications. Successful object detection relies 
on comprehensive data collection, accurate annotation, and 
careful dataset preparation, ensuring that the dataset is as 
diverse and representative of real-world scenarios as possible. In 
this work, we developed a custom dataset specifically for a 
security-oriented concept leveraging BVLOS (Beyond Visual Line 
of Sight) drone operations, covering both indoor and outdoor 
environments. To enhance diversity, various data augmentation 
techniques were applied. As discussed in the Results section, the 
most suitable model for our concept was the n variant of the 
YOLO model, achieving a precision of 0.858, recall of 0.806, and 
an mAP50-95 of 0.675. These results are promising, particularly 
considering the inference speed of 2.4 ms and the potential for 
further dataset improvements and optimized training 
configurations. Future research should focus on expanding the 
dataset with additional real-world scenarios; however, capturing 
such data presents challenges, as recording footage in public 
areas is legally restricted, particularly when firearms are 
involved. Additionally, future work should explore advanced 
augmentation techniques and alternative training setups to 
further enhance model efficiency. While developing a robust 
safety application poses numerous challenges and limitations, 
ensuring human safety remains a top priority, making these 
efforts worthwhile. 
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