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Robotic arms (RAs) are progressively advancing and extensively 
utilized across several industrial and research domains. In 
conjunction with that advancement, researchers have 
incorporated numerous intelligent algorithms to facilitate the 
RA’s obstacle avoidance strategy. The paper proposes the Deep 
Reinforcement Learning (DRL) method to control the RA to 
maneuver the ball on the workspace to a specified location. 
Based on Resnet18-Unet model, 2D images will be analyzed to 
get the coordinate of the object’s center. The input’s data is 
utilized to train the Proximal Policy Optimization (PPO). 
Throughout this training procedure, the RA will discern suitable 
moves to maneuver the ball to the designated location. Based 
on the action’s reward, RA’s operation aims for maximum total 
reward results. The simulation results are completely 
conducted by PyBullet environment. 
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1 INTRODUCTION  

Robotic systems have been significantly integrated into 
industrial processes throughout the past decade. The 
inclination towards automatic systems and reconfigurable 
production lines has prompted control modules to implement 
methodologies. The vision-based robotic perception system has 
recently been utilized in various domains such as military, 
industrial and domestic sectors [Dang 2024]. Therefore, object 
detection (OD) enables robots to autonomously analyze object 
information from live images [Nguyenb 2024]. In self-driving 
applications and navigation, object tracking (OT) face complex 
challenges, as the entities involved in OT are inherently more 
intricate to manage a series of images [Maaß 2020].  
Trajectory planning is a vital issue in robotic systems, especially 
in the motion control of robotic manipulators. In addition, the 
most important issue involves determining a continuous, 
unobstructed path from the initial point to the destination. To 
do so, robotic systems consider potential obstacles, kinematic 
constraints, and the robot’s dynamic modelling to efficiently 
track the required trajectory. Furthermore, it is crucial to 
prevent collisions or unintended movements. Currently, various 
investigations are underway regarding the control of RA’s 
movement. Diverse methodologies, including PID, linear 
quadratic regulator (LQR), and fuzzy, may be employed for this 
objective [Zabi´nski 2006]. Classical PID-based feedback control 
is the primary choice. However, PID controller is improved to 
overcome derivative filtering [Deniz 2018] or lead-lag 
compensation [Pebrianti 2017] in process control. Because of 

nonlinear factors’ influence, the multi-regional PID method is 
combined with fuzzy method [Nguyen 2025]. The evolution of 
DRL and neural network methods (NNMs) has been increasingly 
developed. Hence, reinforcement learning seamlessly 
integrates with deep learning techniques [Nguyen 2020]. The 
Q-learning algorithm [Peng 2022] marked a significant 
milestone to effectively solve control problems. In addressing 
uncertainties within environments, Chen et al. [Chen 2022] 
introduced the improved collision avoidance trajectory based 
on DRL. Moreover, [Zheng 2023] utilized control policies, 
parameterized by NNMs using Proximal Policy Optimization 
(PPO) algorithms. Additionally, [Cai 2023] introduced a novel 
DRL-based approach for RA’s path planning. Nonetheless, 
despite the pro-gress, these methods continue to face 
significant challenges. The DRL reward functions solve the 
problem thoroughly instead of just suggesting it in a 
multidimensional coordinate system. 
Increasing RA’s trajectory planning efficiency in dynamic 
environments requires optimizing exploration within complex, 
high-dimensional spaces [Nguyena 2024]. RA is frequently 
employed with LiDAR sensors or IMU sensors to gather 
environmental data. But LiDAR may struggle to detect lowlying 
obstacles or experience signal interference in intricate 
environments, while IMU sensors may become distorted over 
time, adversely impacting the RA’s computational performance. 
Consequently, the camera is an appropriate option for the task 
of gathering environmental data for vision-based RAs [Nguyenb 
2024, Nguyena 2024, Dang 2025]. The paper utilizes the DRL 
method to enable the RA to maneuver the ball on the 
workspace to a specified location. Images captured by the 2D 
camera will be analyzed to get the object’s center. Based on the 
proposed PPO, every RA’s action is executed by a reward, with 
the objective of maximizing the total reward. The simulation 
results are completely conducted in Pybullet environment. 
The subsequent sections of the paper are structured as follows. 
Section 2 focuses on how to process information from the 
environment, design components for the RL, and DRL models. 
Section 3 presents the experimental results. Finally, the paper 
concludes with a summary of the findings and suggestions for 
future research. 

2 PROPOSED METHOD  

2.1 Model architecture  

 
(a). The RL architecture 

 
(b). The RA’s working environment 
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Figure 1. RA’s controller 
RL is a subset of machine learning wherein an agent acquires 
knowledge through interaction with the environment to 
optimize cumulative reward. RL operates on the principles of 
experimentation and environmental feedback, wherein the 
agent executes behaviours contingent upon the present state 
of the environment and receives feedback in the form of 
incentives. The research examines the RA to manipulate joint 
rotation angles to accurately strike a ball towards a target, in 
Fig. 1a. Next, Fig. 1b illustrates the RA’s working environment 
including: a ball with a radius of R, a bucket as the destination, 
a top-down camera, in which the robot’s base is stationary, the 
camera and the bucket are stationary. Finally, Proximal Policy 
Optimization (PPO) is a policy optimization technique derived 
from the Policy Gradient methodology among reinforcement 
learning methods. PPO enhances prior methodologies by 
constraining the policy update rate to a permissible range, 
hence preventing excessive alterations between updates. 

2.2 RL State 

 
Figure 2. Resnet18-Unet 

The state (1) includes information about the center position of 

the ball { , , },ball b b bs x y z the end position of the RA 

_ 4 4 4{ , , },arm ends x y z the center position of the box 

{ , , },box t t ts x y z  to calculate the distance difference 

_ _,  and ball arm ball boxDist Dist to RL control the ball. 

_{ , , }ball arm end boxstate s s s              (1)                                                                              

The system uses a 2D camera arranged in Fig. 1b to observe the 

entire working area and all objects in it. The location 

determination process is performed through converting images 

from RGB to segmentation images by Resnet18-Unet (Fig. 2), 

then the shape recognition method through the geometric 

characteristics of each object to ensure high accuracy and 

stable operation in different environmental conditions. 

Moreover, the input image is processed to remove noise and 

highlight the geometric features of the object. The Hough Circle 

Transform method is applied to detect circles in the image after 

preprocessing. Therefore, the center of the ball is determined 

by (2): 
2 2 2( ) ( )b bx x y y r        (2)  

where: ( , )b bx y is the coordinate of the center of the circle, r is 

the radius of the circle. 

The Contour Detection method is used to detect areas that 

could be boxed. Similarly, the center of the box is determined 

by the midpoint of the bounding box, in (3): 

w
,

2 2
t t

h
x x y y           (3)      

where: x, and y are the coordinate of the origin of the camera; 

( , )t tx y  is the coordinate of the center of the box; w and h are 

the width and height of the bounding box, respectively. 
Because the ball only moves in a plane and the box is fixed, so 

,b tz const z const  . From there, get the coordinates of ball 

{ , , }ball b b bs x y z  and box { , , }box t t ts x y z  according to the 

original RA. _ 4 4 4{ , , }arm ends x y z  will be continuously updated 

by the forward and inverse kinematics as the RA moves. 

2.3 RL Action 

 
Figure 3. The kinematics of the robot arm 

{ ( , ); ( , ); ( , )}Move x random n n y random n n z random n n            (4) (4) 

The action here is set according to the moving point of the 

last link, with each step, the last link will move so that 

each x, y, z axis is not more than (-n, n) units, then use 

inverse kinematics to calculate the displacement of each 

joint, continuously update so that the RA tracks the 

trajectory. The RA consists of four links and four rotating 

joints, the coordinate system (Fig. 3), the D-H table is 

calculated in Table 1. 

i a α (o) d θ 

1 0 90 L1 q1 

2 L2 0 0 q2 

3 L3 0 0 q3 

4 L4 0 0 q4 

Table 1. The D-H table 

To calculate the RA’s inverse kinematics, it is necessary to 

determine a transformation matrix from link i-1 to i, in (5).  

i 1

iT
0

0 0 0 1

i i i i i

i i i i i i i

i

c s c s s a c

s c c c s a s

s c d

     

     

 


 
 

 
 
 
 

      (5)      

where 
       

   
i j i j

i j k i j k

cos , sin , sin θ θ ,cθ cos θ θ

, sin θ θ θ ,  and cos θ θ θ

i i i i ij ij

ijk ijk

c s s

s c

    

 

     

     

 

From the transformation matrices (5), the general 

transformation matrix is calculated from link 0 to link 4 in (6): 

11 12 13

21 22 230 0 1 2 3

4 1 2 3 4

31 32 33

T T T T T

0 0 0 1

x

y

z

r r r P

r r r P

r r r P

 
 
     
 
 
 

     (6)
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Hence, corresponding coordinates Px, Py, Pz, let φ = 0 so that 

the last link is according to top-down in (7): 

 

 
1 1 3 23 2 2 4 234

1 1 3 23 2 2 4 234

1 3 23 2 2 4 234

2 3 4

x

y

z

P c L L c L c L c

P s L L c L c L c

P d L s L s L s

   

   

   

   

  

     (7) 

By solving the RA’s inverse kinematics problem, the four angles 

1 2 3 4, , ,  and     are determined as (8): 

 

   

 

1

1 1 1 1 4 234

2 1 4 234 1 2 2 2 2 2

2 2 2 2

3 2 1 2 2 2 2

2 3 23 23 3

4 2 3

tan 2 ,

2 2

sin c

 

os

tan 2 ,

 

y x

x y

z

a P P

S P c P s L L c

S P d L s S L c S L s

L L S S a b c

a s c



  

  

   



   

    

       

  

  

    (8) 

2.4 RL Reward 

The Reward section consists of two parts (Fig. 4): 

- First phase: When the RA initiates movement without 
contacting the ball, the reward function will assess the 
reward according to the RA’s motion; the greater the 
distance of the last step, the more points will be 
subtracted.  

    - Second phase: Upon contact with the ball and to the 
initial center position of the ball, the RA will cease 
movement, and the reward will be computed depending on 
the ball's deviation; greater deviation will result in a higher 
deduction of points. 

 

Figure 4. RL reward in programming 

The goal is for the RA to understand how the final step 
affects the direction of the ball, hence adjusts its trajectory 
to match the destination. In Fig. 5, the Proximal Policy 
Optimization Algorithms (PPO) model [11] is utilized to 
train the RA action including two neural networks: one 
neural network of policy, and one value neural network. 
Policy has the input as the state; the output as the 
action_dim vector; representing the average of Gaussian 
distribution. 

 
Figure 5. Training Process with PPO and NN Methods 

 

 

The value has the input as the state, the output as the 

advantage value of state. Therefore, those parameters are 

passed into PPO to calculate the loss. Next, to adjust the two 

neural networks (9) and (10):  

     1

CLIP VF S CLIP VF s

t t t t tL L c L L        E      (9)  

where CLIPL plays the role of adjusting the update rate of the 

old and new policies within the limitation. Hence, the Policy is 

not much fluctuated to stabilize the training process. 

  [min( ( ) , ( ( ),1 ,1 ) ]CLIP

t t t t tL E r A clip r A                              (10) 

Then, the main coefficients in (10) are defined as follows: 

  
 
 

|

|
old

t t

t

t t

a s
r

a s









 is the ratio between the action 

probability of the new and old policies. 

  is the PPO’s clipping parameter, the value of adjusting 

the policy limit. 

Finally, the Critic loss function reduces the error between the 

estimated value and the actual value to estimate the value of 

the environment, in (11): 

  
2VF

t tL V s R        (11) 

where  tV s ) is the output value of the neural network value; 

Rt is the value of the common part calculated from the 

environment. 

Because CLIPL support PPO to increasingly converge the 

optimal trajectory. Hence, the RA will lose the ability to explore 

more trajectories. In addition, the entropy function increases 

the exploration ability in (12): 

  2

S

t tL c s s       (12)    

 Distribution entropy   :s  the entropy of the policy. 

 c: a coefficient adjusts the influence of entropy. 

3 EXPERIMENTAL RESULTS AND DISCUSSION 

3.1 Simulation environment 

The simulation process is performed on a computer device 
with the following pa-rameters: CPU: 13th Gen Intel i9-
13900K 5.5Ghz, RAM: 64GB, GPU: GeForce RTX 4080 
16GB GDDR6X [14]. The head is designed in the shape of 
a baseball bat so that when it contacts the ball, it will be a 
point contact, creating an additional element of complexity 
for the RA to find the correct contact position between the 
end link and the ball. In first phase, the RA will need to find 
the direction and point of contact with the ball so that the 
ball can move towards the box. That direction will be 
towards the center of the ball, without causing the ball to 
bounce or veer, in second phase (Fig. 6). 

 

(a). View from xOy                                     (b). The first phase of RA reward from xOz 

 

(c). The bat successfully hit the ball from xO            (d). The first phase of RA reward from xOz 

Figure 6. Simulated results of RA operation 
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Based on Pybullet environment, the model trains 20000 
episodes with each episode being 125 steps (Fig. 7). The 
original RA’s position is [0.0,0.0,0.0], the end joint position is 
[0.42, -0.08, 0.22, the ball position is [0.8, 0.0, 0.0], the box 
position is [0.97, 0.0, -0.1]. 

 
Figure 7. RA’s simulation using Pybullet environment 

3.2 Experimental Results 

At the beginning of training, the results are quite unstable, 
although there is success, it is due to randomness. As 
time goes on, the obtained results become more stable 
because the robot has learned how to hit the ball optimally 
and which trajectory to choose to get the largest reward 
(Fig. 8a). 

 
(a). Training reward 

 
(b). Success rate over each 100 epoch 

Figure 8. Reward through time 

Then, Fig 8b shows the success rate of each 100 epochs 
corresponding to the reward. The training rate is higher 
because the policy has converged. Despite the increasing 
search rate, the next 100 epochs will not be fully optimized but 
can continue to explore other trajectories. Therefore, this 
proves that the proposed model operates successfully and 
explores completely the environment. Fig. 9 demonstrates the 

feasibility of the results, we tested in random initial values 
instead of just having one fixed point for training, each point is 
marked as the success rate over 300 epochs, randomly 

choosing the position in the range  0.8, , ,0.0 .random y y    At 

y = 0.005 m, the training results are still feasible and stable 
above 90%, however when starting to increase the distance, 
the success rate has decreased, this proves that the model can 
still work with small displacement, with large displacement the 
model will become inaccurate. After the training process, the 
RA has a moving trajectory as shown in Figs. 10 and 11 at about 
position y = 0.005, the RA’s trajectory is adjusted to match the 
direction of the ball to the barrel, not moving too strong or too 
light or flying off the table. Based on obtained RL results of 
proposed state, reward and action, the PPO’s application is 
feasible in controlling the robot according to the trajectory. 

 
Figure 9. Success rate on random object position range 

 
Figure 10. Robot arm is viewed from the front plane (Red is the robot 
endpoint trajectory, orange is the ball trajectory) 

 

Figure 11. RA is viewed from the xOz plane (Red line is the robot 
endpoint trajectory, orange line is the ball trajectory)  
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4 CONCLUSIONS 

The paper proposed DRL method to facilitate the RA’s 
movement of the ball to a designated position within the 
workspace. Based on Resnet18-Unet, 2D images are applied 
Contour Detection and Hough Circle Transform to accurately 
determine the coordinates of the object’s centroid. 
Furthermore, OT is used to monitor the ball’s trajectory. Then, 
the data is employed to train the PPO algorithm to stabilize 
policy updates and enhance training efficiency compared to 
traditional RL methods. Based on proposed DRL method, 
training results being viable and stable at above 90% over 300 
epochs with randomly choosing the position of the ball on the 
PyBullet environment. Finally, the proposed method 
consolidates the integration of DRL with vision-based 
perception systems and underscores its potential scalability for 
robot navigation in the real-world.  
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