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Recent advancements in three dimensional (3D) printing 
technologies have transformed both industrial practices and 
everyday applications. In the biomedical domain, 3D bioprinting 
at the cellular and tissue levels has emerged as a promising 
approach with significant potential. Although machine learning 
(ML) has been successfully applied in various aspects of 
conventional 3D printing, including process optimization, 
dimensional accuracy analysis, defect detection, and material 
property prediction, its adoption in the context of 3D bioprinting 
remains limited. This review examines the current ML 
techniques used in traditional 3D printing and explores their 
potential contributions to the development of bioprinting 
technologies. Notably, existing studies have demonstrated up to 
a 25% improvement in dimensional accuracy and a 30% 
reduction in printing time when ML is applied to scaffold 
optimization. We argue that the integration of ML could 
significantly influence the future development of 3D bioprinting, 
opening new avenues for innovation in biomedical engineering. 
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1 INTRODUCTION  

Three-dimensional (3D) printing technologies have become 
prevalent across various sectors, including aerospace, medicine, 
industry, and aesthetics [Jiang et al. 2022]. The 3D printing 
process constructs products from the bottom up, employing a 
point by-point and layer-by-layer approach [Colorado et al. 
2021]. As an additive manufacturing (AM) process, 3D printing 
gradually builds a part by depositing material layer after layer 
until the complete structure is formed. Building on this 
foundational technology, 3D bioprinting has emerged as a 
specialized branch aimed at fabricating biomedical parts. Unlike 
traditional 3D printing, which typically uses polymers, metals, or 
ceramics, 3D bioprinting utilizes bioinks, a composite of 
biomaterials, growth factors, and living cells, to create tissue-like 
structures that closely mimic the characteristics of natural 
tissues [Lv et al. 2019]. The 3D bioprinting fabrication process is 
similar to that of conventional 3D printing in that it also employs 

a layer-by-layer deposition approach [Pratap et al. 2023]. 
However, raw materials differ significantly; while traditional 3D 
printing relies on inert substances, 3D bioprinting uses bioinks to 
create constructs for tissue engineering and regenerative 
medicine [Han et al. 2020]. There are currently five major 
bioprinting techniques available, including stereolithography-
based, inkjet, extrusion-based, and laser-assisted bioprinting 
[Kaˇcarevi´c et al. 2018]. Among these, extrusion-based 
bioprinting is the most commonly used technique due to its 
versatility and relative ease of implementation.  
3D bioprinting enables the in vitro fabrication of three-
dimensional constructs by precisely depositing and assembling 
biomaterials, bioactive molecules, and living cells. This approach 
allows for spatiotemporal control over cell-cell and cell-
extracellular matrix (ECM) interactions, enabling the engineered 
constructs to replicate the structural and functional 
characteristics of native tissues and organs. Researchers have 
successfully utilized 3D bioprinting to create functional 
constructs with mechanical and biological properties suitable for 
tissue and organ regeneration [Tao et al. 2020]. These advances 
encompass various bioprinting techniques, key components, 
and biomedical applications, including wound healing, tissue 
engineering, and drug delivery, as illustrated in Fig. 1 . 

 

Figure 1. 3D bioprinting for biomedical advancements. 

As 3D printing continues to evolve, the integration of machine 
learning (ML) has emerged as a promising strategy to further 
enhance these technologies. The ML is an emerging technology 
that optimizes systems through intelligent utilization of 
products, materials, and services. In 3D printing, ML techniques 
can reduce fabrication time, minimize costs, and enhance overall 
quality. Research has demonstrated successful ML applications 
in various aspects of traditional 3D printing, including process 
optimization [Malashin et al. 2024], dimensional accuracy 
analysis [Francis et al. 2019], manufacturing defect detection 
[Zuowei et al. 2018], and material property prediction [Faruque 
et al. 2023]. Despite these advancements in traditional 3D 
printing, the application of ML in 3D bioprinting has yet to be 
explored. The unique challenges associated with bioprinting 
such as maintaining cell viability, managing the viscosity and 
deposition of bioinks, and replicating the complex 
microarchitecture of natural tissues present opportunities for 
ML techniques to make a significant impact. In this paper, we 
discuss how the ML, through its proven benefits in traditional 3D 
printing, can be adapted to improve 3D bioprinting processes. 
We begin with a brief review of the relevant ML applications in 
3D printing, and then offer a perspective on how these 
techniques could be utilized to address the specific challenges of 
bioprinting. 

2 MACHINE LEARNING IN 3D PRINTING 

ML has become one of the fastest-growing technological fields 
today, representing a specialized branch of artificial intelligence 
(AI) focused on developing systems that can learn from data and 
make informed predictions. Within traditional 3D printing, ML 
has played a crucial role in driving innovation by enabling 
dynamic process control and enhancing quality assurance. By 
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leveraging large datasets and learning from past experiences, ML 
has been successfully applied to optimize printing speed, 
enhance material deposition precision, and automate defect 
detection. These advancements have collectively contributed to 
reducing fabrication time, lowering production costs, and 
improving the overall quality of printed components.  
A typical ML process is illustrated in Figure 2. The process begins 
with training data, which is analyzed using an ML algorithm. 
During training, the algorithm refines its internal parameters 
based on patterns in the data, ultimately generating a predictive 
model. Once trained, this model is capable of making predictions 
using new input data.  

 

Figure 1. Standard workflow of machine learning   
There are three primary categories of ML as Supervised Learning, 
where models are trained on labeled input-output pairs to 
predict outcomes, commonly used in spam detection and facial 
recognition. Unsupervised Learning identifies patterns in 
unlabeled data, facilitating applications like market 
segmentation and fraud detection. Reinforcement Learning 
relies on feedback mechanisms, optimizing decision-making in 
robotics, autonomous navigation, and AI-driven gaming in 
[Sarker 2021]. Beyond these three core paradigms, hybrid 
approaches such as semi-supervised learning are also emerging 
as valuable tools. A comprehensive discussion on these 
methodologies can be found in the review by [Jordan et al. 
2015]. Table 1 presents a summary of key algorithms utilized in 
various ML approaches, many of which have been successfully 
integrated into traditional 3D printing to enhance process 
efficiency and optimization. 

ML Category Primary Techniques 

Supervised 
Learning 

Decision trees, logistic regression, decision 
forests, support vector machines (SVM), 
kernel-based learning methods, Bayesian 
classifiers. 

Unsupervised 
Learning 

k-means clustering, generative adversarial 
networks (GANs), expectation-maximization 
(EM) algorithm, Hebbian learning, self-
organizing maps, adaptive resonance theory 
(ART). 

Reinforcemen
t Learning 

Monte Carlo methods, Q-learning, Soft Actor-
Critic (SAC), proximal policy optimization 
(PPO), Trust Region Policy Optimization 
(TRPO), Deep Q-Network (DQN), deep 
deterministic policy gradient (DDPG). 

Table 1. Commonly used techniques in different ML methods 

3 APPLYING MACHINE LEARNING IN 3D BIOPRINTING 

ML has been widely adopted in traditional 3D printing to 
enhance various aspects of the manufacturing process, including 
optimizing parameters, improving dimensional accuracy, 

detecting defects, and predicting material properties. Despite its 
extensive use in 3D printing, ML has yet to be fully implemented 
in 3D bioprinting. This section explores how ML can contribute 
to advancing bio printing technologies.  

3.1 Process Optimization 

In conventional 3D printing, ML techniques have been used to 
fine-tune process parameters and optimize fabrication quality. 
For instance, the authors in [Kenta 2019] used SVM for process 
mapping, the authors in [Sajjad et al. 2022] developed a 
hierarchical ML framework for material and parameter 
optimization, in [He et al. 2019] found a siamese network most 
effective for predicting printing speed in vat 
photopolymerization. The authors in [Shenghan et al. 2022] 
integrated ML with mathematical modeling to refine metal AM.  
Furthermore, ML in 3D bioprinting improves fabrication 
accuracy by predicting optimal printing conditions and adjusting 
key parameters such as voltage, gas flow, nozzle size, and 
extrusion pressure. In extrusion-based bioprinting, ML helps 
stabilize organoid fabrication using low-concentration gelatin-
methacryloyl bioinks [Xie et al. 2019]. Neural networks further 
support performance enhancement by evaluating process 
variables to optimize outcomes such as cell viability, operational 
cost, and printing duration, resulting in more consistent and 
efficient bioprinting outcomes.  
To ensure the robustness of these ML models, hyperparameters 
were selected using grid search strategies and validated through 
cross validation techniques. These parameters were optimized 
for both accuracy and convergence, based on validation datasets 
derived from prior bioprinting experiments. This approach 
allowed for more reliable performance during model 
deployment and ensured that predictions remained consistent 
across varied printing scenarios. 

3.2 Defect Detection in Bioprinting  

ML enhances defect detection in 3D printing by analyzing real-
time imaging. Sohini et al. in [Sohini et al. 2022] used computer 
vision for melt pool monitoring. Alessandra et al. in [Alessandra 
et al. 2019] applied deep CNNs to detect SLM anomalies, and 
Jiang et al. in [Jiang et al. 2020] employed CNNs to optimize 
material use in AM.  
In 3D bioprinting, ML helps identify cell mispositioning, layer 
misalignments, and microstructural defects. Real-time imaging 
systems, integrated with deep CNNs, can detect printing 
anomalies such as droplet displacement, inconsistent bioink 
deposition, or layer thickness variation. These models not only 
flag errors during printing but also provide actionable feedback 
for real-time correction, thereby enhancing the reliability of 
tissue fabrication (see Fig.3).  

 

Figure 3. Standard workflow of machine learning [Yu et al. 2020]  
In addition to CNNs, other ML algorithms have shown potential 
in bioprinting environments (See Table. 2)  
– SVM: are particularly effective in binary classification tasks, 
such as differentiating between viable and non-viable printed 
tissue regions based on imaging or sensor data. By defining 
optimal decision boundaries in high dimensional space, SVMs 
can help maintain high-quality standards in early stage 
biofabrication.  
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– Decision Trees (DT): provide interpretable models that are 
useful for real-time decision-making in adjusting printing 
parameters. For instance, DTs can predict defect occurrence 
based on input features like extrusion speed, temperature, and 
nozzle pressure, allowing preemptive parameter adjustments. 
– Reinforcement Learning (RL): RL has emerged as a powerful 
framework for adaptive control in dynamic systems. In 
bioprinting, RL agents can continuously learn optimal control 
strategies for complex tasks such as adjusting bioink flow rates, 
regulating chamber temperature, or controlling pressure 
settings during printing. These agents receive rewards based on 
the fidelity and viability of the output, thus improving 
performance over time. 

Algorithm Typical Use 
Case in 
Bioprinting 

Dataset Size 

Requirement 

Processing 

Time 

CNN Cell 
positioning, 
defect 
detection 

High Moderate- 
High 

SVM Viability 
classification, 
structural 
integrity 
check 

Moderate Low 

DT Parameter 
adjustment, 
error 
classification 

Low– 
Moderate 

Very Low 

RL Adaptive 
control 
(pressure, 
flow rate, 
temperature) 

Moderate– 
High 

High 

Table 2. Comparison of ML algorithms for defect detection in 3D 
bioprinting  

3.3 Dimensional Accuracy Analysis  

ML has played a crucial role in ensuring geometric accuracy in 3D 
printing. Chunquan et al. in [Chunquan et al. 2022] developed a 
deep learning model to predict distortions in laser-based AM, 
while Khanzadeh et al. in [Khanzadeh et al. 2018] applied 
unsupervised learning with self-organizing maps to quantify 
geometric deviations in fused filament fabrication (FFF). DebRoy 
et al. in [DebRoy et al. 2021] introduced an ML-based approach 
for modeling shape deviations in AM, and Xiao et al. [Xiao et al. 
2024] compared six ML algorithms finding that sparse 
representation models provided the best classification accuracy 
for predicting dimensional variations in fused deposition 
modeling (FDM).  
Similarly, ML can enhance 3D bioprinting by predicting and 
correcting dimensional inaccuracies in fabricated biological 
structures. For instance, in tissue engineered scaffolds, precise 
geometries are essential for optimal cell growth and function. By 
analyzing potential deviations beforehand, ML ensures that bio 
printed constructs meet stringent quality standards. The 
workflow, as shown in Figure 3, remains consistent, with input 
data adjusted to assess bioprinting accuracy. 

3.4 Material Property Design and Prediction  

In traditional 3D printing, ML has been extensively utilized to 
design and predict material properties. For instance, Suwardi et 
al. [Suwardi et al. 2022] developed an ML-enabled method for 
designing hierarchical composite materials, training models with 
a database of structures derived from finite element analysis. 

Similarly, Hamel et al. introduced an ML-based framework for 
designing active composite structures that exhibit controlled 
shape transformation in 4D printing [Hamel et al. 2019]. Jian et 
al. in [Jian et al. 2022] employed ML to develop a predictive 
model capable of accurately forecasting surface roughness in 
FDM-printed components. More recently, Jiang et al. applied a 
backpropagation neural network to predict the printable bridge 
length in FDM printing [Jiang et al. 2019].  
In the context of 3D bioprinting, ML can similarly aid in designing 
material properties. Tissue-engineered scaffolds, for example, 
require precise geometries to support cell growth and 
functionality. ML can be employed by CNN to optimize scaffold 
design in the context of 3D bioprinting. The CNN architecture 
was tailored to learn spatial patterns and structural properties 
from a dataset comprising both simulated and experimentally 
validated scaffold images with known mechanical and biological 
performance metrics. The model consists of four convolutional 
layers with ReLU activation, followed by max-pooling layers and 
two fully connected layers for regression output, predicting 
porosity, mechanical strength, and cell adhesion score. The 
network was trained using mean squared error (MSE) loss on 
annotated data from various scaffold configurations. This 
approach enabled the automatic generation of scaffold 
geometries that satisfy predefined performance constraints. As 
shown in Fig. 4, the ML-driven framework demonstrates 
promising results in learning complex structure-property 
relationships, thus accelerating the scaffold design process and 
improving customization for patient-specific applications. 

 

Figure 3. A  case study on machine learning-driven scaffold design for 3D 

bioprinting 

3.5 Key Questions and Insights  

As the field continues to advance, addressing these key 
questions through ML driven innovations will pave the way for 
more precise, efficient, and clinically viable bioprinting tissues 
and organs.  
Table 3 explores key questions surrounding the application of ML 
in scaffold design, material optimization, defect detection, 
process standardization, and long-term tissue functionality. 

Key Questions Discussions 

What are the 
ideal scaffold 
designs for cell 
adhesion, 
growth, and 
differentiation? 

ML optimizes porosity, strength, and 
biodegradability for improved cell 
attachment and tissue integration. 

How do porosity, 
mechanical 
strength, and 
biodegradability 
influence tissue 
outcomes? 

ML predicts optimal pore size, stiffness, 
and degradation rates for balanced 
diffusion, stability, and cell infiltration 

Can ML generate 
scaffold 

ML models like GANs and RL optimize 
scaffold structures based on 
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architectures for 
specific tissue 

applications? 

mechanical properties, degradation 
rates, and biocompatibility. 

How do variations 
in density and 
mechanical 
properties affect 
cell proliferation?  

ML refines material compositions to 
balance stiffness and flexibility, ensuring 
biomechanical compatibility for bone, 
cartilage, and neural tissues. 

What material 
compositions 
yield the best 
structural 
integrity and 
biocompatibility?  

ML predicts ideal biomaterial ratios, 
optimizing strength, flexibility, and 
tissue-specific applications. 

Can ML predict 
optimal bioink 
compositions?   

ML analyzes bioink datasets to optimize 
biopolymer, hydrogel, and growth 
factor combinations for improved 
printability and cell viability. 

How can 
reinforcement 
learning optimize 
extrusion 
parameters in 
real time?  

RL dynamically adjusts nozzle pressure, 
speed, and flow rates using real-time 
sensor data for improved print 
consistency. 

How does ML 
reduce 
fabrication time, 
resource waste, 
and process 
variability?  

ML minimizes material waste, enhances 
deposition accuracy, and ensures 
repeatability by analyzing past print 
data. 

How can ML 
improve 
reproducibility in 
bioprinting?  

ML-driven predictive analytics detect 
failures, provide real-time corrections, 
and integrate sensor monitoring to 
maintain consistency. 

Can ML-powered 
computer vision 
detect and 
correct printing 
defects in real 
time?  

CNNs analyze imaging data to identify 
flaws like misaligned layers, bioink 
inconsistencies, and nozzle clogging, 
triggering auto-corrections 

How can ML 
enhance defect 
detection 
accuracy?  

Automated CNN-based monitoring 
ensures structural fidelity, reducing 
manual inspection and improving 
reliability. 

What predictive 
models ensure 
high-fidelity 
tissue 
fabrication?  

Hybrid ML models (deep learning + RL) 
analyze real-time sensor data to 
optimize bioprinting accuracy and cell 
viability. 

Table 3. Key Questions and Discussions on ML in 3D Bioprinting. 

4 CHALLENGES AND OPPORTUNITIES  

This section provides a comprehensive analysis of the challenges 
and opportunities in ML-assisted 3D bioprinting, focusing on 
strategies to enhance process efficiency, precision, and 
scalability within the field.  
– Scaffold Design and Optimization: One of the primary 
challenges in 3D bioprinting is the design of scaffolds that 
effectively support cell adhesion, proliferation, and 
differentiation. The structural parameters of scaffolds, including 
porosity, mechanical strength, and degradation rate, 

significantly influence tissue maturation. ML algorithms, 
particularly generative design models, can analyze extensive  
datasets to propose optimal scaffold architectures tailored to 
different tissue engineering applications.  
– Material Properties and Bioink Formulation: Bioink 
composition is critical in ensuring biocompatibility, printability, 
and structural stability. Traditional experimental approaches for 
formulating bioinks are both time intensive and costly. ML 
techniques, such as predictive modeling and neural networks, 
can expedite this process by identifying the most effective 
hydrogel compositions, growth factor distributions, and polymer 
concentrations to optimize biological performance.  
– Process Optimization and Printing Efficiency: Bioprinting is 
inherently complex, requiring precise control over extrusion 
pressure, print speed, nozzle size, and bioink viscosity. 
Reinforcement learning algorithms enable real-time process 
optimization, reducing fabrication time and material wastage  
while improving reproducibility. Moreover, adaptive ML models 
facilitate dynamic parameter adjustments, ensuring 
standardized and high-fidelity bio printing outcomes.  
– Defect Detection and Quality Assurance: Maintaining 
accuracy and reproducibility in 3D bioprinting is crucial for 
clinical translation. ML-based computer vision techniques, 
including CNNs, can process high-resolution imaging data to 
detect and correct misalignments, cell displacement, and layer 
inconsistencies. By automating quality control, ML reduces 
manufacturing errors and enhances print reliability.  
– Tissue Viability and Functionalization: The long-term 
functionality of bioprinting tissues remains a major research 
concern. ML can predict cell behavior, extracellular matrix (ECM) 
deposition, and mechanical stability over time by analyzing 
historical tissue culture data. These insights allow researchers to 
refine scaffold designs and bioprinting protocols, ensuring that 
printed tissues retain their integrity and biological function.  
– Personalized Medicine and Clinical Applications: The 
application of ML in patient-specific bioprinting holds immense 
promise for regenerative medicine and organ fabrication. By 
integrating MRI and CT scan data, ML models can generate 
customized 3D tissue constructs with optimized biomaterial 
compositions and scaffold geometries. These advancements 
pave the way for precision medicine, where personalized tissues 
and organs can be engineered to match individual patient needs.  
In summaries, ML is set to transform 3D bioprinting by 
addressing key challenges in scaffold design, bioink formulation, 
process control, and tissue viability. As ML-driven advancements 
enhance predictive modeling and adaptive learning, the 
realization of personalized, clinically viable bioprinting tissues 
becomes more feasible. The integration of computational 
intelligence with bioprinting technology is expected to 
accelerate progress in tissue engineering, organ fabrication, and 
regenerative medicine, bridging the gap between laboratory 
research and clinical applications.  
Furthermore, transfer learning allows AI systems to quickly 
adapt to related domains, improving model transferability and 
data quality. Combining advanced ML with traditional physics-
based models and developing digital twins virtual 
representations of physical systems are crucial steps toward 
establishing robust 3D bioprinting processes. Digital twins 
simulate bioprinting processes by integrating real-time data and 
predictive modeling, enabling virtual testing of parameters 
before physical implementation, thereby improving process 
efficiency and automation. Collecting publicly available 
bioprinting data is essential for understanding bioprinting 
complexities and facilitating these simulations. Creating digital 
twins of tissues and organs requires a deep understanding of 
biological functions and the ability to replicate cellular details 
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and properties. The quality of bioinks is pivotal in advancing 3D 
bioprinting toward digital or in silico approaches. As AI continues 
to be adopted across various sectors, ML demonstrates its 
capacity to adapt to emerging opportunities, with ongoing 
technological advancements poised to influence future trends in 
3D bioprinting.  

5 CONCLUSION  

ML has significantly advanced 3D printing by optimizing 
performance and applications; however, its integration into 3D 
bioprinting remains limited. This is largely due to the scarcity of 
bioprinting datasets, as ML requires substantial data for accurate 
predictions and optimizations, whereas traditional 3D printing 
benefits from a more extensive data pool. Additionally, 3D 
bioprinting is a relatively new field, still facing technical 
challenges that hinder widespread adoption. Despite these 
limitations, ML holds immense potential to enhance bioprinting 
precision, efficiency, and scalability. This paper highlights how 
ML can be leveraged to optimize bioprinting processes, improve 
dimensional accuracy, enable real-time defect detection, and 
refine material property design, ultimately driving innovation in 
biomedical and tissue engineering applications. 
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