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This study investigates the dimensional accuracy and 
detectability of parts manufactured by Fused Deposition 
Modeling (FDM) technology through multispectral imaging 
analysis. Experimental samples fabricated from PLA (Polylactic 
Acid) and translucent PLA/PHA (Polylactic Acid/ 
Polyhydroxyalkanoates) were examined to assess surface 
quality, with a focus on the geometric precision of fundamental 
shapes. Specifically, the distance between opposite edges of 
squares was measured, and the diameter of circles was 
evaluated. A Keyence VS-L-160MX multispectral camera was 
employed using various lighting conditions, including UV, blue, 
infrared, and combined configurations, to optimize material 
transmittance analysis, contrast enhancement, and surface 
feature detection. High-contrast backgrounds were 
systematically chosen depending on the sample color to improve 
image sharpness and edge definition. Dimensional 
measurements were compared against nominal values, 
revealing that the greatest deviations approximately 10% 
occurred in the smallest geometrical features. These findings are 
attributed to the inherent limitations of optical resolution, 
calibration precision, and depth of field when analyzing fine 
structures. The study advances the methodology of surface 
quality assessment and underscores the necessity for optimized 
scanning parameters in the dimensional verification of additively 
manufactured components. 
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1 INTRODUCTION 

 Additive manufacturing (AM), also referred to as rapid 
prototyping (RP), is a contemporary technique for producing 
three-dimensional objects by adding material in layers in a 
stepwise fashion [Lian et.al. 2018]. This process facilitates the 
direct conversion of computer-aided design (CAD) models into 
physical prototypes with a high degree of accuracy and flexibility 

[Bose et.al. 2018]. The technologies encompassed within the AM 
category include Stereolithography (SLA), Selective Laser 
Sintering (SLS), Fused Deposition Modeling (FDM) [Husar et.al. 
2022], and 3D printing (3DP) [Singh et.al. 2017]; [Mitaľová et.al. 
2023]. 
Color variations have been shown to have a significant impact on 
the surface quality assessment of parts produced using FDM 
technology. These variations affect not only the visual properties 
of the parts but also their mechanical characteristics [Cojocaru 
et.al. 2024].  The utilization of diverse color filaments has the 
potential to introduce variability in evaluation metrics, thereby 
augmenting the intricacy of the surface quality assessment 
process [Nancharaiah et.al. 2010]. This complexity arises from 
the interplay between the color properties of the material and 
the parameters of the printing process. Together, these factors 
influence dimensional accuracy and surface roughness [Garg 
et.al. 2015]. 
The assessment of the surface quality of components fabricated 
by FDM technology constitutes a pivotal step in the identification 
of manufacturing deficiencies and the optimization of printing 
processes. A plethora of methodologies have been advanced in 
the extant literature, including image entropy analysis for color-
independent quality assessment [Okarma et.al. 2017] and 
optical measurements utilizing confocal laser scanning 
microscopy [Medina Sánchez et.al. 2023]. The primary factors 
that influence surface quality are print orientation, layer height, 
and plane tilt angle [Medina Sánchez et.al. 2023]. Furthermore, 
the resolution of surface details has been examined through the 
use of reference samples exhibiting varying detail sizes and print 
orientations [Armillotta et.al.  2006]. This approach facilitates a 
more precise investigation of the influence of production 
parameters on the final surface quality. The divergent 
approaches to the technical implementation of defect detection 
in FDM components are indicative of the intricacy of the 
aforementioned issue and the dynamic developments in this 
field [Kalman et.al. 2024]. The prevailing solutions accentuate 
the incorporation of artificial intelligence, multispectral analysis, 
real-time monitoring, image data processing, adaptive systems, 
and transfer learning. The implementation of machine learning 
and artificial intelligence algorithms is paramount in the 
automated detection of defects [Duhančík et.al. 2024]. Kadam 
[Kadam et.al. 2021] proposed models based on AlexNet and 
Support Vector Machines (SVM) algorithms for layer-by-layer 
anomaly detection. Siegel [Siegel et.al. 2020] employed deep 
neural networks to analyze thermographic signals. Wang [Wang 
et.al. 2020] implemented convolutional neural networks (CNNs) 
in an adaptive monitoring system. Moreover, Yang [Yang et.al. 
2023] applied transfer learning in combination with ensemble 
learning. Yeh [Yeh et.al 2023], on the other hand, developed an 
approach based on YOLOv5 to analyze in-depth image data. 
A multitude of scholarly papers have been published that 
explore various aspects of multispectral camera systems and 
their applications in color evaluation and imaging. Shimano 
[Shimano at.al. 2005] proposes a methodology for evaluating the 
quality of multispectral image capture systems, incorporating 
considerations of spectral sensitivity and noise variance. Direl 
[Dierl et.al. 2018] present a novel approach to evaluating the 
accuracy of multispectral imaging systems. This method involves 
the use of ΔE measurements, a statistical technique known as 
"Bayesian statistics," particularly in the context of inline print 
inspection applications. Zainuddin [Zainuddin et.al. 2018] 
concentrate on the calibration of lightweight multispectral 
cameras for photogrammetric applications and investigate the 
variation of calibrated parameters at different wavelengths. In a 
related study, Shimano [Shimano at.al. 2005] applied a 
colorimetric evaluation model to multispectral color image 
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capture systems, proposed a method for estimating noise 
variance, and demonstrated its effectiveness in real 
multispectral cameras. A collective analysis of these studies 
indicates a contribution to the advancement of multispectral 
imaging technology. The studies address issues of accuracy, 
calibration, and color evaluation in a variety of applications. 
Multispectral imaging is frequently integrated with infrared 
thermography to enhance detection capabilities. AbouelNour 
and Gupta [AbouelNour et.al. 2023] utilized a combination of 
optical imaging with infrared thermography to identify internal 
defects. In a related study, Siegel [Siegel et.al. 2020] employed 
infrared thermography to analyze interlaminar delamination. 
Shen [Shen et.al. 2019] proposed a multi-view visual detection 
method to enhance the capabilities of single-view techniques by 
overcoming their respective limitations. 
Image processing methodologies underpin the identification of 
defects through the analysis of image data. Behseresht 
[Behseresht et. al. 2024] implemented texture analysis using the 
gray-level co-occurrence matrix (GLCM). Concurrently, Okarma 
[Okarma et.al 2018] directed their efforts toward the analysis of 
image entropy. In a related study, Yi [Yi et.al. 2017] integrated 
machine vision analysis with statistical process control. 
Defect detection is frequently influenced by variations in fiber 
color, thereby compromising the reliability of color-sensitive 
algorithms [Okarma et.al 2020].  
Notwithstanding the substantial progress in automated defect 
detection in FDM printing, several substantial limitations persist. 
The absence of standardized methodologies for assessing 
accuracy and reliability gives rise to a multitude of metrics, 
impeding the capacity to draw meaningful comparisons between 
diverse approaches. Moreover, the paucity of research focusing 
on a wide array of defects, such as delamination drop [Siegel 
et.al. 2020] or intrinsic defects [AbouelNour et.al. 2023], hinders 
the generalizability of the methods employed. 
The extant research demonstrates that multispectral imaging 
techniques provide quantitative indicators of surface quality, 
with porosity emerging as the most consistent parameter 
measured. The findings indicate that the interplay among 
material composition, printing parameters, and the resultant 
surface quality is of considerable importance in the FDM 
process. The most significant effects of printing parameters on 
surface quality have been thoroughly investigated in the works 
of Vidakis [Vidakis et.al. 2022] and Özen [Özen et.al. 2022]. 
Vidakis [Vidakis et.al. 2022] conducted an analysis of six key 
process parameters, including raster deposition angle, fill 
density, nozzle temperature, substrate temperature, printing 
speed, and layer thickness. Despite the absence of explicit 
correlations between these parameters and surface quality, the 
authors developed predictive quadratic regression models. 
These models facilitate the quantification of the 
interrelationships between the parameters. 
Despite the contributions of numerous studies to the 
development of surface quality assessment, a standardized 
methodology to verify the accuracy of these approaches remains 
elusive. Bowoto [Bowoto et.al. 2020], Okarma [Okarma et.al. 
2020], Shen [Shen et.al. 2019], Straub [Straub et.al. 2016] 
presented their methods for defect detection. However, these 
studies did not provide specific accuracy and reliability metrics. 
In light of the aforementioned findings, it is evident that 
multispectral imaging serves as an effective tool for analyzing 
the surface quality of components fabricated by FDM. To ensure 
accurate comparisons, a systematized evaluation methodology 
is needed. Standardized metrics are crucial for evaluating the 
accuracy of detection methods and performance comparisons of 
different additive manufacturing materials. 

2 MATERIAL AND METHODS 

FDM technology has spread widely in AM, and the quality of the 
resulting print is influenced by the choice of material. Polylactic 
acid (PLA) is one of the most used FDM materials. This is due to 
its ease of processing, biodegradability and availability. PLA is a 
thermoplastic polyester made from cornstarch, sugar cane or 
beet molasses [Tauberová 2024]. Its environmental advantage 
and good appearance and properties make PLA a preferred 
material for hobbyist and industrial prototyping. 
PLA's main features include a low melting point (180-220 °C) and 
a smooth, glossy surface, which makes it easy to print with FDM 
printers. Its parts have low deformation upon cooling, ensuring 
high accuracy and reducing defects. PLA extrusions are also 
strong and shiny. However, its strength, flexibility, and heat 
resistance are lower than those of other materials, like ABS and 
PETG, and it starts to break at temperatures above 60°C. 
PLA and PLA/PHA were used for the experimental part and for 
printing the samples, and the table below summarizes the basic 
mechanical properties of the materials: 

Properties PLA PLA/PHA 
(transparent) 

Density 1.24 g/cm³ 1.21–1.24 
g/cm³ 

Tensile Strength 60–70 MPa 50–65 MPa 

Young's Modulus 3.5–3.8 GPa 3.0–3.5 GPa 

Elongation at Break 4–10 % 10–20 % 

Melting Temperature 180–220 °C 180–210 °C 

Heat Deflection 
Temperature (HDT) 

~60 °C ~55 °C 

Optical Properties Opaque Semi-
transparent 
(translucent) 

Table 1. Basic mechanical properties of the materials used 

PLA and PLA/PHA materials processed on a Bambu Lab X1 
Carbon 3D printer. The printer is characterized by precision, 
process stability and the ability to print engineering and 
composite materials. The following table provides a 
comprehensive overview of the basic printing characteristics and 
parameters for the materials tested: 

Name Properties  

PLA Fan speed Auto (200) 

Extrusion 
temperature 

220 

Build platform 
temperature 

55 

Layer [mm] 0.20 

Infill 15% 

PLA/PHA Fan speed Auto (200) 

Extrusion 
temperature 

220 

Build platform 
temperature 

55 

Layer [mm] 0.20 

Infill 15% 

Table 2. Specimen print parameters description 
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The experiment tested different 3D-printable models with 
variations in geometric elements to evaluate quality. Figure 1 
presents a technical drawing of a specimen utilized in the 
experimental phase of the research endeavor, which was 
undertaken with the objective of assessing the surface quality 
and dimensional accuracy of components fabricated through the 
FDM technique. The drawing contains various basic geometric 
elements, including squares and circles, which formed the 
primary subject of the experimental analysis. The dimensional 
accuracy of the structures was evaluated through the use of 
multispectral imaging, with square and circular structures 
employed for this purpose. A meticulous analysis was conducted 
on the dimensions, shapes, and edges of these structures, with 
the results compared to the nominal values. Specifically, the 
distance between opposite edges of the squares was measured, 
and the diameter of the circles was evaluated. Other geometric 
elements, including octagons, letters, and varied radii, were 
incorporated to provide a more comprehensive validation of the 
technological capabilities of the print. However, the primary 
focus of the analysis was on the accuracy of simple shapes, with 
the objective of minimizing the influence of complex factors on 
the measurement outcomes. 

 

Figure 1. Technical drawing of the test sample for experimental analysis 
of dimensional accuracy and surface quality of samples 

The manufacturing process used three batches of samples with 
varied materials and colors, following specifications and 
recommendations. The printing parameters were selected based 
on the Original Equipment Manufacturer (OEM) 
recommendations and prior experiments. The following Figure 2 
shows a 3D view of a test sample generated in the cutting 
software. This view shows the distribution of the different line 
types according to their function in the layered structure of the 
model. The view also reflects the optimized printing parameters, 
which were adjusted to achieve a balance between dimensional 
accuracy and time efficiency of the manufacturing process. 
 

 

Figure 2. Preview of the printing process and print parameters 

This displays the model's printing lines (inner and outer walls, 
fillers, top and bottom layers). It also shows the optimized 
printing parameters. Visualization data indicates that inner fillers 
(22.6% of the time, 5.29 g of filament) and the top and bottom 
surface layers consumed the most time and material. The total 
filament use was 6.48 meters (19.33 g). The preparation phase 
took 5 minutes and 47 seconds, and the printing took 35 minutes 
and 57 seconds. The total production time was 41 minutes and 
44 seconds. This quantitative data provides an accurate view of 
material needs and production times, making it useful for further 
optimization. 

In the next phase of the experiment, a comparative visual 
analysis of the surface of the printed samples was performed 
using a Keyence VS-L-160MX industrial multispectral camera in 
combination with a CA-DRM10X high-precision illumination 
module [Hrehová et.al. 2022]. The VS-L-160MX camera is part of 
Keyence's intelligent camera series and is designed for 
applications that require high accuracy, stability, and real-time 
imaging speed. The unit is equipped with ZoomTrax technology, 
which allows the field of view to be smoothly changed without 
reducing the native resolution and without any mechanical 
intervention in the optical system. Key specifications of the VS-
L-160MX include (see Table 3): 

Specifications of the Keyence VS-L-
160MX 

Sensor resolution 
up to 21 
megapixels 

Sensor type 
CMOS, 
colour/multispectral 

Magnification range 
(zoom) 

motor-operated 
optical zoom 
(approx. 16×) 

Spectral resolution 

colour detection 
capability in both 
RGB and near 
infrared (NIR) 
spectrum 

Compatibility with AI 
analysis 

integration with 
machine learning 
algorithms for 
automatic 
classification of 
surface defects 

Illumination 

homogeneous, 
circular diffuse light 
provided by the 
CA-DRM10X 
module 

Table 3. Key specifications of the Keyence VSL-160MX 

 
In order to establish the most favorable imaging conditions for 
each specimen, a variety of backgrounds were meticulously 
chosen based on their optical properties. This approach was 
implemented to ensure maximum contrast, minimize glare, and 
optimize light distribution on the surface of the structure under 
investigation. In the case of the black sample, a white 
background was selected, which, due to its high reflectivity, 
provided sufficient contrast between the dark object and the 
light background. This eliminated the risk of shadows and optical 
artefacts caused by insufficient illumination or local 
overexposure. 
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Figure 3. Stepping up the process of geometric hole identification 

Conversely, a red substrate was selected for the white sample, 
as its background color facilitated the discernible delineation of 
edges and surface transitions. This contrast proved to be of 
particular importance when combined with blue and infrared 
illumination, which facilitated the enhancement of fine 
geometric details under the high reflectance conditions of the 
sample itself.  
A transparent sample with purple coloration was also analyzed 
on a red pad (see Figure 3). The selection of the red background 
was driven by the objective of accentuating the contours of the 
transparent material, which otherwise absorbs and scatters light 
in an unpredictable manner. This contrast solution has been 
demonstrated to enhance the detection of edges and 
morphological transitions at the interface between the 
specimen and the pad, thereby augmenting the precision of 
dimensional analysis, even for materials that present significant 
optical challenges. 
To ensure image analysis accuracy and detect geometric samples 
features reliably, lighting conditions were tested and optimized. 
Investigations included variability in illumination intensity, its 
spectral composition and color representation, with emphasis 
on light volumes and source temperature. Material properties 
such as light reflectance, absorption and diffusion significantly 
affect visual data quality. The experimental setup utilized 
advanced multispectral illumination technology, which 
facilitated meticulous regulation of the spectral composition of 
the light impinging on the objects under investigation. 
Multispectral light sources enabled the selective highlighting of 
specific geometric features of the samples, with the greatest 
precision in detecting edges and shape transitions exhibited by 
combinations of illumination in the blue and infrared regions of 
the spectrum. 
The selection was not arbitrary. It was based on a previous 
analysis of the materials' optical behavior. Blue light was highly 
sensitive to fine surface textures. Infrared radiation allowed 
penetration through thinner layers or enhanced contrast where 
traditional methods failed. The combination of these spectral 
components was key to determining precise geometric 
contours. This is important to evaluating the dimensional 
accuracy of 3D-printed parts. The process of identifying optimal 
lighting parameters for samples is illustrated in Figure 4. 

 

Figure 4. The process of identifying optimal light parameters for 
samples 

Optimizing illumination was a step in designing a measurement 
methodology for different samples. This methodology reflected 
the specifics of each sample's color, surface finish, and material 
transparency. 

3 RESULTS 

Figure 5 shows the analyzed square which was fabricated 
through the use of the FDM process, and its dimensional 
precision was validated employing a Keyence VS-L-160MX 
multispectral imaging apparatus. The measurement was 
conducted within a dedicated visual quality control software 
environment, wherein a specific geometric element - a square 
with a nominal dimension of 15 millimeters—was targeted for 
analysis. The camera was configured to utilize a combination of 
blue and infrared (IR) illumination, enabling the effective 
highlighting of edges and their accurate detection, even in the 
presence of slight color or texture variations caused by the 
surface texture of the print. The specimen was white with a red 
background, chosen for optimal multispectral imaging. The red 
background, with its combination of blue and IR illumination, 
allowed for high edge contrast. This enhances edge resolution, 
even when slightly blurred by surface defects or FDM layered 
structure.  

 

Figure 5. Identification process of the square hole for the white colour 

sample 

The square under consideration was measured using the "Outer 
Gap" detection mode, a method optimized for the measurement 
of an object's outer dimensions. In this instance, the horizontal 
width of the square was monitored, with the camera recording 
a value of 14.823 millimeters. The nominal dimension of the 
square was 15 mm, representing a deviation of - 0.177 mm. This 
discrepancy signifies that the printed piece is marginally 
undersized, a frequent occurrence in FDM printing due to 
potential shrinkage of the plastic during cooling or inadequate 
material flow tuning during extrusion. The relative error, 
calculated to be approximately 1.18%, falls within the acceptable 
tolerance range for this printing method. Image analysis reveals 
the intensity waveform of the detected edges (red curve), 
showing sharp, contrasty capture, confirmed by the chosen 
illumination. The blue/IR combination enhanced the edge 
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transition between the sample and background, enabling 
reliable detection and dimension calculation. Optimized 
detection parameters (30% edge sensitivity, bidirectional edge 
detection, 5-pixel edge filter) suppress noise while preserving 
detail, critical for print accuracy. The measurement result is 
"true," indicating that the part passed with dimensions within 
preset limits. The subsequent Table 4 offers a thorough 
dimensional analysis of the supplementary geometric apertures 
within the initial white paint sample examined. The results of this 
analysis constitute a quantitative evaluation of the dimensional 
accuracy in various regions of the test object. The measured 
values indicate that the deviations between the actual and 
detected dimensions are relatively small, suggesting a high 
degree of agreement between the design and real dimensions, 
respectively, and validating the performance of the machine 
vision system. 

White color sample (Material PLA, red base) 

Item 
Measured 
value 

Nominal 
dimension 

Deviation 

Square 1 14.823 mm 15 mm 0.177 
mm(1.18 
% ) 

Square 2 9.926 mm 10mm 0.074 mm 
(0,74 %) 

Square 3 4.653 mm 5mm 0.347 mm 
(6.94 %) 

Circle 1 14.837 mm 15 mm 0.163 mm 
(1.09 %) 

Circle 2 9.823 mm 10mm 0.177 mm 
(1.77 %) 

Circle 3 4.632 mm 5mm 0.368 mm 
(7.36 %) 

Table 4. Calculated percentage deviations regarding the nominal 
dimension of the geometric apertures for the white colour sample 

The minimum deviation may be due to several factors. White 
material's reflectivity affects sharpness, accuracy of edge 
detection. Minor systematic inaccuracies may result from slight 
variations in calibration, slight geometric distortions during 
manufacturing. Inaccurate illumination or optical aberration 
compensation may also cause inaccuracy. These factors can 
affect edge-detection, especially when small geometric 
dimensions and high surface brightness are combined. When 
interpreting these results, consider the measured values and 
experimental conditions, including illumination properties, 
material type, and camera resolution. 

A black sample was measured using a white pad and a 
combination of UV and IR light. This approach highlights the 
edges of the holes even in the less contrasting parts of the 
object, reducing distracting shadows and improving edge 
detection by increasing contrast. To optimize the contrast in 
edge detection, the black sample was placed on a white 
background (see Figure 6). 

 

Figure 6. Identification process of the square hole for the black colour 

sample 

Specifically, the upper left square, delineated by the green dots 
in the image, was targeted, with its horizontal dimension 
measured at 87.2 pixels. The actual dimension of the square is 
known to be 15 millimeters. The subsequent calculation of the 
scale for converting pixels to millimeters was performed as 
follows: 

  
15𝑚𝑚

87.2𝑝𝑥
= 0.172𝑚𝑚/𝑝𝑥                                                               (1) 

Using this scale, the measured value in pixels can be converted 
back to real physical units: 

87.2𝑝𝑥 ×
0.172𝑚𝑚

𝑝𝑥
= 14.9984𝑚𝑚                                             (2) 

The measurement result thus shows that the deviation from the 
actual dimension is extremely low: 

∆= 15𝑚𝑚 − 14.9984𝑚𝑚 = 0.0016𝑚𝑚                                (3) 

The following Table 5 provides a comprehensive dimensional 
analysis of the additional geometric apertures within the second 
black colour sample analysed: 

Black color sample (Material PLA, white base) 

Item 
Measured 
value 

Nominal 
dimension 

Deviation 

Square 1 14.9984 
mm 

15 mm 0.0016 
mm(0.01 
% ) 

Square 2 9.873 mm 10mm 0.127 mm 
(1.27 %) 

Square 3 4.561 mm 5mm 0.439 mm 
(8.78 %) 

Circle 1 14.898 mm 15 mm 0.102 mm 
(0.68 %) 

Circle 2 9.769 mm 10mm 0.231 mm 
(2.31 %) 

Circle 3 4.541 mm 5mm 0.459 mm 
(9.18 %) 

Table 5. Calculated percentage deviations regarding the nominal 
dimension of the geometric apertures for the white colour sample 

The next Figure 7 presents the result of the dimensional analysis 
of a square geometric hole. The sample analyzed is made of 
purple transparent material. A red-colored background was 
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chosen because of its optical properties, which include partial 
light transmission and low reflection in the visible spectrum, to 
increase contrast and ensure good edge detection. This 
approach increased the contrast and ensured good edge 
detection, making the square's edges stand out more clearly 
against the background. Illumination was provided by a 
combination of UV and blue light, which penetrated the surface 
structure of the transparent material, highlighting the sample-
background interface.  

 

Figure 7. Identification process of the square hole for the purple 
transparent colour sample 

The measurement indicates the largest square hole located in 
the upper left quadrant of the sample. The horizontal dimension 
of the square was recorded at a value of 145.213 pixels. The 
known dimensions of this aperture are 15 millimeters. Utilizing 
this data, the conversion value between pixel count and 
millimeters was determined as follows: 

15𝑚𝑚

145.213𝑝𝑥
= 0.1033𝑚𝑚/𝑝𝑥                                                           (4) 

By back-calculating, it is then possible to derive the actual 
dimension of the hole according to the data obtained: 

145.213𝑝𝑥 ×
0.1033𝑚𝑚

𝑝𝑥
= 14.999𝑚𝑚                                         (5) 

From the above it follows that a deviation from the nominal 
dimension of 15 mm represents: 

∆= 15𝑚𝑚 − 14.999𝑚𝑚 = 0.001𝑚𝑚                                        (6) 

This value is within the negligible minimum systematic error 
range, as determined by the methodology used. The result 
indicates the multispectral camera is reliably able to measure 
the geometric properties of challenging, transparent materials. 
The following Table 6 provides a comprehensive dimensional 
analysis of the additional geometric apertures within the second 
analyzed sample from the purple transparent material:  

Sample Purple transparent colour (Material 
PLA/PHA, red base) 

Item 
Measured 
value 

Nominal 
dimension 

Deviation 

Square 1 14.999 mm 15 mm 0.001 mm 
(0.1 %) 

Square 2 9.899 mm 10mm 0.101 mm 
(1.01 %) 

Square 3 4.517 mm 5mm 0.483 mm 
(9.66 %) 

Circle 1 14.887 mm 15 mm 0.113 mm 
(0.75 %) 

Circle 2 9.788 mm 10mm 0.212 mm 
(2.12 %) 

Circle 3 4.465 mm 5mm 0.535 mm 
(10.70 %) 

Table 6. Calculated percentage deviations regarding the nominal 
geometric aperture dimension for the purple transparent colour 

sample 

4 DISCUSSION 

The experiment showed that the Keyence VS-L-160MX 
multispectral camera is accurate in measuring the surface 
quality and dimensional parameters of parts produced by FDM 
technology. The size of a geometric feature correlates with the 
accuracy of its measurement. The largest deviations occur for 
the smallest measured details, e.g., squares and circles with 
dimensions of 5 mm. These deviations reach statistically 
significant values, indicating the method's limits when capturing 
fine and detailed geometric features. In contrast, larger objects, 
such as squares with a nominal dimension of 15 mm, showed 
minimal dimensional deviation, confirming the method's 
reliability in larger measurements.  
Accurate measurement of small features is affected by optical 
resolution, focus quality, and uniform illumination. At very small 
sizes, poor edge sharpness or obstruction by shadows, 
reflections, or surface interference can reduce feature detection 
accuracy. This error is especially pronounced for transparent or 
glossy surfaces. 
 Insufficient calibration of the sensing system for spectral 
conditions can also lead to errors. Different light combinations 
(e.g., UV + blue, blue + IR, UV + IR) were used to optimize surface 
visualization and geometric feature contrast. Not all 
combinations worked equally well for each material. To ensure 
accuracy, it's essential to adjust the spectral conditions based on 
the sample's optical properties, especially for transparent or 
glossy materials where light absorption or scattering may occur. 
The contrast background chosen, such as red for white or 
transparent samples and white for black objects, contributed 
significantly to improving the quality of edge visualization, which 
is crucial for extracting accurate geometric parameters from the 
image. This methodological choice exerted a beneficial influence 
on measurement accuracy, particularly with regard to larger 
features. Nonetheless, for more minute details, even the optimal 
contrast was incapable of entirely eliminating system deviations. 
Multispectral imaging measurements require careful calibration, 
lighting optimization, and selection of the right spectral band 
and background. Higher image resolution and advanced 
processing algorithms can improve small-detail detection. Using 
reference calibration standards directly on measured images for 
correction is an option.  
Multispectral sensing has potential in non-contact 3D printed 
part metrology, but results vary due to sample properties and 
geometry. This necessitates an individualized approach to 
measurement system settings.  

5 CONCLUSIONS 

The research that was conducted confirmed the effectiveness of 
using multispectral imaging technology in assessing the quality 
and dimensional accuracy of components manufactured using 
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FDM technology. Utilizing the Keyence VS-L-160MX camera 
system, experimental measurements were conducted, enabling 
the identification of pivotal factors influencing the precision of 
non-contact optical metrology. The analysis placed particular 
emphasis on the examination of geometric deviations exhibited 
by measured elements of varying dimensions and geometries. 
The findings showed high accuracy for large geometric features, 
with minimal deviations between nominal and measured values. 
However, systematic deviations were found for smaller details, 
especially apertures up to 5 mm, indicating system detection 
limits. While not extreme, these deviations affect interpretation 
in industrial inspection. The importance of correct illumination 
and contrast selection for optimal boundary detection was also 
stressed. In this regard, spectral combinations like UV+IR or 
UV+Blue increased contrast and highlighted fine geometrical 
details in transparent or dark materials. 

Future research should focus on improving measurement 
accuracy with higher optical resolution, more advanced image 
segmentation and analysis algorithms, and artificial intelligence 
to automatically detect boundaries and eliminate optical 
artifacts. The measurement system should be dynamically 
calibrated when the spectral conditions and properties of 
surfaces change. The method should be extended to 3D 
reconstruction of surfaces in multispectral space to more 
accurately characterize the dimensional, morphological, and 
material properties of additively manufactured parts. 
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