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Abstract—This paper deals with collision avoidance for road 
vehicles when operating at the limits of available friction. For 
collision avoidance, a typical control approach is to: (a) define a 
reference geometric path that avoids collision; (b) apply low-level 
control to perform path following. However, there are a number 
of limitations in this approach, which are addressed in the 
current paper. First, it is typically unknown whether a pre-
defined reference path is feasible or over-conservative. Secondly, 
the control scheme is not well suited to avoiding a moving object, 
e.g. another vehicle. Further: incorrect choice of reference path 
may degrade performance, fast adaptation to friction change is 
not easy to implement and the associated low-level control 
allocation may be computationally intensive. In this paper we use 
the general nonlinear optimal control formulation, include some 
simplifying assumptions and base optimal control on the 
minimization of an underlying Hamiltonian function. A particle 
model is used to define an initial reference in the form of a 
desired global mass-center acceleration vector. Beyond that, yaw 
moment is taken into account for the purpose of enhancing the 
stability of the vehicle. The Hamiltonian function is adapted as a 
linear function of tyre forces and can be minimized locally for 
individual wheels; this significantly reduces computational 
workload compared to the conventional approach of force-
moment allocation. Several combinations of actuators are studied 
to show the general applicability of the control algorithm based 
on a linear Hamiltonian function. The method has the potential 
to be used in future vehicle control systems across a wide range of 
safety applications and hence improve overall vehicle agility and 
improve safety. 

Keywords—Collision avoidance, vehicle control, active safety, 
vehicle dynamics, intelligent vehicle, optimal control. 

1. Introduction 
Active safety and improving vehicle handling ability have 

become more and more important due to the continuing high 
number of accidents registered in road traffic statistics. Over 
the years, many car companies have successively equipped 
their vehicles with the most up-to-date driving assistance 
systems, from the earliest anti-lock braking systems (ABS), to 
the more recent electronic stability control (ESC) system, to 
adaptive cruise control (ACC) system, and to the latest 
collision avoidance and crash mitigation systems. For example, 
Volvo City Safety equipped cars have shown the effectiveness 
of helping the driver to avoid rear-end collisions at low speeds 
by automatically braking when a potential collision is detected 
[Distner 2007]. Similar functionality can be found in 
Mercedes-Benz’s Pre-safe Brake and Volkswagen’s Front 

Assist and City Emergency Brake [Galvani 2014]. These 
systems use brakes only to achieve collision avoidance. The 
availability of multiple actuators, like individual wheel 
braking, active front wheel steering, active rear wheel steering 
and etc., enables an agile response from the vehicle, even 
compared to that of the most skilled human driver. Some 
research has been carried out around using multiple actuators 
for collision avoidance. In [Shah 2014], the proposed system 
helps the driver to steer around the obstacle by overlaying 
steering torque and braking individual wheels. In [Choi 2011], 
an emergency driving support (EDS) algorithm is developed 
to support the driver to avoid collision using motor driven 
power steering (MDPS) and electronic stability control (ESC). 
In [Dingle 2010], the performances of front-steer and four 
wheel steer vehicles are compared. It is shown that, by adding 
more actuators, better manoeuvrability and more agile vehicle 
response can potentially be achieved.    

In this paper, steering and braking control are tapped, and 
collision avoidance is set in the context of single lane change 
scenario. Traditionally, collision avoidance control is based on 
a two-stage approach: 1) define a reference geometric path 
that avoids collision, 2) apply low level control to perform 
path following. For example, in [Shim 2012], a collision-free 
trajectory is determined by a motion planner based on 
polynomial parameterization, then a model-predictive-control 
(MPC)-based control system performs the path following. In 
[Shibata 2014], a collision avoidance method with steering 
control is proposed by generating a trajectory for obstacle 
avoidance based on application of the velocity potential field. 
In [Shah 2014], the optimal collision avoidance path planning 
was treated as a problem of finding the optimal acceleration as 
a function of time or path length, an optimal braking and 
steering control are used for path following. However, there 
are a number of limitations in this approach; the initial 
definition of the path happens as a one-time computation, and 
loop closure tracks that at a later time, something that can lead 
to a path that is too aggressive or too conservative, especially 
as the avoidance scenario unfolds. Furthermore, fast 
adaptation to friction change is not easy to implement and the 
associated low-level control allocation is usually 
computationally intensive. 

To address some of the above-mentioned problems, here 
we develop a new approach based on steering function (rapid 
lane change) but using a combination of braking and steering. 
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This is, however, inspired by previous work on post impact 
vehicle dynamics [Yang 2012], where a quasi-linear optimal 
controller (QLOC) is designed in the way of combining linear 
costate dynamics with nonlinear constraints due to tyre 
friction limits. Nonlinear optimal control theory then provides 
a semiexplicit approximation for optimal path control. This 
avoids a two-stage approach. Previous studies have shown 
applying yaw moment control may help to generate useful 
mass centre forces for the optimal control path. In QLOC 
paper, yaw moment control is achieved by optimal control 
theory, here a simpler alternative way of tracking desired yaw 
moment is proposed. The controller is designed in a 
hierarchical structure; first, global acceleration vector is 
determined using a particle model; secondly, vehicle stability 
control is considered by constraining yaw moment to follow a 
desired yaw moment profile; lastly, control allocation is 
achieved by minimizing Hamiltonian function at individual 
wheels level.  Note that, the particle model used here is not for 
path following, instead is for QLOC integration and low-level 
actuation, so the motion is maximized in a general preferred 
direction away from possible collision.  

2. Optimal lane change strategy 
Consider a particle representation of the vehicle model 

with mass m , acted upon by friction force of magnitude F .
We assume a planar motion with yaw motion suppressed, and 
use the inertial coordinate system X E , EY to locate the particle. 
The resultant force direction angle  (t) is the control variable 
for the system, see Fig. 1. The coordinate origin O is chosen at 
the vehicle’s mass centre at the entry of the path. The entry 
velocity is not zero at the lateral direction so that the control 
loop can be closed during the manoeuvre. The equations of 
motion are 
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Here F and  are bounded 

U {F  [0,mg],  [0,2 ]} (2) 

The optimal lane change problem is formulated as a 
minimum terminal time optimal control problem. The 
objective is to find the admissible control and a feasible 
trajectory which minimizes the terminal time for the lane 
change. The cost function is 

0

1
T

t
J dt  (3)

We now solve the optimal control problem using the 
augmented Hamiltonian system. First rewrite equation (1) in 
the state-space form ( , )x f x  , or more specifically 

( ),   x Ax q U  (4)
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Here 2 20 is the 2 2 zero matrix, 2 2I is the 2 2 identity 
matrix, etc.. Introducing co-state vector   and Hamiltonian 
function 1TH  f , the augmented system equations are 
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From  (7), we obtain 

 1 20 0 T     A  (8)

The augmented equations are easily integrated to yield 

 1 2 1 3 2 4( ) Tt C C C t C C t C     (9) 

where 1C , 2C , 3C and 4C are integration constants. 

The explicit form of the Hamiltonian function is 

H  1x1 2x2 
F
m

(3 cos 4 sin )1 (10)

For the free-time optimal control problem, of the form 
H (T )  0, where T is the terminal time; from the form of the 
above equations, it then follows that H (t)  0during the entire 
integration interval. Also, since F appears linearly in equation 
(10); it turns out that the optimal force F  takes its boundary 
value, i.e. 

F   mg (11) 

The optimality condition is then given by 

H


 F
m

3 sin  4 cos   0 (12)

* 4

3

tan 


 (13)

We now consider the terminal conditions for optimal 
control. Assuming the combination of braking and steering 
strategy is successful, the lane change is considered completed 
when the global lateral velocity reaches zero. Therefore, the 
particle is transferred to a lane parallel to the global EX -axis
at a distance 0d away from the original lane. Thus, the 
complete set of boundary conditions is: 

576 | 2015 | MARCH |              SCIENCE JOURNAL 2015 | MARCH |              SCIENCE JOURNAL | 577 |              |              |              |              |              |              |              |              |              |              |              |              |              



1

0 2 2

3

4 4

( ) 0
( ) , ( )
( ) 0

( ) 0 , ( )

E

E

T
Y T d T v

T
Y T T v









 



 

(14)

where 2v and 4v are constants to be determined so that 
YE (T )  d0 and ( ) 0EY T  . From 1( ) 0T  , we find 1 0C  ,
and then 3 3 0C    from 3(T )  0 . From (13), we obtain 
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which the resultant force acts in the lateral direction, and the 

optimal control input [ F (t) (t) ]T  is found to be 
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where the switching time corresponds to 4 (ts )  0 . Further, 
assuming the initial lateral velocity is zero, the overall time for 
the lane change is found to be 

T *  2
d0

g
(16) 

3. Vehicle model 
Beyond the very simple particle, we use a nonlinear 

vehicle model for simulation. It is a 3-degree-of freedom 
(DOF) planar two-track model with three states xv , yv , ,
relative to the vehicle x y coordinates. This model is suitable 
for the application of active brake controls, front wheel 
steering controls and four wheel steering controls. The 
equations of motion are as follows: 

Figure 1. Kinematics of the rapid lane-change used for the collision 
avoidance  maneuvre. 
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The tyre forces (Fx i , Fy i )  are defined via a standard 
Pacejka model, data for which are presented below. 
Furthermore, load transfer is included and tyre forces are 
likewise sensitive to these vertical loads. Similar models are 
used and detailed in references [Longoria 2009], [Fredriksson 
2004]. Vehicle axes are shown in Fig. 2, and subscripts such 
as Fx i  correspond to the corner labels shown. The nonlinear 
tyre model characteristics are crucial to solving the limit 
handling problem; relevant tyre force curves are presented 
below. 

                          Figure 2. Layout of vehicle including axes 

4. Control allocation in limit handling via the hamiltonian 
function 

The aim now is to convert acceleration demands, obtained 
from the particle model above, into actuator control signals: 
front wheel steering angles or four wheel steering angles and 
individual braking torques.  One way to achieve this is via 
control allocation algorithms [Longoria 2009], [Fredriksson 
2004]. Such algorithms typically use constrained nonlinear 
optimization methods to determine feasible (and in some sense 
optimal) inputs at the actuators to achieve the required vehicle-
level forces and moments [ , , ]T

x y zF F M .This is a 
computationally intensive process, since it uses nonlinear 
models of all four tyres simultaneously and an alternative 
approach was developed in QLOC papers [Yang 2012], [Yang 
2014] which includes an optimal trade-off between global 
accelerations and yaw moments. This was calculated using a 
linearized model to approximate the co-state functions. Here 
we adopt a simpler approach that is nonetheless motivated by 
the QLOC formulation. Let [ , ]d d d T

x ya aa  be the desired mass 
centre acceleration vector, which we assume to be on the limits 

Tv

0v

0 EX

EY
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of friction. In the absence of any yaw moment target this is 
achieved by minimizing the following linear function 

x x y yH p F p F   where we define p as a unit vector in the 

direction opposing the desired acceleration, p  ad ad . H is 
to be minimized subject to friction constraints for the whole 
vehicle. On the other hand, yaw moments may be applied to 
adjust body sideslip angle and enhance the ability of the 
vehicle to generate useful mass-centre forces within some 
control-planning horizon.  In the QLOC formulation this was 
determined via optimal control theory, while here we find an 
alternative approach to target a desired yaw moment zM . To 
achieve this, the Hamiltonian function is adapted to 

H  pxFx  pyFy M z (18) 

where   plays a role similar to a Lagrange multiplier, in 
order to constrain the yaw moment. In the following we 
determine a desired yaw moment d

zM  and   is to be adapted 
to track this value:  

    sgn(Mz Mz
d ) (19) 

where here   is chosen as a fixed increment per controller 
time step. The key point is that this is a linear function of tyre 
forces and may be minimized independently via the forces 
acting at each individual tyre. We now formulate this by 
resolving H as a sum over longitudinal and lateral tyre forces.  

As mentioned, the control objective is formulated as 
minH  . Any coordinate system may be used in equation 

(18), but here we adopt vehicle coordinates: 
v v

x xii
v v

y y ii

F F

F F








(20) 

where the superscript v indicates the coordinate system. The 
yaw moment is expressed as 

M z  (xi Fyi
v

i  yiFxi
v ) (21)

We also consider global coordinates (g) and also “tyre” 
coordinates (t) aligned with the wheels which may be steered 
relative to the vehicle through angle i ; see Fig.  3. 

From the figures the path angle   is related to the vehicle 
yaw angle  and sideslip angle   via the equation: 

   (22) 

                                      Figure 3. Path and yaw angle 

Further, the global “yaw” angle i  of an individual wheel is 
given by 

i i    (23)

where i  is the steer angle relative to the vehicle. In global 
axes, the individual wheel forces [ , ]g g g T

i x i y iF FF  are related 
to the corresponding forces t

iF  in tyre coordinates via 

( )g t
i i iF FR (24)

where ( )iR  is the 2D rotation matrix defined by 
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In the Hamiltonian function, both p and F are assumed to 
be in global coordinates. It is convenient to convert to vehicle 
coordinates, v v

zH M  p F , where ( )v T gp pR . Then 
we decompose into component wheel forces: 

H  Hii (26)

where 

(27)

Finally, converting to local tyre forces via the steering 
angles, ( )v t

i i iF FR , we obtain 

(28)

where ( )t T v
i i ip p R are the linear tyre force coefficients of 

the “local Hamiltonian” function. For online implementation 
this greatly simplifies the analysis, since the individual tyre 
forces are effectively decoupled. There is a minor interaction: 
as in-plane tyre forces are varied the vertical loads are 




x

y
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affected, but in a real vehicle the effect is moderated by the 
suspension system and vertical loads can be estimated 
independently of the braking and cornering forces. 

5. Control of tyre forces yaw moments 
In the above it has been shown that, based on a linear 
Hamiltonian, control force allocation at the vehicle level is 
reduced to function minimization at the local wheel level. The 
tyre model we use here is Pacejka magic formula tuned to 
representative tyre data given in CarSim D Class Sedan lateral 
force map [Mechanical Simulation 2005]– Fig.  4.  

Figure 4.  Nonlinear tyre forces: lateral force as a function of slip     angle 
at 8 different vertical loads [solid: CarSim data, dashed: Pacejka ‘magic 
formula’ model. 

For H minimization we start with the form of equation 
(28). It is convenient to define the H-angle  corresponding to 
the ratio of the components :  so that, 
equivalent to (28) we have 

Ĥi  cos i Fi1
t  sin i Fi2

t  min (29)

The following figure, Fig. 5, shows a series of curves 
representing the range of forces available due to changes in 
braking torque, each at a given slip angle, with terminal value 
corresponding to a locked wheel. Lines of constant Ĥ  are 
shown dotted. Stars show the points of minimum Ĥ .  The 
thicker line shows an example with modest slip angle 
( 0.25   ) in which case the optimal (*) point is close to that 
targeted by an antilock braking system (near maximum 
braking force). On the other hand, for curves in the upper part 
of the plot, Ĥ  is minimized at full braking torque, i.e. with a 
locked wheel. 

Figure 5. Force map in tyre coordinates: each solid curve represents the 
range of forces available due to changes in braking torque for a given slip 
angle, with terminal value corresponding to a locked wheel. Lines of 
constant Ĥ  are shown dotted. Stars show the point of minimum Ĥ .The

thicker line shows an example with 0.25   .   

For closed-loop control we assume that brake forces can be 
rapidly changing, so the star (*) point can be rapidly obtained. 
Further, the slip angle can be increased or decreased by (i) 
actively controlling the steer angle, or (ii) changing the body 
sideslip angle of the entire vehicle. For the example shown, 

15   , it is clear that the minimizing value of Ĥ  increases 
with slip angle, so for this wheel we should steer to reduce 
if possible. For individual wheel steering (i) this is certainly 
possible, while for a single steered axle we need to consider 
the tradeoff between the two steered wheels. And for body 
sideslip control the tradeoff is for all four wheels.   

More formally we assume that the tyre model is adequately 
known to be used in open-loop fashion, so that at a given slip 
angle a one-dimensional search is carried out to minimize ˆ

iH
at each wheel. For simplicity in this analysis we assume wheel 
angular accelerations are sufficiently small that applied wheel 
torque wT  is in equilibrium with the longitudinal tyre 
force: t

w x wT F R   (where wR  is the rolling radius of the 
wheel/tyre). For the current slip angle, the corresponding 
curve in Fig.  5 determines the required value of t

xF  and hence 
the braking torque wT . (Note: for active driving torque control, 
e.g. via active differentials or individual wheel motors, we can 
relax this constraint). Then via a small perturbation 
around the ‘star’ point we estimate 

Hi

i


Hi (i ) Hi (i )

2
(30)

Note that we revert to the non-normalized Hamiltonian 
components, since relative magnitudes are significant when 
evaluating the trade-off between different wheels. Now it is 
easy to show that when the vehicle sideslip angle   is small 
we have 

15  
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(31)

In the following we assume the collision avoidance system 
has control of the front steering angles ( 1 = 2 = ) and the 
four individual wheel braking torques wiT . Coordination of slip 
angles at the front axle is via the common steer angle: 

H 
H



H1

1


1



H2

2


2




H1

1


H2

2

(32)

using equation (30), assuming an effective rate limit k  for 
the front axle steering actuator [Yang 2014] we locally reduce 
the value of H via the control law 

(33)

Body sideslip control is defined in a similar fashion, 
though via a dynamic degree of freedom, namely the yaw 
motion of the vehicle: 

H 
H



Hi

i


i

i
 

Hi

ii
 (34)

Again using equation (30), similar to equation (33) we 
define a target sideslip rate based on the requirement to 
minimize H

(35)

Yaw stability may also be required, to avoid increasing 
sideslip angle   beyond some threshold value 2 , typically 
no more than around 5° though it is not clear a priori that an 
additional criterion is needed. It is quite easy to introduce a 
saturation condition of the form 

(36)

where 1 20    . While the switching conditions are 
somewhat ad-hoc and require separate definition of threshold 
parameters such as ( k , 1 , 2 ), each parameter has a direct 
meaning for controller design and such rules are typical of 
traditional control laws for body sideslip control [Kiencke 
2005]. Note however that the current analysis is for handling 
control under highly nonlinear operating conditions, right at 
the friction limits. 

To complete the yaw moment control we need a process 
for choosing the desired zM  and adapting the parameter ( )t

to determine a preferred or optimal trade-off between 
controlling the trajectory of the vehicle mass centre and 
adjusting the orientation to improve body sideslip angle (and 
hence side forces at un-steered wheels). In [Longoria 2009] 
this parameter was determined via nonlinear optimal control 
theory.  In the present work we formulate a simpler algorithm 
as follows: from equation (22) we determine the desired yaw 
rate

(37)

 is determined above and  is related to path curvature, and 
is found from the acceleration in path coordinates 

(38)

v  being vehicle speed and gF  being the force components 
determined from the tyre model above. Yaw moments are 
applied to track the desired yaw rate, most simply via a first 
order control law 

(39)

hence the desired yaw moment is 

(40)

where zzI  is the yaw moment of inertia.  

6. Case 1: front steer with four wheel brakes 
In Case 1, we consider a vehicle with front steer and 

individual wheel braking (5 actuators) controlled by the above 
Hamiltonian controller. Initially we choose  0.15   as a 
fixed increment for . A lane change is executed starting from 
a vehicle speed of 20m/s. Fig. 6 shows the path of the vehicle, 
Fig. 7 gives the accelerations in vehicle coordinates and 
finally Fig. 8 presents the effect of adapting   to track the 
desired yaw moment. The lane change is seen to be 
successfully executed within a clock time t = 3.5 seconds, i.e. 
1.5 seconds from the start of the lane change. This compares 
with 1.2 seconds for the ideal particle. The results do not 
necessarily prove the optimality of the controller, but the 
magnitude of the mass-centre acceleration vector is close to 
the friction limit, the lane change is faithfully executed using 
automated and coordinated control of front steering and 
individual wheel braking, and the algorithm is both general 
and incorporates all existing actuator constraints (e.g. no rear 
steering, equal front steering left/right, no driving torque). Fig. 
8 also shows that by adapting   it is possible to control yaw 
moments and actually achieve tight control of body sideslip – 
this is suggested in Fig. 6, and the actual peak is within ±4 
degrees.
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Figure 6. Lane Change at 20 m/s based on the optimal particle motion of 
Section II (vertical axis shown in m). 
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Figure 7. Case 1: Accelerations – lane change initiated at time t=2 sec. 
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Figure 8. Case 1:Yaw Moment tracking, actual (solid) vs. desired 
(dashed). 

     The initial choice of  is tested now, based on how 
well adapting  will track the desired yaw moment, repeating 
the lane-change simulation for a range of values   at regular 
increments; from Fig. 9, a small range of values around 

0.15  show similar tracking performances which suggests 
0.15  is a reasonable value of increment for  . We also 

need to take account of delays in switching the sign and 
magnitude of the lateral acceleration, due to tire relaxation and 
vehicle inertia; this is clear from the lower plot of Fig. 7. 
Hence we need to prescribe the lane change trigger position 
which needs to ensure that there is a lateral motion equal to a 
full lane width on completion of the maneuver.  From Fig. 10, 
we can see, for an ideal particle, lane change trigger position is 
at the half of the lane width, while, for a more realistic vehicle, 
the lane change maneuver needs to be taken at an earlier stage 
to compensate for the mentioned time delays; in this case the 
lane trigger position is chosen at 0.2, this a normalized value 
with respect to lane width W=3.5m; so the lane change 
finishes at the center of the target lane. 
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Figure 9. Optimal choice of  : RMS error in yaw moment tracking 
vs. 
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7. Case 2: 4 wheel steering and 4 wheel braking 
In this case, we add the option for rear wheel steering (6 

actuators). Going through a similar process to the above, we 
determine 0.12  and Ytrigger=0.25. It turns out that with both 
front and rear steering, the vehicle has a more agile response, 
associated with reduced yaw angle but with larger peak body 
sideslip angle at 10 degrees. The results are shown in Fig. 11-
12.  
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Figure 11.  Case 2: Accelerations – lane change initiated at time t=2 sec. 
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Figure 12. Case 2:Yaw Moment tracking, actual (solid) vs. desired 
(dashed). 

8. Case 3: 4 wheel braking only 
In this case, we do not allow any steering at all, hence with 

only 4 individual wheel braking; as above we determine 
acceptable parameters: 0.1  and Ytrigger=0.5. In this case the 
agility is greatly reduced: the vehicle takes 3.9 seconds to 
finish the lane change; this is much slower than previous two 
cases since the lane change manoeuvre is achieved only by 
differential braking and the vehicle speed is greatly reduced 

during the manoeuvre. Here peak body sideslip is controlled 
within ±4 degrees, again indicating a high degree of yaw 
moment control and yaw stability. The results are shown in 
Fig. 13-14. Recall that we assume fast (instantaneous) control 
of the brake forces, and for the case without steering this leads 
to a high degree of brake chatter, similar to that seen in sliding 
mode control. While lateral accelerations are suppressed in 
favor of longitudinal deceleration (Fig. 13), seemingly 
satisfactory performance is achieved and the lane change is 
completed. 
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Figure 13.  Case 3: Accelerations – lane change initiated at time t=2 sec. 
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Figure 14. Case 3:Yaw Moment tracking, actual (solid) vs. desired 
(dashed). 

9. Conclusions 
A sophisticated and novel control algorithm is presented in 

the above. By design, it fully respects nonlinear tyre 
characteristics, is efficient enough to be executed in real-time, 
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and appears general enough to be applied to a wide variety of 
vehicle manoeuvres and a large number of actuator 
combinations. This is expected to include so-called torque 
vectoring, when for example individual electric drive motors 
are used in addition to individual brake actuators. The 
analytical aspects of the control algorithm were motivated by a 
previous (QLOC) algorithm, used for post-impact path and 
speed control of a destabilized vehicle. The present work 
shows that the same general approach can be applied to limit 
handling manoeuvres without any associated yaw-sideslip 
instability. Future work is needed to compare performance to 
those of independent numerical optimizations, and of course 
further work is needed to implement this type of controller in 
experimental vehicles.   

A secondary contribution of the present paper is to show 
that it is not always necessary to pre-define a target path (the 
limitations of which have been summarized above) in order to 
carry out limit handling manoeuvres. The lane-change 
manoeuvre considered in the present work determines a 
control action that coordinates (automated) steering and 
braking actuators. It is also feasible that (front) steering is 
determined directly by a human driver while the other 
actuators are used in support of the driver actions. The 
acceleration reference could, in principle be found from 
external information (e.g. radar reflections) to determine that 
the manoeuvre is needed (lane-change in this case). Or it could 
be found from a driver interpreter function, or it might be 
found from a combination of external sensing and driver 
interpretation, an intriguing problem not so far considered in 
the literature.  

Future work is also needed to formulate the optimal 
particle motion in terms of coupled lateral and longitudinal 
accelerations: the ‘fastest possible’ lane change may not 
necessarily capture all relevant and robust safety criteria for 
collision avoidance, as suggested by Case 3, where the slower 
lane-change is due to the larger speed reductions compared to 
the other cases. And of course, experimental validation is also 
required. 
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