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With the performance of various technological operations 
(welding, machining, etc.) it is necessary that the end member 
of a robot moves along the defined path and, at the same time, 
the tool fulfils certain criteria in relation to the machined 
surface. The aim of the article is to apply theoretical knowledge 
to derivation of kinematic equations of a robotic mechanism 
control, i.e. to the solution of an inverse problem. The 
substance of the problem consists it the fact that based on the 
required  position and orientation of the tool, it is necessary to 
determine the values of the generalized  coordinates in 
individual joints of a robot. The solving method of the 
presented problem is illustrated by the specific example, i.e. 
the movement of the end member of a robot with conical 
surfaces machining. 
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1 THE DESIGN OF THE ROBOTIC MECHANISM 

The designed robotic mechanism is presented in Fig. 1. The 
mechanism has six degrees of freedom, a simple open 
kinematic structure with rotary kinematic couples only. We 
have chosen this design of the mechanism because of the aim 
of its application and optimality with the regard to the analysis 
and the solution of the so-called inverse problem. On the other 
hand the position and the orientation of the end member (tool) 
is given by six parameters and thus the mechanism must have 
minimally six degrees of the freedom. 
 

 
 
Figure 1. Mechanism of a robot 

2 GEOMETRICAL DESCRIPTION OF THE MECHANISM 

In this part we take interest in the geometrical description of 
the considered mechanism. We   denote its edges successively 
by. Then the location and the orientation of the end member   
are uniquely given by six so-called generalized coordinates. 
Those are the angles of rotations the meaning of which is 
obvious from Fig. 2. In order to make the analytical description 
of the mechanism, we express the related points and vectors by 
the coordinates in the orthonormal anticlockwise oriented 
systems   related to the members of the mechanism as it is 
shown in Fig. 2. Besides these coordinate systems we consider 
the system   connected to the base (by a workpiece) and   
connected to the tool. In order to simplify the following 
notations, we denote and. In the sequel we denote the 
coordinates of the point by and the coordinates of the vector   
by in the coordinate system. Between the coordinates of the 
points in the individual coordinate systems the following 
transform equations will hold. [Modrak 2002, Pasko 2008] 
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If we apply the notation of the so-called extended coordinates 
and transform matrices, 
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we can rewrite the transform equations (1) in the compact 
form 

    7,6,,1,0,1,,,  jiXTX i
ij

j    (4) 

Since the repeated transition from one coordinate system to 
another one is given by the product of the related extended 
transform matrices, it is easy to verify that the following 
relations hold 
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Figure 2. Coordinate systems and the generalized coordinates 
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Finally, if we denote 

,sin,cos iiii sc        

we get the relations for the basic transform matrices and for 
their inverse ones [Xiang 2004, Zhifei 2014 ] 
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3  THE INVERSE PROBLEM AND ITS SOLUTION 

Let us suppose that there are given the lengths of the individual 
members of the mechanism and the extended transform 
matrices [Brat 1981]   

 - 0,1TZ - the given location and orientation of the 

mechanism with respect to the base, 

- 7,6TW  - the given location and orientation of the tool with 

respect to the end member, 

-  )(tTT   the required location and orientation of the tool 

with  respect to the base at the given time instant. [Pasko 2008] 

The aim is to determine the values of the generalized 

coordinates 6,,2,1,)(  itii   so that the transform 

matrix ))(,),(),(( 6217,17,1 tttTT     holds the equality 

TT  7,1       (8) 

This equality leads to twelve nonlinear equations with six 
unknowns. The solution to them using some iterative method 

may cause some problems with the inexactness, non-
uniqueness, and with the excluding the superfluous equations. 
Therefore we apply the geometrical approach to the solution of 
this inverse problem by the following steps. [Modrak 2002, 
Pasko 2008] 

 

1. By (7) and (5) it is possible to calculate the transform matrix 
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and the angle 
1  is the oriented one between the vectors 
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and 40QP  Hence (see Fig. 3) 
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and the angle 1  can be chosen arbitrarily  if 04 d . By (6) 
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Figure 3. Determination of the angle φ1 

 

Figure 4. Determination of the angle φ2 
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4. By the analogous way as in the step 2, with the coordinate 
system S1 we get  
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fig. 4 as well as the cosine theorem. 
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By (6) and (7) we know the transform matrices   and by (5) also  
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5. By the analogous way as in the preceding it is [Pasko 2008] 
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And based on Fig. 5. [Modrak 2002] 
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Hence, we know the transform matrices 3,2T  and   13,2
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Figure 5. Determination of the angle φ1 

6. From Fig. 2 we can see that 5  is the angle between the 

vectors 3e


 and 6e


. Hence 
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7. If 0
5 0  or 0

5 180 , the angle 4  can be chosen 

arbitrarily. Then 
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9. Finally, we can complete the coordinate systems 4S  and 5S  

to anticlockwise oriented ones by the vectors 
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and for the rest of the angles we get [1, 2]    
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4  CONCLUSION 

Let be a spatial curve which is given at the basic coordinate 

1SSZ    by the parametric equations 
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with the parameter   chosen so that the motion along this curve 
has in advance given velocity, i.e. there is given the velocity 
magnitude 
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coordinate system has the coordinates TvvvV ],,[ 321  . Then 

the generalized conical surface (see Fig. 6) given by the curve k  
and the point V  has the parametric equations (with respect to 
the basic coordinate system). 
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Figure 6. Generalized conical surface 

We shall require that the motion of the tool is so that its 
working point is at the time t   at the related point of the curve 
k, i.e. [Modrak 2002, Pasko 2008] 
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and the tool is oriented so that PVe 


 , the vector f


  is 

orthogonal to the considered conical surface, and the vector g


 

completes the system as the orthonormal and anticlockwise 
oriented one, i.e. 
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Hence, at any time instant t there is the transform matrix 
determined [Modrak 2002] 
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and the values of the generalized coordinates can be 
determined by the procedure from the previous section. 

In many cases the designers have to know the boundaries of 
the mechanism motion within all moving members of the 
mechanism. The motion envelope determines the industrial 
robot’s manipulation area for specific operations thus enabling 
to create a model of a robotized workplace so that if can suit 
the ideas of a future operation. The envelope of the industrial 
robot’s motion with the end member motion along a conical 
area can be seen in Fig. 7. 

Figure 7. The motion envelope 
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