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With the performance of various technological operations
(welding, machining, etc.) it is necessary that the end member
of a robot moves along the defined path and, at the same time,
the tool fulfils certain criteria in relation to the machined
surface. The aim of the article is to apply theoretical knowledge
to derivation of kinematic equations of a robotic mechanism
control, i.e. to the solution of an inverse problem. The
substance of the problem consists it the fact that based on the
required position and orientation of the tool, it is necessary to
determine the values of the generalized coordinates in
individual joints of a robot. The solving method of the
presented problem is illustrated by the specific example, i.e.
the movement of the end member of a robot with conical
surfaces machining.
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1 THE DESIGN OF THE ROBOTIC MECHANISM

The designed robotic mechanism is presented in Fig. 1. The
mechanism has six degrees of freedom, a simple open
kinematic structure with rotary kinematic couples only. We
have chosen this design of the mechanism because of the aim
of its application and optimality with the regard to the analysis
and the solution of the so-called inverse problem. On the other
hand the position and the orientation of the end member (tool)
is given by six parameters and thus the mechanism must have
minimally six degrees of the freedom.

7
NF

Figure 1. Mechanism of a robot

2 GEOMETRICAL DESCRIPTION OF THE MECHANISM

In this part we take interest in the geometrical description of
the considered mechanism. We denote its edges successively
by. Then the location and the orientation of the end member
are uniquely given by six so-called generalized coordinates.
Those are the angles of rotations the meaning of which is
obvious from Fig. 2. In order to make the analytical description
of the mechanism, we express the related points and vectors by
the coordinates in the orthonormal anticlockwise oriented
systems related to the members of the mechanism as it is
shown in Fig. 2. Besides these coordinate systems we consider
the system  connected to the base (by a workpiece) and
connected to the tool. In order to simplify the following
notations, we denote and. In the sequel we denote the
coordinates of the point by and the coordinates of the vector
by in the coordinate system. Between the coordinates of the
points in the individual coordinate systems the following
transform equations will hold. [Modrak 2002, Pasko 2008]
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If we apply the notation of the so-called extended coordinates
and transform matrices,
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we can rewrite the transform equations (1) in the compact
form

XU-T, x,i,j=-1,0,1,--,6,7 (4)

Since the repeated transition from one coordinate system to
another one is given by the product of the related extended
transform matrices, it is easy to verify that the following
relations hold
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Figure 2. Coordinate systems and the generalized coordinates
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Finally, if we denote
c; =cCos@;,s; =sing;,

we get the relations for the basic transform matrices and for
their inverse ones [Xiang 2004, Zhifei 2014 ]
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3 THE INVERSE PROBLEM AND ITS SOLUTION

Let us suppose that there are given the lengths of the individual
members of the mechanism and the extended transform
matrices [Brat 1981]

- Z= T—l,o - the given location and orientation of the

mechanism with respect to the base,

- W =T6/7 - the given location and orientation of the tool with
respect to the end member,

- T =T(t) the required location and orientation of the tool
with respect to the base at the given time instant. [Pasko 2008]
The aim is to determine the values of the generalized

coordinates ¢; =¢;(t),i=1,2,---,6 so that the transform
matrix T_1,7 =T_1,7((p1(t),(p2(t),---,(/76(1‘)) holds the equality

Ty,=T (8)

This equality leads to twelve nonlinear equations with six
unknowns. The solution to them using some iterative method

may cause some problems with the inexactness, non-
uniqueness, and with the excluding the superfluous equations.
Therefore we apply the geometrical approach to the solution of
this inverse problem by the following steps. [Modrak 2002,
Pasko 2008]

1. By (7) and (5) it is possible to calculate the transform matrix

Too=Z T <) o) s LR
' 0 0 01

2. Based on Fig. 2 it is obvious that P5 = Py —Icé4,65 =€ a

P, = P5 —I5¢5 which at the coordinate system S gives the

relation
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3. Let be the orthogonal projection of the point to the plain,
then

A
Q= vy

0

and the angle (), is the oriented one between the vectors

égand PyQ, Hence (see Fig. 3)

Q= (sgny[lo])mccos# if dg = ﬂ(xz[lo])z +(y£o])z =0 (9)
4

and the angle ¢; can be chosen arbitrarily if dy =0 . By (6)

= = W1
and (7) we know the transform matrices T ; and (TOJT and

(Tollyl and by (5) also
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Figure 3. Determination of the angle ¢
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Figure 4. Determination of the angle >
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4. By the analogous way as in the step 2, with the coordinate
system S; we get

N
4

P =] 0 |=PM (5 +1g)ell
]
4

Let us denote a—ﬂ [1 ZE ,llz+l4 If a=0 and

I, =b, the angle ¢, can be chosen arbitrarily. If a=0 and
I, #b, the problem has no solution. If a0, then based on

fig. 4 as well as the cosine theorem.
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By (6) and (7) we know the transform matrices and by (5) also
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5. By the analogous way as in the preceding it is [Pasko 2008]
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And based on Fig. 5. [Modrak 2002]
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Figure 5. Determination of the angle ¢

6. From Fig. 2 we can see that @5 is the angle between the

vectors €3 and ¢g. Hence

@5 =arccokés &)= arcco£e[33] -eE’]) (12)

7.1f 5 =0° or g5 =180°,
arbitrarily. Then

the angle ¢4 can be chosen

fa=f5=cosp,fs+sing,gs, i.e

0
ff] = f5[3] = COS(P4f3[3] +singo4g£3] =| COSQy
sin gy

8. If g5 # 0° and @s #180° from figure 2 we can see that the

vector f4 = ]‘5 is orthogonal to the vectors ¢3 and ¢, and we

can put

X

9. Finally, we can complete the coordinate systems S; and Ss

to anticlockwise oriented ones by the vectors

€4=€3,84 =64 % fy4,€5=65,85=E5%f5,1.e

Y R

and for the rest of the angles we get [1, 2]

Q4 = arcc0€§3 ~§4)= arcco£g[3] . [3]),

Vg —arccoégs g6) arccoég[g’ 3]) (13)

4 CONCLUSION

Let be a spatial curve which is given at the basic coordinate
Sz =5_1 by the parametric equations

X=X, =X_1= w(t)r

y=yz=ya1=v), (14)
Z=Z7 =Z4 :g(t),t€<t0,t1 >

with the parameter chosen so that the motion along this curve

has in advance given velocity, i.e. there is given the velocity
magnitude

2 2 2

o) = o2 () +p 20+ E2(0).

Let V be the given point in the space which in the basic
=[vl,vz,v3]T . Then
the generalized conical surface (see Fig. 6) given by the curve k
and the point V has the parametric equations (with respect to
the basic coordinate system).

x=g(t)+ (v —o(t))s,

y=y(t)+(v - (b)s, (15)

z=&(t)+(v3 —&(t))s, te<ty, bty >,5€<0,1>.

coordinate system has the coordinates V'

F=

Figure 6. Generalized conical surface

We shall require that the motion of the tool is so that its
working point is at the time t at the related point of the curve
k, i.e. [Modrak 2002, Pasko 2008]

P = [pt), p (1), &)
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and the tool is oriented so that ¢ TT PV , the vector f is
orthogonal to the considered conical surface, and the vector g

completes the system as the orthonormal and anticlockwise
oriented one, i.e.

- (@1 p(t), oy —w(t), 03— E(1)"
V@1 =01 + (03 —p(H)? + (03 - E(1)?
W™ = ('), (1), £ (1),

ol =l u[_l], (16)
-1
fH] _ o1
|v[’1] !
g[—l] =l 5 f[—ll.

Hence, at any time instant t there is the transform matrix
determined [Modrak 2002]

(1]
- e
T(t)=
"= TR

and the values of the generalized coordinates can be
determined by the procedure from the previous section.

In many cases the designers have to know the boundaries of
the mechanism motion within all moving members of the
mechanism. The motion envelope determines the industrial
robot’s manipulation area for specific operations thus enabling
to create a model of a robotized workplace so that if can suit
the ideas of a future operation. The envelope of the industrial
robot’s motion with the end member motion along a conical
area can be seen in Fig. 7.

%
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Figure 7. The motion envelope
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